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Skewincidence
Gérard Cohen, Senior Member, IEEE, Emanuela Fachini, and János Körner

Abstract—We introduce a new class of problems lying halfway
between questions about graph capacity and intersection. We
say that two binary sequences � and � of the same length have a
skewincidence if there is a coordinate � for which �� � ���� � �

or vice versa. We give relatively close bounds on the maximum
number of binary sequences of length � any pair of which has
a skewincidence. A systematic study of these problems helps
to understand the mathematical difficulties to solve zero-error
problems in information theory.

Index Terms—Asymptotic combinatorics, zero-error capacity.

I. INFORMATION-THEORETIC COMBINATORICS

T HE reader might wonder whether the topic of our paper
belongs to information theory. One might argue that in-

formation theory is the collection of problems and results con-
cerning information transmission. We believe, however, that the
scope of information theory should be larger, at least from a
mathematical point of view.

Undoubtedly, the problem of graph capacity, Shannon’s
mathematical formulation of the zero-error capacity of a
discrete, memoryless, and stationary channel, belongs to infor-
mation theory. Yet, the traditional methods of the theory don’t
seem to work here, and it is very likely that no capacity formula
in terms of the usual information measures exists. Thus, it be-
comes important to look at this problem as mathematicians are
used to do, varying some aspects of it and exploring how these
variations affect the solution. We believe that the systematic
study of all these variations not only leads to an exciting new
field in asymptotic combinatorics with plenty of applications in
information theory, but we do hope that this kind of asymptotic
combinatorics will contribute to the solution of Shannon’s
beautiful and important problem.

II. INTRODUCTION

We consider binary relations of strings of some fixed finite
length from a finite alphabet (or strings representing the linear
orders of ). We are interested in the maximum number of
strings any two of which are in the given relation. Most problems
of this kind belong to one of two well-investigated classes of
opposite nature.

Intersection problems have been studied in extremal com-
binatorics. The first of these goes back to the seminal paper
of Erdös, Ko, and Rado [6]. These authors say that the binary
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strings and intersect if for
some coordinate they have . They then determine
the maximum number of pairwise intersecting binary strings of
length and weight ; here the weight of a string is its number
of 1’s. (In other words, they determine the largest stable sets in
the Kneser graph whose vertices are the elements of and
whose edges are the vertex pairs corresponding to disjoint pairs
of sets.) They show that any optimal configuration has the same
structure; it consists of all those strings that have a 1 in the same
fixed position. In other words, these sequences have a fixed pro-
jection on some coordinate. Such a structure is often called a
kernel structure and it is the natural candidate solution for all
the intersection problems. The reason for this seems to be the
fact that the relation underlying the problem is a similarity re-
lation. We will say that a binary relation for strings of the same
length is a similarity relation if it is reflexive and locally verifi-
able, meaning that if some projections of two strings are in this
relation then this implies that so are the strings themselves. For
more on this, we refer to [4] and [5].

Capacity problems originate in the fundamental paper of
Claude Shannon on zero-error capacity of the discrete mem-
oryless stationary channel [12] and come from information
theory. We will say that a binary relation for strings of the same
length is a difference relation if the relation is irreflexive and
locally verifiable [7]. For easy reference, we will say that two
sequences are very different if they are in the given difference
relation. For a fixed length, one is interested, as before, in the
maximum number of pairwise very different sequences. The
classical example is Shannon’s graph capacity [12] and has
been generalized in a series of papers; for more on this we refer
to [3] and the survey [9]. Unlike for intersection problems, here
there is no natural conjecture for the optimal constructions and
most problems of this kind remain wide open.

Both of these groups of problems have been generalized in
recent work to permutations of . For intersection problems
on permutations we refer to [5]. Capacity problems for permu-
tations have been introduced in [8]; for further developments we
cite [2]. In order to introduce our new problems it will be inter-
esting to recall the first capacity problem on permutations from
[8]. We call two permutations of colliding if they map some

into two consecutive integers. Let us denote by
the maximum cardinality of a set of pairwise colliding permu-
tations of . Körner and Malvenuto [8] conjecture that
equals the middle binomial coefficent . This conjecture is
still open; for the best bounds we refer to [2].

Our starting point in the present work is the problem about
colliding permutations. We note that if two permutations, and

are colliding, then their inverses are skewincident. In fact, the
collision relation means that for some we have
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Suppose without loss of generality that . De-
noting we have meaning
that there is a skewincidence between the strings describing the
two permutations (in form of linear orders of ); we find in
them the same symbol in adjacent positions. The resulting
relation of coincidence is irreflexive for permutations. For se-
quences with repetitions such as long strings from a finite al-
phabet the analogous relation is not irreflexive any more. In fact,
it is neither reflexive nor irreflexive and as our initial findings
show the optimal solution has a somewhat unusual behaviour.
Our results are asymptotic. Logarithms and exponentials are to
the base 2.

III. RESULTS

Let us fix a natural number and consider the set of
the binary strings of length . We say that the sequences

and have a skew coincidence (abbreviated
as skewincidence) if for some coordinate we have
either or . Let us denote by
the maximum number of binary strings of length any two of
which have a skewincidence. We have the following result.

Theorem 1:

for sufficiently large.
This implies the following.

Corollary 1:

Proof: To prove the upper bound, let us consider the set
of those binary sequences that do not contain a 1

in consecutive positions. It is well known that

where meaning that
is the standard Fibonacci sequence. Given two binary

sequences and we say that if
, and for every . We say that

and are comparable if or vice versa. Consider now
a set of pairwise skewincident binary strings from .
It is obvious that if two strings belong to the intersection of
and then they cannot be comparable. Hence we see that the
elements of are the characteristic vectors of a Sperner
family in . Let be the largest cardinality of a Sperner
family of subsets of whose characteristic vectors are in .
If we drop the last coordinate of the characteristic vectors, these
remain distinct because if two vectors are incomparable, then
they differ in at least two coordinates. Further, the shortened
strings of length clearly belong to . This yields

for some constant and every natural , where the last
inequality follows from the monotonicity and the well-known

asymptotics of the standard Fibonacci sequence, according to
which converges to . Observing that

for suffficiently large , we conclude that

for large enough. Hence

for sufficiently large , as claimed.
To prove the lower bound we shall exhibit a set of pairwise

skewincident sequences. The weight of a binary string
is its number of 1’s. In case of

we have

The support set of a string is the set of
positions in which . In other words, . The
influence of string is a binary string of the same length
that has a 1 in position if and only if either
and/or . We write

and define the set as

We claim that any two distinct elements of are skew coin-
cident. In fact, consider and . Then we have

hence

(1)

If and were not skew coincident, the sets and
would be disjoint, implying that

and likewise

yielding

in contradiction with (1).
To lower bound the cardinality of we shall use a

well-known concentration inequality of McDiarmid [11]. Let
the random variable be uniformly dis-
tributed on . Then the variables are totally
independent and uniformly distributed over . To prove
our lower bound, it suffices to show that

(2)
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Let denote the ’th coordinate of the vector . We write

Hence

The function defined on satisfies the Lipschitz
condition that given any two arguments and differing only
in the th coordinate we have, for every

This is true because for such an and the values of and
differ by 1 while the values of and cannot

differ by more than 2. Let us now calculate the expected value
of the random variable . By the linearity of the expected
value and the definition of we have

(3)

Since, for every , both and take only the values 0
and 1, we have that

Since is uniformly distributed, for every

Also, since the are totally independent, and because
if and only if , for

we see that

while else. Thus we obtain

and

Upper bounding the right-most probability by [11, eq. (13) in
Theorem 3.1], we see that for large enough

(We recall that exponentials are to the base 2.)

Remark: It is easy to see that the set of strings used to es-
tablish the lower bound does not have maximum cardinality. In
fact, it is not even maximal. To see this, observe that, for every

, the two sequences in which the two binary digits alternate
can both be added to the construction we have specified for our

lower bound. However, even this augmented set is not maximal
for large enough string lengths.

IV. GENERALIZATIONS

The question about skewincidence can be generalized to a
problem about subgraphs of an arbitrary finite graph. We will
say that two subsets of the vertex set of a graph are neighbors
if they contain two respective vertices that are adjacent in the
graph. Note that a subset may or may not be its own neighbor.
Let us denote by the maximum number of distinct sub-
sets of the vertex set of the graph such that any two of them
are neighbors. For many graphs we will be able to completely
determine this number. In particular, this is the case for com-
plete bipartite graphs. Complete multipartite graphs are equally
easy to treat so that we omit the details. In case of other graphs
things can be much more complicated. In particular, it is easy to
see that where is the path of vertices. In
what follows, a stable set in a graph is a set of pairwise nonad-
jacent vertices.

Proposition 1: Let be the complete bipartite graph
whose maximal stable(edge-free) sets have and vertices,
respectively. Then

More generally, if is a complete multipartite graph
with disjoint stable sets of cardinality , respec-
tively, we have

Proof: It is obvious in the bipartite case that a family of
subsets with the desired property cannot contain more than one
subset of any of the two maximal stable sets. In the -partite
case for , exactly in the same way, a family as required
cannot contain more than one subset of any of the maximal
stable sets. On the other hand, any subset having nonempty in-
tersection with at least two partite classes will be the neighbor
of any other nonempty subset.

All the above can be considered as special cases of a single
more general problem other special cases of which contain the
original Shannon setup of graph capacity.

Let be a graph with vertex set and let be an arbi-
trary, not necessarily finite graph. Consider, for every
the family of all the mappings . We will say
that two of these mappings, and , form an attractive couple
if there exist two, not necessarily distinct numbers and

such that and are adjacent in while and
are adjacent in . We are interested in determining the largest
cardinality of a subset of pairwise attractive map-
pings from to .

If is the all-loops graph and an arbitrary simple graph,
then is exponential in and the (always existing)
limit of is the Shannon capacity of the graph .
(Notice, however, that our formulation of Shannon’s problem is
equivalent to, but different from that in [12].) If is the semi-
infinite path and is a graph with two vertices and a loop as
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its only edge, we get back the problem of skewincidence. Its
immediate generalizations are obtained if is arbitrary while

remains the same one-edge graph as for the skewincidence
problem.

If also has as its vertex set then one can restrict attention
to the subset of bijective mappings from onto itself. This
leads, in case of the all-loop graph in the role of to the concept
of permutation capacity.

V. A SPERNER-TYPE PROBLEM

As a byproduct from the proof of the Theorem, we get the
following extremely simple sounding problem in classical ex-
tremal set theory. Let be the set of all the binary sequences
of length without 1’s in consecutive positions. (This is the
already mentioned classical example for the standard Fibonacci
sequence.) We consider these binary sequences as the character-
istic vectors of subsets of the set in the usual manner and ask
for the maximum cardinality of a Sperner family they contain.

In our proof a very weak upper bound on this cardinality was
sufficient. The present problem is interesting inasmuch no clas-
sical proof for Sperner’s theorem [13] seems to be suitable to
solve it.

VI. CONCLUSION

The zero-error capacity of the discrete memoryless channel
stays out as the most well-known unsolved mathematical
problem in information theory, and this despite the concerted
effort of such brilliant mathematicians as Shannon [12], Lovász
[10] or Alon [1]. We believe that it helps to understand the true
reason of the difficulty of this problem if we explore all its
reasonable and mathematically appealing variations.
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