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Abstract—Starting from a practical use of Reed-Solomon codes
in a cryptographic scheme published in Indocrypt’09, this paper
deals with the threshold of linear q-ary error-correcting codes.
The security of this scheme is based on the intractability of
polynomial reconstruction when there is too much noise in
the vector. Our approach switches from this paradigm to an
Information Theoretical point of view: is there a class of elements
that are so far away from the code that the list size is always
superpolynomial? Or, dually speaking, is Maximum-Likelihood
decoding almost surely impossible?

We relate this issue to the decoding threshold of a code, and
show that when the minimal distance of the code is high enough,
the threshold effect is very sharp. In a second part, we explicit
lower-bounds on the threshold of Maximum-Distance Separable
codes such as Reed-Solomon codes, and compute the threshold
for the toy example that motivates this study.

I. I NTRODUCTION

In [1], Bringer et al. proposed a low-cost mutual authen-
tication protocol, that uses a Reed-Solomon code structure.
This protocol is pretty simple: Bob owns two secret polyno-
mials Pb, P

′
b of degree less thank known only by Alice; to

authenticate herself to Bob, Alice proves the knowledge of
Pb by sending〈i, Pb(αi)〉 whereαi is the i-th element of a
Fq. Bob proves his identity by replying with〈P ′

b(αi)〉. This
protocol (illustrated in Figure 1) is made such that if Alice
speaks to many people, it is hard to trace Bob out of all the
conversations, and it is hard to impersonate Alice (or Bob).

Alice Bob

Pick j
〈j,a=Pb(αj)〉−−−−−−−−−−−−−→ a

?
== Pb(αj)

P ′
b(αj)

?
== b

〈b=P ′

b(αj)〉←−−−−−−−−−−−−−

Figure 1. Low-cost Mutual Authentication Protocol [1]

The security of the protocol (can an impostor interrogate
Bob?) is based on an algorithmic assumption, saying that the
polynomial reconstruction problem is hard for the vectors of
F

n
q that are far enough from the code. So does the privacy

(can an eavesdropper trace Bob’s communications?). The best
known algorithms that solve polynomial reconstruction are
those of Guruswami-Sudan [2] and, on a related problem,
Guruswami-Rudra [3], which can basically reconstruct a poly-
nomial given

√
kn correct values.

This shows how the Polynomial Reconstruction problem
is of interest both in cryptography and in coding theory.
[4] proposes more primitives whose security depends on the
hardness of this problem. The same reference assumes that the
problem is difficult as soon as there are less than

√
kn correct

values (hardness of the polynomial reconstruction problem
assumption). The security result that can be deduced from
this statement are based on an algorithmic hypothesis, which
is somehow unsatisfying, for it should be possible to exhibit
better decoding algorithms. We therefore take interest in the
information-theoretic aspect of polynomial reconstruction.

The solution of the problem raised by [1] is to look at the
output of a list-decoder centred around the received values,
and to output the possible polynomials as candidate values
for Pb or P ′

b. Our approach consists in looking at a usually
ignored side of list-decoding. For a certain class of wordsx
that are far enough from the code, we look at the radiir such
that list-decodingx with radiusr provides a list that is always
lower-bounded by a large enough number. This differs from
the literature concerning list-decoding, which usually looks
for radii for which the size is always upper-bounded by a
maximum list size, or tries to exhibit a counter-example.

The “large enough” list size can be obtained easily by
imposing that Maximum-Likelihood Decoding to be most im-
probable. For that, we focus on the all-or-nothing behaviour of
the ML decoder. Inspired by percolation theory [5], and code-
applied graph theory [6], we will show how it is possible to
conservatively estimate, before, after, and around a threshold,
the all-or-nothing probability of ML decoding.

Notations

For a n-dimensional spaceH, the Hamming distanced
over H is the number of differing coordinates between two
vectorsx, y ∈ H, i.e. d(x, y) = |i ∈ {1, . . . , n} : xi 6= yi|.
The weight ofx ∈ H is the number of non-zero coordinates
w(x) = d(x, 0), and its support is the set of all its non-zero
coordinates:supp(x) = {i ∈ {1, . . . , n} : xi 6= 0} (in other
words,w(x) = |supp(x)|.

The Hamming ball of radiusr centred aroundx ∈ H is the
set of all vectors at a distance tox less thanr, and is noted
B(x, r). The volume of such a ball is independent ofx, and
is notedV (r) =

∑r
t=0

(

n
t

)

(q − 1)t.
For a subsetU ⊂ H, U is its complementaryU = {x ∈

H : x /∈ U}.



II. T HE THRESHOLD OF ACODE

The existence of a threshold is motivated by the classical
question of percolation : given a graph, with a source, and
a sink, and given the probabilityp for a “wet” node of the
graph to “wet” an adjacent node,what is the probability for
the source to wet the sink? It appears that this probability has a
threshold effect; in other words, there exists a limit probability
pc such that, ifp > pc, then the sink is almost surely wet, and
if p < pc, then the sink is almost never wet. The threshold
effect is illustrated in Fig. 2.

This question can be transposed into the probability of
error-correcting a code. Given a proportion of errorsp, with
a decoding algorithm, what is the probability of correctly
recovering the sent codeword? It was shown in [7] that
for every binary code, and every decoding algorithm, this
probability also follows a threshold.

In this paper, we show that this property also applies toq-
ary codes. In the following part, we show that the threshold
behaviour that was seen on binary codes can be obtained again.

A. The Margulis-Russo Identity

The technique used to derive threshold effects in discrete
spaces is to integrate an isoperimetric inequality; for that, the
Margulis-Russo identity is required.

Let H = {0, 1}n be the Hamming space; the Hamming
distanced(x, y) provides the number of different coordinates
between vectorsx and y. Consider the measureµp : H →
[0, 1] defined byµp(x) = pw(x)(1− p)n−w(x).

The number of limit-vectors of a subsetU ⊂ H is a function
defined as

hU (x) = |B(x, 1) ∩ U | for x ∈ U. (1)

For U ⊂ H such thatU is increasing (i.e. if x ∈ U , and
y ≥ x, theny ∈ U with ≥ defined component-wise), Margulis
and Russo showed :

dµp(U)

dp
=

1

p

∫

U

hU (x)dµp(x)

Let q ∈ N, q > 2. This section shows that this equality is
also true inHq = {0, ...q − 1}n.

We redefine the measure functionµp(x) over Hq by

µp(x) =
(

p
q−1

)w(x)

(1 − p)n−w(x). This definition is con-

sistent with a measure, asµp(Hn) =
∑

x∈Hq
µp(x) = 1.

Note the inclusion⊂ to be the relation between a set and a
(general) subset (i.e. for all X, X ⊂ X). The support inclusion
generalises the component-wise≤ that was used in the binary
case.

Lemma 1 (Margulis-Russo Identity overq-ary alphabets):
Let U be an increasing subset ofHq, i.e. such that ify ∈ U ,
for all x ∈ Hq such thatsupp(y) ⊂ supp(x), then x ∈ U .
Then

dµp(U)

dp
=

1

p

∫

U

hU (x)dµp(x)

wherehU is defined by (1).

Proof: The proof of this lemma is an adaptation of
Margulis’ proof in [8]. For this, we use the notation:

• [U, V ] = |{x, y} ∈ U × V : d(x, y) = 1| whereU, V ⊂
Hq, is the number of links fromU to V

• for k ∈ {0, . . . , n}, Zk = {x ∈ Hq : w(x) = k},
• for U ⊂ Hq, Uk = U ∩ Zk (U is the union of theUk);
• Dk =

∑

x∈Uk
hU (x) is the number of limit-vectors next

to elements of weightk.

Trivially, Dk = [Uk, Zk+1 −Uk+1] + [Uk, Zk−1 −Uk−1] +
[Uk, Zk − Uk]. We now note that :

• [Uk, Zk−1] = |Uk| ·k, as to go fromUk to Zk−1, the only
way (in one move) is to put one coordinate to0;

• [Uk, Zk+1] = |Uk|·(n−k)(q−1) with the same reasoning;
• [Uk, Zk − Uk] = [Uk, Zk+1 − Uk+1] = 0 as U is

increasing.
• Combining these equalities, we get[Uk, Uk+1] =
|Uk|(n− k)(q − 1);

• [Uk, Zk] = 0 as it is necessary to switch a non-zero
coordinate to0 and a zero to{1, ...q − 1}.

Finally Dk = [Uk, Zk−1]− [Uk, Uk−1] = k|Uk| − (n− k +
1)(q − 1)|Uk−1| for k > 0 andD0 = 0 (or U = Hq).

Back to the identity desired, we observe that
∫

U

hU (x)dµp(x) =

n
∑

k=0

∑

x∈Uk

hU (x)(
p

q − 1
)k(1− p)n−k

=

n
∑

k=0

Dk

(

p

q − 1

)k

(1− p)n−k

=

n
∑

k=1

(k|Uk| − (n− k + 1)(q − 1)|Uk−1|)

·
(

p

q − 1

)k

(1− p)n−k

=
∑n

k=0 |Uk|(k − pn−k
1−p

)
(

p
q−1

)k

(1− p)n−k

on the other hand,
dµp(U)

dp
=

∑n
k=0 |Uk| d

dp

(

(

p
q−1

)k

(1− p)n−k

)

=
∑n

k=0 |Uk|
(

p
q−1

)k

(1− p)n−k
(

k
p

+ −(n−k)
1−p

)

Hence the identity.
This lemma shows that the Margulis-Russo identity is also

true on{0...(q − 1)}n; it was the keystone of the reasoning
done in [6] to show an explicit form of the threshold behaviour
of Maximum-Likelihood Error Correction.

B. A Threshold for Error-Decodingq-ary codes

In the following, we useϕ(t) = 1√
2π

e−
t2

2 the normal distri-

bution, Φ(x) =
∫ x

−∞ ϕ(t)dt the accumulate normal function,
andΨ(x) = ϕ(Φ−1(x)) (so that∀x,Ψ(x) · Φ′−1(x) = 1).

A monotone property is a setU ⊂ Hq such thatU is
increasing, orU is increasing.

Theorem 1:Let U be a monotone property ofHq. Suppose
that ∃∆ ∈ N

⋆ : ∀x ∈ U, hU (x) = 0 or hU (x) ≥ ∆.



Let θ ∈ [0, 1] be (the unique real) such thatµθ(U) = 1
2 .

Let gθ(p) = Φ
(√

2∆(
√
− ln θ −

√
− ln p)

)

.

Then the measure ofU , µp(U) is bounded by :

µp(U) ≤ gθ(p) for p ∈ (0; θ]
µp(U) ≥ gθ(p) for p ∈ [θ; 1)

Sketch of Proof
The proof is exactly the same as the one from [6]. The whole
idea is to derive the upper-range:

∫

U

√

hUdµp ≥
√

2 ln
1

p
Ψ(µp(U))

The integration of this equation, together with the Margulis-
Russo lemma, gives the result.

To conclude this part, we remark that the non-decoding
region of a given point, for aq-ary code, is an increasing
region of Fn

q . For linear codes, this non-decoding region can
always be translated to that of0 without loss of generality; let
U0 = {x ∈ F

n
q s.t. ∃c ∈ C, c 6= 0 : d(x, c) ≤ d(x, 0)}. The

probability of error decoding ofC is thenµp(U0).
For x ∈ U0, we show that eitherhU0

(x) = 0, or hU0
(x) ≥

d
2 , whered is the minimal distance ofC.

Indeed, ifhU0
(x) > 0, then there existsc ∈ C, c 6= 0 such

that d(x, c) ≤ d(x, 0), and x1 ∈ U0 at Hamming distance
1 from x. The monotonic property ofA0 provides|w(x1) −
w(x)| = 1, and asx is further from 0 than x1, w(x1) =
w(x)−1. Then all the vectors obtained by replacing one of the
coordinates ofx by 0 are out ofU0; in particular, hU0

(x) ≥
w(x). Let dc = w(c) ≥ d be the weight ofc; as x is nearer
to c than to0, w(x) ≥ dc

2 . Thus the previous assertion.
Combining the previous results, we just showed that for any

q-ary code, the probability of error is, as for binary codes,
bounded by a threshold function. This can be expressed by
the following theorem, which has the same form as the one
showed in [6]:

Theorem 2:Let C be a code of any length, and of minimal
distanced. Over theq-ary symmetric channel, with transition
probability p, the probability of decoding errorPe(p) associ-
ated withC is such that there exists a uniquepc ∈ (0; 1) such
that Pe(pc) = 1

2 , andPe is bounded by:

Pe(p) S 1− Φ(
√

d(
√

− ln(1− pc)−
√

− ln(1− p)))

The upper-bound (≤) is true whenp ∈ (0; pc]; the lower-bound
(≥) is true whenp ∈ [pc; 1(.

Even though linearity was asked so that all decoding re-
gions are isometric, it is not a requirement for this theorem.
Indeed, the bounding equations are true for every codeword
c by replacingd by minc′∈C,c‘ 6=c d(c, c′). Assuming that the
codewords sent are distributed in a uniform way overC, we
thus obtain this result.

The behaviour of this function is illustrated in Fig 2. Around
p ≈ 0 (actually, for all p < pc − ǫ for a reasonableǫ ),
Pe is extremely flat above its limit 0; aroundp ≈ 1 (and,
symmetrically, for allp > pc + ǫ, Pe is extremely flat below
its limit 1. Finally, around the thresholdpc, the slope is

 0
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Figure 2. Illustration of the threshold effect,d = 400, pc = 0.7

√
d√

2π(1−pc)
, which is almost vertical when the minimal distance

d is large.

III. E XPLICIT COMPUTATION OF THETHRESHOLD FOR

MAXIMUM -DISTANCE SEPARABLE CODES

In this section, we only take interest in linear codes over
F

n
q .

A. Another Estimation of the Decoding Threshold

By linearity, we can again without loss of generality assume
that the sent codeword was the all-zero vector0. A rough
estimation of the probability of wrongly decoding (for a
crossover probabilityp) can be estimated by the proportion
g(p) as follows:

g(p) =
| {x : s.t. ∃c ∈ C, c 6= 0 : d(x, c) < w(x) ≤ np} |

| {x : w(x) ≤ np} | .

g(p) is in fact the proportion of vectorsx ∈ F
n
q , w(x) 6= np,

that are closer to a non-zero codeword than to0.
Let vol(q, n, t) = 1

n
logq (V (t)). It is well known that when

t ≤ n(1− 1
q
), vol(q, n, t) = Hq(

t
n
) + on(1), whereHq(x) =

−x logq x − (1 − x) logq(1 − x) + x logq(q − 1) is the q-ary
entropy ofx ∈ [0, 1].

To compute the numerator, we suggest, for each codeword
c ∈ C to compute the number of vectorsx that are nearer toc
than to0. This number actually only depends on the weight of
c, and will be notedνpn(w(c)). It actually suffices to consider
codewords whose weight is betweend and2pn.

As there areAw(c) codewords of weightw(c) in the
code (with the standard notation), the functiong(p) can be
approximated by:

g(p) ≤
∑2pn

l=d Alνpn(l)

qnvol(q,n,pn)
(2)

The different quantities used in this equation are illustrated
in Fig 3.



Figure 3. Different quantities used in Eq 2

The numberνt(w) is obtained in the following combinato-
rial way. Let c be a codeword of weightw. Let x ∈ F

n
q be a

vector with the following constraints:

• d(x, 0) ≤ t, i.e. x is the result of the transmission of0
with at mostt errors.

• d(x, 0) ≥ d(x, c), i.e. x is wrongly decoded.

We noteα the number of coordinatesi in x such thatxi 6= ci

andxi = 0; β is the number of coordinatesi such thatxi 6= ci

andxi 6= 0; γ is the number of coordinatesi such thatxi 6= ci

andci = 0.
The previous constraints onx can be rewritten into the

system(S):

(S) :























1) 0 ≤ α, β ≤ w
2) 0 ≤ γ ≤ n− w
3) γ ≤ t + α− w
4) β + γ ≤ t
5) 2α + β ≤ w

We then obtain

νt(w) =
∑

α,β,γ

(

w

α + β

)(

α + β

β

)

(q − 2)β

(

n− w

γ

)

(q − 1)γ .

Remark 1: It is easy to see thatνt(w) is at most the volume
of a ball of radiusw − d

2 ; this estimation will be used in the
next part.

B. Application to MDS codes

Maximum-Distance Separable (MDS) Codes are codes such
that their dimensionk and minimal distanced fulfil the
Singleton bound, so that:

k + d = n− 1.

A well known family of MDS codes are the Reed-Solomon
codes, for which a codeword is made of the evaluation of a
degreek − 1 polynomial overn field elementsα1, . . . , αn.
Reed-Solomon codes overFq can have a length up toq − 1,
but shorter such codes are also MDS.

For MDS codes, the numberAl of codewords of given
weight is known. This number is:

An−i =

n−1
∑

j=1

(−1)j−i

(

n

j

)(

j

i

)

(qk−j − 1)

From this identity, it is easy to derive the more usable
formula:

Al =

(

n

l

) l−d
∑

j=0

(−1)j

(

l

j

)

(q1+l−d−j − 1) (3)

It is now possible to approximate quite nicely the error
probability while under the threshold - indeed, the numerator
and denominator are correct as long as a vectorx is not close
to 2 different codewords with a weight in the range[d; pn],
i.e. as long as the list of codewords at a distance less thanpn
from x is reduced to a single element.

C. Short MDS Codes over Large Fields

We now focus on the specific problem presented in the
Introduction, and motivated by the beckoning and authenti-
cation protocol from [1]. This setting is characterized by the
following:

• The underlying code is a Reed-Solomon over a fieldFq;
• The field sizeq is very large for cryptographic reasons;
• The code lengthn is very short (with respect toq) asnq

is the size of embedded low-cost devices’ memory.

This application fits into the framework depicted in the
previous sections. Moreover, the information “n much smaller
than q” (n = o(q)) enables to compute an asymptotic first
order estimation of the threshold in such codes.

Indeed, if g(p) ≤ f(p), then g−1( 1
2 ) ≥ f−1( 1

2 ). We now
compute an upper bound ong(p), to derive an estimation on
the thresholdθ. More precisely, we aim at computingι(p)
the first-order value oflogq (g(p)); then, ι−1(0) is a lower-
approximation of the threshold.

To estimate the weight enumeratorAl, we use formula (3)
to derive

Al ≤
(

n

l

)

2lq1+l−d ≤ 2n+lq1+l−d.

The number of targeted vectors for each codewordνt(l)
is not easy to evaluate; we note its first order development
logq νt(l) := nµ(l, t) + oq(1), so thatνt(l) ≤ qnµ(l,t) · oq(q).
(Here, the termo(q) is a bounded by a polynomial inn.) We
know that

0 ≤ nµ(l, t) ≤ l − d

2
(4)

Combining these elements with equation (2), we obtain

g(p) ≤
2pn
∑

l=d

q(n+l) logq(2)+1+l−d+nµ(l,pn)−nvol(q,n,pn).

As vol(q, n, t) = Hq(
t
n
) + on(1) = t

n
+ oq(1),

the first order of g(p) is bounded by: logq g(p) ≤
maxl∈[d,pn] (1 + l − d− pn + nµ(l, pn)) + oq(1).

The bounding (4) ofµ shows that the right-hand side of
this inequality is between1+pn−d and1+3pn− 3d

2 , which
shows that the thresholdg−1( 1

2 ) is asymptotically betweenδ2
andδ.



Unfortunately, a more precise evaluation ofµ strongly
depends on the context. Indeed, according to Section III-A,

ν(l, t) = oq(q) · max
α,β,γ:(S)

qβ+γ

(

n− l

γ

)(

l

α + β

)(

α + β

β

)

.

This maximum can be obtained by evaluating the term to
be maximized on all vertices of the polytope defined by the
system(S). (S) is made of 9 inequalities of 3 unknown, the
vertices are obtained by selecting 3 of these equations, thus at
most

(

9
3

)

= 84 vertices. However, it is not possible to exhibit
here a general answer as the solution depends on the minimal
distance of the code,i.e. on the rate of the Reed-Solomon
code.

D. Numerical Application to a(2048, 256, 1793)264 MDS
Code

In the case of a code over a finite field of reasonable
dimension, it is possible to exactly compute the ratio that
approximates the Maximum Likelihood threshold. However,
the exact threshold cannot be easily computed yet; it is still
an open problem related to the list-decoding capacity of Reed-
Solomon codes.

We therefore used the NTL open-source library [9] to
compute the valuesAl, νt(l) and |B(t)| in order to have
an accurate enough approximation of the the functiong(p)
described earlier. The parameters are those that were proposed
in [1]. The results show that the decoding threshold of such a
code is between0.8 and0.875, in other words, just below the
conservative upper-bound1− k

n

The slope around the threshold is around 115, so forp
“small” (in fact, a bit smaller thanpc) g(p) is very near to0,
while asp goes to1, g(p) is much greater than the maximum
probability of 1. This was predicted earlier, and expresses the
fact that the list-size of radiuspn is always greater than 1.
The threshold valueg−1( 1

2 ) ≈ ι−1(0) is a lower-bound for
the threshold of the code, though the intuition says that this
lower-bound is pretty near to the real threshold.

This result is coherent with previous results on the hardness
of decoding Reed-Solomon codes. [10] study the hardness of
the List-Decoding problem, and shows that for the furthest
vectors (vectors that accomplish the covering radius of the
code, a.k.a. “Deep Holes”) maximum-likelihood decoding is
an NP-hard problem. The covering radius is, in this case,ρ =
n− k = d− 1. Moreover, the average list size is the missing
factor in inequality (2), if it is small before the numeratorof
(2) then the approximation is accurate. [11] shows that after
list-decoding, the average list size is small up to the distance
ρ − 1. All these elements indicate that the estimation (2) is
tight.

IV. CONCLUSION

As a conclusion, let us look back to the starting point of
our reasoning. The initial goal was to revise the conditionsof
security of the construction depicted in [1]: from a received
vector x of F

n
q , for what parameters is the size of the

list of radius pn exponentially large? This problem can be

reduced to that of the threshold probability of a linear error-
correcting code. Indeed, below the threshold of the code, when
the minimal distance of the code is large enough, the error
decoding probability of the code is exponentially small, and it
is exponentially close to 1 above the threshold. For our class of
parameters, ensuring that the error rate is above the threshold
is enough to show the security of the scheme.

We show that the threshold behaviour can be demonstrated
for q-ary codes as well as for binary codes; we then compute
a lower-bound on the threshold of MDS codes.

Applying these results to the initial problem, we show that
the threshold for a (highly) truncated Reed-Solomon code over
a finite field F264 is very near to normalized the minimal
distanced = n − k + 1 of this code. As a conclusion,
to switch from an algorithmic assumption (the hardness of
the Polynomial Reconstruction Problem [4]) to Information-
Theoretical security, we recommend to raise the dimensionk
of the underlying code. This lowers the decoding threshold of
the code; the downside is that storage of a codeword is more
costly.
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and G. Źemor, Eds., vol. 781. Springer, 1993, pp. 278–286.

[8] G. A. Margulis, “Probabilistic characteristics of graphs with large
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