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Abstract—The average radius of a block code is a
parameter that occurs naturally in quantization and
steganography. We give asymptotic upper and lower
bounds on this parameter. In particular we show that for
almost all long codes the normalized average radius equals
the normalized covering radius. We survey some special
graph-theoretic lower bounds.

Index Terms—steganography, covering radius, probabil-
ity of error

I. INTRODUCTION

The average radius of a binary code is the
average distance of a vector in ambient space to
the code.

R̃ =
1

2n

∑
x∈Fn

2

d(x,C). (1)

It should not confused with the covering radius

R = max
x∈Fn

2

d(x,C),

a parameter that has received a lot of attention in the
past [4]. Following [8, Chap. 1, §5], let us denote
by αi the number of cosets of weight i. Then, for a
linear [n, k] code the defining formula (1) becomes

R̃ =
1

2n−k

R∑
i=1

iαi. (2)

This quantity occurs in steganography as the average
number of changes made in the cover to realize an
embedding [3], [5], [9]. It also controls the average
distortion in vector quantizing when using the code
as a codebook [12]. An immediate consequence of
the above definitions is that

R̃ ≤ R,

In Section 4, we shall see that this bound is
asymptotically tight. However, non asymptotic im-
provements are possible as in Proposition 2. Con-
sequently, most of this paper will be dedicated to
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lower bounds on R̃, either direct or by graph theo-
retic arguments as in Section 5. Since steganography
requires coset coding, we shall limit ourselves to
linear binary codes, and Gray images of Z4-codes.
The material is organized as follows. Section 2 col-
lects the necessary notation and definitions. Note-
worthy is a Lemma on the average radius of the
Hamming ball. Section 3 contains combinatorial
bounds. Asymptotic bounds are in Section 4. Sec-
tion 5 surveys graph theoretic lower bounds from
the nineties. Section 6 compiles some exact values
of R̃ computed from known coset weight distribu-
tion. Section 7 casts our results into perspective and
points out some challenging open problems.

II. NOTATION AND DEFINITIONS

The notation tends to follow that of [4]. Greek
letters normally denote normalized quantities. The
parameters of a linear code are length n, dimension
k = nκ, minimum distance d = nδ, covering
radius R = nρ, average radius R̃ = nρ̃. The
packing radius is bd−1

2
c, and its normalized version

δ/2. The parameters of C are collectively denoted
by [n, k, d, R, R̃] and those of its dual C⊥ by
[n, n − k, d⊥, R⊥, R̃⊥]. For a set B ⊆ Fn2 and a
vector x ∈ Fn2 we denote by d̃(x,B) the average
distance from b ∈ B to x. Formally

d̃(x,B) =
1

|B|
∑
b∈B

d(x, b).

Of special importance is the case of the mean
radius of a Hamming ball

b(n, t) = d̃(0, B(0, t)),

where B(0, t) denotes the Hamming ball of radius t
and center 0. The following two results are proved
in [9, §5.4].

Lemma 1: If V (n, t) = |B(0, t)| =
∑n

i=0

(
n
i

)
,

then
•

b(n, t) = n
V (n− 1, t− 1)

V (n, t)
.
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•

lim
n→∞

b(n, τn)

n
= τ,

for all 0 < τ < 0.5.

Proof: The first point is easily proved by con-
sidering the generating function

fn(x) =
t∑

j=0

(
n

j

)
xj

and computing f ′n(1)/fn(1). The second point fol-
lows from

lim
n→∞

b(n, τn)

n
= lim

n→∞

(
n−1
bτnc−1

)(
n
bτnc

) = lim
n→∞

bτnc
n

.

By a Voronoi region B for the [n, k] code C we
shall mean a set of 2n−k coset leaders that constitute
a system of distinct representatives for the 2n−k

cosets of C into ambient space. This region is, in
general, non unique. A Voronoi region is hereditary
iff it is stable by inclusion for supports. Note that,
since the translates of B by elements of C tile the
ambient space we get, for all c ∈ C, the property

d̃(c, B + c) = R̃,

and, in particular

d̃(0, B) = R̃.

III. COMBINATORIAL BOUNDS

Define the defect to the Hamming bound of an
[n, k] code C by the expression

HB(n, k, t) = 1− 2k−nV (n, t).

Note that HB(n, k, t) = 0 iff C is perfect.
Proposition 1: If the code C has packing radius

t then

R̃ ≥ 2k−nV (n, t)b(n, t) + (t+ 1)HB(n, k, t),

with equality iff the code is perfect or quasi perfect
(R = t+ 1).

Proof: Let

St =
⋃
c∈C

B(c, t).

Clearly |St| = 2kV (n, t). Note that if x ∈ B(c, t),
for some c ∈ C then d(x,C) = d(x, c). On the other

hand, if x /∈ St, then d(x,C) ≥ t + 1. From this
discussion we see that, on average,

R̃ ≥ [|St|b(n, t) + |Fn2 \ St|(t+ 1)]

2n
.

The result follows upon noticing that

|Fn2 \ St| = 2nHB(n, k, t).

An upper bound that sharpens the trivial R̃ ≤ R is
the following

Proposition 2: If the code C has packing radius
t and covering radius R then

R̃ ≤ 2k−n

(
V (n,R)b(n,R)−

R∑
i=t+1

i

(
n− t− i

i

))
,

Proof: As is well-known αi =
(
n
i

)
for i ≤ t.

On the other hand, since C is not t+ 1-correcting,
αt+1 ≤

(
n
t+1

)
−1. By using a hereditary Voronoi [4,

Thm. 2.414] this bound can be generalized in the
case of t+ 1 ≤ i ≤ R we have

αi ≤
(
n

i

)
−
(
n− t− 1

i− t− 1

)
.

Indeed a missing coset leader of weight t + 1 has(
n−t−1
i−t−1

)
descendants of weight i. The result follows

then after substitution into (2).
Remark: By using the formula [8, Chap. 1 §5

(24)]

1− Pe =
n∑
i=0

αip
i(1− p)n−i.

we see that the estimates on the αi’s in the above
proof can be useful to estimate word error rates
Pe in the context of transmission on a BSC with
transition probability p.

IV. ASYMPTOTICS

Let

h(x) = −x log2(x)− (1− x) log2(1− x)

denote the binary entropy function and let h−1(·)
denote the inverse function over the range [0, 1/2].
The following Lemma is the contrapositive of [9,
Lemma 5.11 (3)].

Lemma 2: If t is such that V (n, t) ≤ |B|, then
d̃(0, B) ≥ b(n, t).

Proof:
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W.l.o.g. we may assume that |B| = V (n, t). Let
a = |B

⋂
B(0, t).| We see that then

d̃(0, B) ≥ d̃(0, B(0, t)) + a/|B|.

Its asymptotic counterpart is as follows.
Proposition 3: Let 0 < θ < 1. If |B| >

V (n, nθ) ≈ 2nh(θ), then d̃(0, B) ≥ nθ.
Proof: Combine Lemma (2) with Lemma (1).

Let us now use known upper bounds of [7, §2.10]
written as 1− κ > h(f(δ)) to get lower bounds on
R̃ = nρ̃ of the form ρ̃ ≥ f(δ). Thus, we get from
the
• Hamming bound: ρ̃ ≥ δ/2.
• Elias bound:ρ̃ ≥ 1/2− (1/2)(1−2δ)1/2 ≥ δ/2.
• first MRRW bound:

ρ̃ ≥ h−1(1− h(1/2− (δ(1− δ))1/2

We require a well-known but deep theorem from
[4]. We shall say that a property holds for almost all
codes (a.a.) iff for large n the proportion of codes
of length n with that property is > 1− o(1).

Theorem 1: Almost all codes of parameters
[n, nr, nδ, nρ] lie on the Varshamov Gilbert bound
for minimum distance and on the sphere covering
bound for covering radius, i.e satisfy:
h−1(1− κ)− o(1) ≤ ρ ∼ δ ≤ h−1(1− κ) + o(1).
In particular, for those codes:

1− κ ≥ h(δ)− o(1) (3)

Proof: The assertion for the covering radius
comes from [4, Th. 12.3.10]. That for minimum
distance from [1, Lemma 1.2].

We are now ready for the main asymptotic result.
Theorem 2: Almost all codes satisfy

δ − o(1) ≤ ρ̃ ≤ ρ ≤ δ + o(1).

Proof: We take for B a Voronoi region of C.
Then, by (3) for a.a. codes:
|B| ≥ 2n(h(δ)−o(1)) and, by Proposition 3 we

obtain
n−1d̃(0, B) ≥ δ − o(1).
But, by the properties of the Voronoi region

n−1d̃(0, B) ∼ ρ̃,

so that, passing to the limit on n we get ρ̃ ≥ δ.
Remark: There are infinite families of codes

for which ρ 6= ρ̃ for large n. By performing i

times a direct product of parity-check matrices, from
C⊥[n, n−k, d, R], one gets C⊥i [ni, (n−k)i]; revert-
ing to the primal code, this gives Ci[ni, ki, d, Ri].

For concreteness let C = BCH2[15, 7, 5, 3]
By Proposition 1 R̃ ≈ 2.46; this gives
Ci[15i, 7i, 5, 3i, 2.46i]. Indeed R − R̃ = 0.54i goes
to infinity, and for the normalized quantities:

ρ− ρ̃ > 0.54i/15i = 0.036.

V. GRAPH THEORETIC APPROACH

The theme of this section is that codes with high
symmetry have a high average radius. Let G(C)
denote the automorphism group of C. It was proved
by graph theoretic methods in [12] that

Theorem 3: If G(C) acts transitively on the co-
ordinates of C, then

R̃ ≥ n

2d⊥
.

In particular the conclusion holds for cyclic
codes.

Define the coset graph Γ(C) as the undirected
Cayley graph with vertex set the cosets of C; two
cosets being connected iff they differ by a coset of
weight one. It is well known that the diameter of
this graph is none other than the covering radius
of the code [2]. In [12] it is proved that the mean
distance D is related to the average radius by the
formula

R̃ =
2n−k − 1

2n−k
D.

Recall that, following [10], a graph is orbital
regular if its automorphism group has a subgroup
that acts regularly on the set of edges, and, more
generally on its orbits on ordered pairs of vertices.

Theorem 4: If Γ(C) is orbital regular then

R ≤ 2dR̃(n− k − 1) loge(2)
2n−k

2n−k − 1
e.

In particular, the result is true for C cyclic without
words of period < n.

Proof: The first assertion follows from [11,
Cor. 1] and [10, Thm. 2.2] applied to Γ(C). The
second assertion follows from [11, Thm. 6].
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Fig. 1: Exact values of R̃

Code n n− k t R̃ R Ref.
Hamming 2m − 1 m 1 1− 2−m 1 [12]
Ext. Hamming 2m m+ 1 1 1.5− 2−m 2 [12]
Doubly trunc. Golay 21 9 2 2.502 3 [2]
Trunc. Golay 22 10 2 2.73 3 [2]
Golay 23 11 3 2.85 3 [2]
RM(2, 5) 32 16 3 4.33 6 [7, §11.4]
D40 40 20 3 5.34 7 [6]
Ext. Golay 24 12 3 3.35 4 [2]
BCH(2) 2m − 1 2m 2 2.5− 2m−2+1

22m−1 3 Prop. 1
Ext. BCH(2) 2m 2m+ 1 2 3− (2m + 4)2−2m−1 3 Prop. 1
Preparata 22m − 1 2m− 1 2 2 + (2m−1 + 1)2−2m+1 3 Prop. 1

VI. EXACT VALUES OF R̃

In this section we extend the table of [12] by
using Proposition 1 as well as coset weight distri-
bution from the literature. By t we denote the error
correcting capacity. The example of the cyclic Golay
shows that we might have R̃ < t for some codes.
The terminology “truncated Golay” of [2] means
punctured in the sense of [8].

VII. CONCLUSION AND OPEN PROBLEMS

In the present paper steganography directed our
investigation towards a relatively unexplored invari-
ant of a code: the average radius. It is related
to, but different from, the covering radius. Both
asymptotics and numerical values show that the
codes with the lowest average radius for given
codimension are codes that are both good packings
and good coverings. Indeed, if two codes have the
same covering radius the one with the larger packing
radius will have the lower average radius. Thus the
Preparata codes of the preceding section have a
lower average radius than any linear code of the
same length, covering radius and codimension.
There are many open problems and directions. For
instance, generalizing the bounds of Section V to
unrestricted codes is a possible direction. Deriving
upper bounds on R̃ as a function of the dual distance
that do not come from the immediate R̃ ≤ R is
a challenge. In general all the problems and tech-
niques that enter the study of the covering radius are
worthy of consideration to study the average radius.

Considering other alphabets and metrics might lead
to interesting problems as well.
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