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Abstract—Given a set C of q-ary n-tuples and c ∈ C, how
many symbols of c suffice to distinguish it from the other elements
in C ? This is a generalization of an old combinatorial problem,
on which we present (asymptotically tight) bounds and variations.

I. INTRODUCTION

Set [q] = {0, 1, ....q − 1}, [n] = {1, 2, ...n}. A code C of

length n is a subset of [q]n. Coding theory asks for large codes

such that every codeword is “different” (has a large Hamming

distance to all other codewords). The notion of difference

adopted here is that there should exist a small subset W ⊂ [n]
of coordinates such that c differs from every other codeword

in W , so that c can be singled out by examining a small subset

of coordinates. Equivalently, c can be losslessly compressed to

its projection on a small subset. More precisely, for x ∈ [q]n,

and W ⊂ [n] let us define the projection πW

πW : [q][n] → [q]W

x �→ (xi)i∈W

and let us say that W = W (c) is a witness set (or a witness

for short) for c ∈ C if πW (c) �= πW (c′) for every c′ ∈ C, c �=
c′. Codes with small witnesses arise in particular in machine

learning theory [1], [5] see [6, Ch. 12] for a short survey of

known results, [2] and references therein for a more recent

discussion, and [4] for a study of the binary case. Finally, let

us mention [7] for numerical constructions and upper bounds

based on semidefinite programming.

Let us now say that a code is a w-witness code, if every one

of its codewords has a witness of size w. Denote by f(q, n, w)
the maximum cardinality of a w-witness code of length n.

The paper is organized as follows. Section II presents some

easy facts. Section III is devoted to asymptotics: we obtain

tight bounds on the exponent of f(q, n, w). Section IV deals

with constant weight w-witness codes. Uniform witnesses and

the linear case are considered in Section V. Finally, Section VI

concludes with some open problems.

II. WARMING UP

First, two easy facts

• If C is a w-witness code, so is any translate C + x,

• f(q, n, w) is an increasing function of n and w.

Example 1: Let C be the set of the n(q − 1) vectors of

length n and weight (number of non-zero coordinates) equal

to 1. Then every codeword of C has a witness of size 1,

namely its support (set of non-zero coordinates). Note that for

the slightly larger code C ∪ {0}, the all-zero vector 0 has no

witness of size less than n.

A simple upper bound is :

f(q, n, w) ≤ qw

(
n

w

)
. (1)

Indeed, a w-subset of [n] can be a witness for at most qw

codewords and there are at most
(

n
w

)
such sets.

We also have the following lower bound on f(q, n, w).
Proposition 1: f(q, n, w) ≥ (q − 1)w

(
n
w

)
.

Proof: Let C be the set of all vectors of weight w. Notice

that every c ∈ C has its support as witness.

Theorem 1: Let g(q, n, w) = f(q, n, w)/
(

n
w

)
. Then, for

fixed q and w, g(q, n, w) is a decreasing function of n.

Proof: Call i ∈ [n] indispensable for c if i ∈
∩

W∈([n]
w )W (c), and define

• I(c) the set of indispensable i’s for a given c;

• C(i) the set of codewords for which i is indispensable.

We have the following:

|C|w ≥ Σc∈C |I(c)| = Σi∈[n]|C(i)| := nEi∈[n](|C(i)|),
first inequality coming from the obvious |I(c)| ≤ w; first

equality from double counting the pairs {c, i} with i ∈ I(c),
and Ei∈[n](|C(i)|) denoting the mean value of |C(i)|.

Suppose coordinate n, say, achieves Mini{|C(i)|}, then

every c ∈ C \ C(n) has a witness in [1, n − 1]. Thus

f(q, n − 1, w) ≥ |C \ C(n)| ≥ (n − w)|C|/n.

Taking C maximal with the w-witness property:

f(q, n, w) ≤ (n/(n − w))f(q, n − 1, w),
and the result follows.

III. ASYMPTOTICS

Theorem 1 has the following immediate consequence:

Corollary 2: For fixed w, limn→∞ g(q, n, w) exists.

From now on, set μ := (q − 1)/q. When dealing with

asymptotics, we assume q fixed, n growing and omit floor

and ceiling signs since they are not crucial here. Denote for

0 < x ≤ 1 by hq(x) the entropy function

hq(x) := −x logq x − (1 − x) logq(1 − x) + x logq(q − 1),
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with hq(0) := 0.

The function hq(x) increases to 1 for 0 < x ≤ μ and

decreases after.

Standard estimates give for 0 < λ ≤ μ:

n−1qnhq(λ) ≤ (q−1)λn

(
n

λn

)
≤

∑
0≤i≤λn

(q−1)i

(
n

i

)
≤ qnhq(λ),

(2)

Note that the problem of computing f(q, n, w) is essentially

solved for w ≥ μn: since f(q, n, w) is increasing with w, we

then have:

qn ≥ f(q, n, w) ≥ f(q, n, μn) ≥ (q − 1)μn
(

n
μn

) ≥ qn/n.

Thus

lim
n→∞n−1 logq f(q, n, μn) = 1.

We shall therefore focus in the sequel on the case w ≤ μn.

Although the gap between (1) and Proposition 1 is pretty

small (at least for q large), we now narrow it even more by

improving on (1).

By Theorem 1, for n ≥ v ≥ w, g(q, n, w) ≤ g(q, v, w).
We use the trivial g(q, v, w) ≤ qv/

(
v
w

)
and minimize the

right-hand side over the choice of v.

Set w := σv. Applying the left-most inequality of (2) for

q = 2, we get:

2vh2(σ) ≤ v
(

v
w

)
and thus

qv/
(

v
w

) ≤ vqw/σ/2wh2(σ)/σ := vqwz(σ),

where we have set z(σ) = (1 − h2(σ) logq 2)/σ.

The minimum of z(σ) can be seen to be reached for σ = μ
and equals logq(q − 1) , yielding

g(q, v = w/μ, w) ≤ (w/μ)(q−1)w ≤ n(q−1)w and finally

(q − 1)w ≤ g(q, n, w) ≤ n(q − 1)w.

Corollary 3:

lim
n→∞n−1 logq f(q, n, ωn) = hq(ω) for 0 ≤ ω ≤ μ.

IV. CONSTANT-WEIGHT CODES

Denote now by f(q, n, w, k) the maximal size of a w-

witness code with codewords of weight k.

Proposition 2 (A la Bassalygo-Elias): We have:

max
k

f(q, n, w, k) ≤ f(q, n, w) ≤ min
k

f(q, n, w, k)qn

(q − 1)k
(
n
k

) .

Proof: The lower bound is trivial.

For the upper bound, fix k, pick an optimal w-witness

code C and consider its qn translates by all possible vectors.

Every n-tuple, in particular those of weight k, occurs exactly

|C| times in the union of the translates; hence there exists a

translate (also an optimal w-witness code of size f(q, n, w)
- see beginning of Section II) containing at least the average

number |C|(q − 1)k
(
n
k

)
q−n of vectors of weight k. Since k

was arbitrary, the result follows.

We now deduce from the previous proposition the exact

value of the function f(q, n, w, k) in some cases.

Corollary 4: For constant-weight codes we have:

If k ≤ w ≤ μn then f(q, n, w, k) = (q − 1)k
(
n
k

)
;

an optimal code is given by Sk(0), the Hamming sphere of

radius k centered on 0.

Proof: If k ≤ w ≤ μn, we have the following series of

inequalities:

(q − 1)k
(
n
k

) ≤ f(q, n, k, k) ≤ f(q, n, w, k) ≤ (q − 1)k
(
n
k

)
.

V. UNIFORM WITNESSES AND LINEAR CODES

Call C a uniform w-witness code if there exists a subset of

[n] of size w that is a witness for all codewords (a uniform

witness). The upper bound |C| ≤ qw clearly holds for uniform

w-witness codes.

Assume now that q is a prime power and that C is a linear

subspace of Fn
q , the n-dimensional vector space over the finite

field Fq. It is easy to check that a linear w-witness code is

necessarily uniform; indeed, if 0 has witness W (0), no two

distinct codewords c and c′ can coincide on it (otherwise,

the non-zero codeword c − c′ would be all-zero on W (0), a

contradiction). Thus W (0) is a uniform witness for C. Denote

by f [q, n, w] the maximum cardinality of a linear w-witness

code. We have just proved that

Proposition 3: f [q, n, w] = qw.

In the binary case, Bondy ([3], [6]) shows

Proposition 4: If |C| ≤ n, then C is a uniform w-witness

code with w ≤ |C| − 1.

Proof: We give a simple coding proof of this known

result, generalized to the q-ary case. We may assume by

translation that 0 ∈ C = {0, c(1)...c(m−1)}, with m ≤ n.

Thus, the rank s of {c(1)...c(m−1)} is at most m − 1 and the

elements of C span a linear subspace C∗ of dimension s of

Fn
q . As such, C∗ (and thus C) possesses a uniform s-witness

(refered to in coding as an information set).

VI. CONCLUSION AND OPEN PROBLEMS

We have determined the asymptotic size of optimal w-

witness codes. A few issues remain open, among which:

• When is the sphere Sw(0) an optimal w-witness code ?

• Denoting by f(q, n, w,≥ δn) the maximal size of a w-

witness code with minimum Hamming distance d ≥ δn,

can the asymptotics of Corollary 3 be improved to

n−1 logq f(q, n, ωn,≥ δn) < hq(ω) ?
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