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Abstract Given a finite set X and a collection Π = (R1,R2, . . . ,Rv) of v binary relations
defined on X and given a remoteness ρ, a relation R is said to be a central relation of Π

with respect to ρ if it minimizes the remoteness ρ(Π,R) from Π . The remoteness ρ is
based on the symmetric difference distance δ(Ri,R) between R and the binary relations
Ri of Π (1 ≤ i ≤ v), which measures the number of disagreements between Ri and R.
Usually, the considered remoteness between Π and a relation R is the remoteness ρ1(Π,R)

given by the sum of the distances δ(Ri,R) over i, and thus measures the total number of
disagreements between Π and R or, divided by v, provides the (arithmetical) mean number
of disagreements between Π and R. The computation of a central relation with respect to
ρ1 is often an NP-hard problem when the central relation is required to fulfill structural
properties like transitivity. In this paper, we investigate other types of remoteness ρ, for
instance the sum of the pth power of the δ(Ri,R)’s for any integer p, the maximum of the
δ(Ri,R)’s, the minimum of the δ(Ri,R)’s, and different kinds of means of the δ(Ri,R)’s, or
their weighted versions. We show that for many definitions of the remoteness, including the
previous ones, the computation of a central relation with respect to ρ remains an NP-hard
problem, even when the number v of relations is given, for any value of v greater than or
equal to 1.
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1 Introduction

In an election, assume that we are given a finite set X = {1,2, . . . , n} of n candidates and
a collection (or multi-set) Π = (R1,R2, . . . ,Rv), called a profile, of the preferences Ri of
v voters (1 ≤ i ≤ v) who want to rank the n candidates. These preferences can be binary
relations without noticeable properties, or can be linear orders, or complete preorders, and so
on (see below for the definition of these ordered structures). Note that the relations involved
in the profile may be the same: two different voters may share the same preference.

In order to aggregate these v relations into a collective ranking, one possibility consists
in computing a relation belonging to a prescribed set C (for instance C is the set L of all the
linear orders defined on X) which summarizes Π “as well as possible”. This requires the
definition of a criterion to specify what “as well as possible” means. A usual answer con-
sists in considering the median relation defined as follows (see for instance Barthélemy and
Monjardet 1981; Hudry et al. 2009 or Hudry and Monjardet 2010 for surveys and references
on the median procedure; for a larger approach of the field of computational social choice,
see Brandt et al. 2013 for instance). First, we consider the symmetric difference distance
δ(Ri,R) between any relation R defined on X and any binary relation Ri of Π (1 ≤ i ≤ v).
This quantity δ(Ri,R) measures the number of disagreements between Ri and R (see Sect. 2
for the expression of δ(Ri,R)). Then we define the (usual) remoteness ρ1(Π,R) between Π

and a relation R belonging to C as the sum of the distances δ(Ri,R) over i (see Barthélemy
and Monjardet 1981):

ρ1(Π,R) =
v∑

i=1

δ(Ri,R).

Thus ρ1(Π,R) measures the total number of disagreements between R and the relations
of Π , and ρ1(Π,R)/v measures the (arithmetical) mean number of disagreements between
R and the preferences of Π .

A C -median relation of Π is any relation R∗ belonging to C which minimizes the re-
moteness ρ1 with respect to Π over C :

ρ1
(
Π,R∗) = min

R∈C
ρ1(Π,R).

In this respect, the median relation can be considered as a relation fulfilling some structural
properties (the ones defining C ) and minimizing the average dissatisfaction for the arithmeti-
cal mean.

From the point of view of the theory of NP-completeness (see Garey and Johnson 1979
for a reference on this subject), the complexity of the computation of a C -median relation
depends of course on the properties required from the median, i.e. on C (and, in some extent,
on the nature of the preferences Ri ), but this problem is generally NP-hard (for the definition
of NP-hardness based on polynomial-time Turing reductions, see Garey and Johnson 1979)
if we require from R∗ properties usually considered as desirable, like transitivity (see Alon
2006; Bartholdi et al. 1989; Charbit et al. 2007; Charon and Hudry 2010; Conitzer 2006;
Dwork et al. 2001; Hemaspaandra et al. 2005; Hudry 1989, 2008, 2010, 2012, 2013; Wak-
abayashi 1986, 1998 for complexity results dealing with the computation of C -median re-
lations for several sets C ; see also Hudry 2009a, 2009b for surveys on complexity results
dealing with other voting procedures or with tournament solutions). Notice that the mini-
mum value of v for which the problem is NP-hard is not always known and is also stud-
ied. For instance, for the aggregation of linear orders into a median linear order or a me-
dian complete preorder with respect to ρ1 (Condorcet-Kemeny’s problems, Condorcet 1785;
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Kemeny 1959), it is known that the minimum even value of v is equal to 4 while the mini-
mum odd value is not known (see Charon and Hudry 2010; Dwork et al. 2001; Hudry 2008,
2012). Similarly, for a profile of v tournaments (see Sect. 2 for the definition of this structure)
and still with respect to ρ1, the computation of a median linear order (this problem is also
known as Slater’s problem for v = 1, see Slater 1961; see Charon and Hudry 2010 for other
names and equivalent statements) or of a median complete preorder is an NP-hard problem
for any given value of v greater than or equal to 1 (see Alon 2006; Charbit et al. 2007;
Conitzer 2006; Hudry 2010, 2012).

Then, we may wonder what happens, from the complexity point of view, if we adopt
another definition for the remoteness. For instance, what happens if we try to minimize the
maximum dissatisfaction? or if we consider another type of mean, for instance the geometric
mean? The aim of this paper is to study this issue for several types of remoteness.

The paper is organized as follows: Sect. 2 provides the basic definitions and states the
problem; the complexity results can be found in Sect. 3; the conclusion (Sect. 4) summarizes
these results and states some open problems related to these issues.

2 Definitions and notation

Let X = {1,2, . . . , n} be a finite set with n elements. A binary relation R defined on X is a
subset of the Cartesian product X×X. If (x, y) belongs to R, then we write xRy; otherwise,
we write xR̄y. Given a binary relation R, we may define an asymmetric relation Ra (called
the asymmetric part of R) by: xRay ⇔ (xRy and yR̄x).

Basic properties that R may fulfill are:

* reflexivity: R is reflexive if, for any x ∈ X, we have xRx;
* irreflexivity: R is irreflexive if, for any x ∈ X, we have xR̄x;
* antisymmetry: R is antisymmetric if, for any (x, y) ∈ X2 with x �= y, we have the impli-

cation xRy ⇒ yR̄x;
* completeness: R is complete if, for any (x, y) ∈ X2 with x �= y, we have xRy or yRx;
* transitivity: R is transitive if, for any (x, y, z) ∈ X3, we have the implication (xRy and

yRz) ⇒ xRz.

With respect to the complexity status, reflexivity or irreflexivity usually do not matter: for
the usual remoteness ρ1, the complexity remains the same with or without this property (see
Hudry 2008). As the results of Sect. 3 are based on transformations involving ρ1, they will
not depend on requirements dealing with reflexivity or irreflexivity for the different types of
remoteness studied in Sect. 3.

From these basic properties, we may define partially ordered structures (see Bouyssou
et al. 2006 or Caspard et al. 2012). The structure of linear orders is surely the most studied
one, but complete preorders, and by the way the asymmetric part of complete preorders,
appear quite often, for instance in Arrow’s theorem (Arrow 1951) and in Kemeny’s problem
(Kemeny 1959). As the names used to denote the usual structures are not always the same
in the literature, we specify them below. For reflexivity or irreflexivity properties, we do not
specify anything: once again, it does not matter for the results of Sect. 3.

* Tournament: a tournament is a relation which is antisymmetric and complete; T will
denote the set of tournaments.

* Linear order: a linear order is a relation which is antisymmetric, complete and transitive,
i.e. also a transitive tournament; L will denote the set of linear orders.
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* Complete preorder: a complete preorder is a relation which is complete and transitive;
P will denote the set of complete preorders.

* Weak order: a relation R is a weak order if there exists a complete preorder of which the
asymmetric part is R; W will denote the set of weak orders.

Moreover, Co, A and R will respectively denote the set of complete relations, the set of
antisymmetric relations and the set of all the binary relations defined on X. We say that
(x1, x2, . . . , xk) is a directed cycle of a relation R if we have x1Rx2, x2Rx3, . . . , xk−1Rxk

and xkRx1, where k is some appropriate integer with k ≥ 2 and where x1, x2, . . . , xk are
pairwise distinct elements of X. A relation is said to be acyclic if it contains no directed
cycle; Ac will denote the set of acyclic relations. Note the following inclusions:

• L ⊂ P ⊂ R;
• L ⊂ W ⊂ Ac ⊂ A ⊂ R;
• L = Co ∩ Ac ⊂ T = Co ∩ A ⊂ R.

To define median relations, we use the symmetric difference distance δ between two
relations R and R′ both defined on X. This distance is defined by:

δ
(
R,R′) = ∣∣R�R′∣∣,

where � denotes the usual symmetric difference between sets. This distance, which is also
sometimes called Kemeny’s distance, Dodgson’s distance, Kendall’s tau distance, swap dis-
tance, bubble-sort distance. . . , has good axiomatic properties (see Barthélemy 1979 and
Barthélemy and Monjardet 1981) and measures the number of disagreements between R

and R′:

δ
(
R,R′) = ∣∣{(x, y) ∈ X2:

[
xRy and xR̄′y

]
or

[
xR̄y and xR′y

]}∣∣.

The usual remoteness (Barthélemy and Monjardet 1981) ρ1(Π,R) between a profile Π =
(R1,R2, . . . ,Rv) and a binary relation R is defined by:

ρ1(Π,R) =
v∑

i=1

δ(Ri,R).

So, the remoteness ρ1(Π,R) measures the total number of disagreements between Π and R.
Given a prescribed set C of relations, a C -median relation, or simply a median relation when
there is no ambiguity, is a relation R∗ belonging to C and minimizing ρ1 over C :

ρ1
(
Π,R∗) = min

R∈C
ρ1(Π,R).

Sometimes, the computation of R∗ can be done in polynomial time with respect to the size
of the instance Π . It is the case for instance when C is T or R (see Hudry et al. 2009).
In contrast, the computation of R∗ for ρ1 usually leads to NP-hard problems when R∗ is
required to own structural properties like transitivity or acyclicity. More precisely, when the
relations Ri (1 ≤ i ≤ v) of the profile Π belong to R or more generally to any set containing
L as a subset, it is known that the computation of the C -median is NP-hard when C is for
instance equal to Ac, L, P , W (for more details, other results and references, see Alon 2006;
Bartholdi et al. 1989; Charbit et al. 2007; Charon and Hudry 2010; Conitzer 2006; Dwork
et al. 2001; Hemaspaandra et al. 2005; Hudry 1989, 2008, 2010, 2012; Wakabayashi 1986,
1998).

What happens if we consider another definition for the remoteness? For instance, instead
of ρ1, we may pay attention to the kinds of remoteness described below. As the expression
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median relation applies only when the considered remoteness is ρ1, we will adopt the fol-
lowing notation. Given a remoteness ρ, a subset D (for data) of R, a set C (for central) of
partially ordered relations (which is also a subset of R), a positive integer v, a profile Π of
v binary relations belonging to D, we say that R∗ is a (ρ, C )-central relation of Π if R∗

belongs to C and minimizes ρ(Π,R) over C :

ρ
(
Π,R∗) = min

R∈C
ρ(Π,R).

Thus the usual definition of the C -median relation is the same as the definition of the (ρ1, C )-
central relation. When there is no ambiguity, we simply say that R∗ is the C -central relation
of Π or the central relation of Π .

We now describe several types of remoteness that we may consider instead of ρ1.

2.1 Maximum number of disagreements between Π and R

For the maximum number of disagreements between Π and R, the remoteness ρmax is de-
fined by:

ρmax(Π,R) = max
1≤i≤v

δ(Ri,R).

Then a (ρmax, C )-central relation R∗ minimizes the maximum dissatisfaction of the voters:

ρmax

(
Π,R∗) = min

R∈C
ρmax(Π,R) = min

R∈C
max
1≤i≤v

δ(Ri,R).

2.2 Minimum number of disagreements between Π and R

Instead of minimizing the dissatisfaction of the most dissatisfied voter, we may try also to
minimize the dissatisfaction of the least dissatisfied voter, or equivalently to maximize the
satisfaction of the most satisfied voter. This leads to the remoteness ρmin defined by:

ρmin(Π,R) = min
1≤i≤v

δ(Ri,R).

Then a (ρmin, C )-central relation R∗ is defined by:

ρmin

(
Π,R∗) = min

R∈C
ρmin(Π,R) = min

R∈C
min

1≤i≤v
δ(Ri,R).

2.3 Lp-norms

The remoteness ρ1 defined above can be related to the usual norm L1. For any integer p

with p ≥ 1, we can generalize it by considering the norm Lp . We then obtain a remoteness
ρp defined, for any profile Π and any relation R, by:

ρp(Π,R) =
(

v∑

i=1

δ(Ri,R)p

)1/p

.

A (ρp, C )-central relation R∗ minimizes this new kind of remoteness:

ρp

(
Π,R∗) = min

R∈C
ρp(Π,R) = min

R∈C

(
v∑

i=1

δ(Ri,R)p

)1/p

.
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2.4 Geometric or harmonic means

As said above, ρ1/v is the usual arithmetical mean. More generally, ρp/(v1/p) defines a
mean (the one associated with p = 2 is called the quadratic mean). Other kinds of means
exist and we can consider the cases for which the remoteness is provided by the geometric
mean ρg or the harmonic mean ρh.

The geometric mean ρg is defined by:

ρg(Π,R) =
(

v∏

i=1

δ(Ri,R)

)1/v

.

If none of the v considered quantities δ(Ri,R) is equal to 0 for 1 ≤ i ≤ v (otherwise we
set ρh(Π,R) = 0 because it will be convenient in the following), the harmonic mean ρh is
defined by:

v

ρh(Π,R)
=

v∑

i=1

1

δ(Ri,R)
.

As before, a C -central relation R∗ with respect to ρg or ρh minimizes these means:

ρg

(
Π,R∗) = min

R∈C
ρg(Π,R) = min

R∈C

(
v∏

i=1

δ(Ri,R)

)1/v

and

ρh

(
Π,R∗) = min

R∈C
ρh(Π,R).

2.5 Weighted remoteness

We may also consider a remoteness in which the voters do not play symmetric roles. For in-
stance, let (α1, α2, . . . , αv) be a v-tuple of numbers with α1 ≥ α2 ≥ · · · ≥ αv ≥ 0 and α1 > 0
(in the following, it is not always necessary to assume that these numbers are non-negative,
but assuming this non-negativity will avoid being more specific when necessary; from a
practical point of view, this assumption is not restrictive). We then define the “weighted”
remoteness ρ1,(α1,α2,...,αv) by:

ρ1,(α1,α2,...,αv)(Π,R) =
v∑

i=1

αiδ(Ri,R).

For (α1, α2, . . . , αv) = (1,1, . . . ,1), we get the usual remoteness ρ1 back. But we can
represent other situations in such a way. For instance, the dictatorship (only one voter, the
dictator, imposes his or her preferences) can be obtained by choosing (α1, α2, . . . , αv) =
(1,0, . . . ,0). The persecution for which the preferences of one voter are systematically not
taken into account can be associated with the v-tuple (1, . . . ,1,0). More generally, for a
given k between 1 and v, a k-coalition for which only k voters are taken into account, can
be associated with the v-tuple (1, . . . ,1,0, . . . ,0) where 1 is repeated k times. We may still
imagine other situations. For instance, in some associations, the president of the association
benefits from a weight more important than the other members; this can be expressed by the
v-tuple (α1,1, . . . ,1) with α1 > 1. Or we can also represent a kind of hierarchy between the
voters by an v-tuple like (v, v − 1, v − 2, . . . ,2,1). And so on . . .
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Of course, in all these cases, the (ρ1,(α1,α2,...,αv), C )-central relation R∗ is still defined as
above:

ρ1,(α1,α2,...,αv)

(
Π,R∗) = min

R∈C
ρ1,(α1,α2,...,αv)(Π,R) = min

R∈C

v∑

i=1

αiδ(Ri,R).

Following the same idea, we may also generalize the types of remoteness defined in
Sects. 2.1 to 2.4 by their weighted versions. We thus obtain:

• ρmax,(α1,α2,...,αv)(Π,R) = max1≤i≤v αiδ(Ri,R),
• ρmin,(α1,α2,...,αv)(Π,R) = min1≤i≤v αiδ(Ri,R),
• ρp,(α1,α2,...,αv)(Π,R) = (

∑v

i=1 αiδ(Ri,R)p)1/p for any integer p ≥ 1,
• ρg,(α1,α2,...,αv)(Π,R) = (

∏v

i=1 δ(Ri,R)αi )1/
∑v

i=1 αi ,

• and ρh,(α1,α2,...,αv) defined by
∑v

i=1
1
αi

ρh,(α1,α2,...,αv )(Π,R)
= ∑v

i=1
1

αi δ(Ri ,R)

if none of the quantities αiδ(Ri,R) is equal to 0 for 1 ≤ i ≤ v (such an assumption involves
the inequality αi > 0 for any i); otherwise we set ρh,(α1,α2,...,αv)(Π,R) = 0 as before.

For each type of remoteness, we recover the unweighted remoteness when the v-tuple
(α1, α2, . . . , αv) is equal to (1,1, . . . ,1).

2.6 The studied problems

The decision problem associated with the computation of a (ρ, C )-central relation and that
we are going to study in Sect. 3 is defined as follows:

Definition 1 Let v be any integer with v ≥ 1, ρ a remoteness, and D and C two subsets
of R. Problem Dv,ρ,D,C is defined by:

Name: Dv,ρ,D,C (aggregation of v binary relations belonging to D into a (ρ, C )-central
relation);

Instance: a set X of n elements, a profile Π of v relations defined on X and all belonging
to D; an integer k;

Question: does there exist a relation R defined on X and belonging to C with ρ(Π,R) ≤ k?

In particular, Dv,ρ1,D,C is the decision problem associated with the computation of a C -
central relation for the usual remoteness ρ1, i.e. with the computation of a C -median relation.
It is known that D1,ρ1,T ,L (also known as Slater’s problem, see Slater 1961), D1,ρ1,T ,Ac (also
known as the Feedback Arc Set problem for tournaments, see Charon and Hudry 2010 for
equivalent definitions and references), D1,ρ1,T ,P and D1,ρ1,T ,W are NP-complete problems
(see Alon 2006; Charbit et al. 2007; Conitzer 2006; Hudry 2010, 2012).

3 Complexity results

We are going to study the complexity of the computation of a (ρ, C )-central relation for
different sets of C and for different kinds of remoteness ρ. Theorem 1 below can be applied
to many kinds of remoteness ρ, more precisely when ρ fulfills the property (P) that we
define now:

Definition 2 Let v be any given integer with v ≥ 1. Let N denote the set of non-negative
integers. We say that ρ fulfills property (P) if there exists an increasing function ϕv (i.e.
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such that we have x < y ⇔ ϕv(x) < ϕv(y)) from N to N such that, for any profile Π =
(R1,R1, . . . ,R1) containing v times a same preference R1, we have, for any relation R:

ρ(Π,R) = ϕv

(
ρ1(Π,R)

)
.

Moreover, we assume that, for any integer k,ϕv(k) can be computed in polynomial time
with respect to the size of k.

In other words, when all the voters share the same opinion, the remoteness ρ is the same
as the remoteness ρ1 up to an increasing transformation, and this transformation can be
computed in polynomial time.

When ρ fulfills property (P), the complexity of Dv,ρ,D,C can be related to the one of
D1,ρ1,D,C , as stated by the next theorem.

Theorem 1 Let v be any given integer with v ≥ 1, ρ be any remoteness fulfilling property
(P), and D and C be subsets of R. Then Dv,ρ,D,C is NP-complete as soon as we have:

1. Dv,ρ,D,C belongs to NP;
2. D1,ρ1,D,C is NP-complete.

Proof We are going to transform D1,ρ1,D,C to Dv,ρ,D,C in polynomial time. For this, con-
sider any instance I1 of D1,ρ1,D,C . Such an instance can be described by a set X, a unique
relation R1 defined on X, belonging to D and constituting a profile Π1 = (R1), and by an
integer k1: I1 = (X,Π1 = (R1), k1). The instance I = (X,Π,k) of Dv,ρ,D,C that we build
from I1 contains the same set X and the profile Π = (R1,R1, . . . ,R1) containing v times
the relation R1. Moreover, as ρ is assumed to fulfill (P), there exists an increasing function
ϕv such that we have, for any relation R: ρ(Π,R) = ϕv(ρ1(Π,R)). Then the constant k

involved in the instance I of Dv,ρ,D,C is defined by k = ϕv(vk1).
This transformation is polynomial, since v is fixed and thanks to the assumption about

the polynomiality of ϕv .
Moreover, it keeps the answer. Indeed, assume that the instance I1 of D1,ρ1,D,C admits

the answer “yes”. Then there exists a relation R belonging to C with ρ1(Π1,R) ≤ k1.
By property (P), we have: ρ(Π,R) = ϕv(ρ1(Π,R)). Since all the v relations of Π are
the same, namely R1, we have: ρ1(Π,R) = vδ(R1,R) = vρ1(Π1,R). Hence: ρ(Π,R) =
ϕv(vρ1(Π1,R)). As ϕv is increasing, we obtain: ρ(Π,R) ≤ ϕv(vk1) = k. Thus I ad-
mits the answer “yes”. Conversely, assume that the instance I of Dv,ρ,D,C admits the an-
swer “yes”. Then there exists a relation R belonging to C with ρ(Π,R) ≤ k. Because
Π contains a fixed relation repeated v times and still because of property (P), we obtain
ρ(Π,R) = ϕv(ρ1(Π,R)). The inequality ρ(Π,R) ≤ k = ϕv(vk1) becomes ϕv(ρ1(Π,R)) ≤
ϕv(vk1). Once again because ϕv is increasing, we deduce from the previous inequality:
ρ1(Π,R) ≤ vk1. This inequality and the equalities ρ1(Π,R) = vδ(R1,R) = vρ1(Π1,R) in-
volve ρ1(Π1,R) ≤ k1: then I1 admits the answer “yes”.

So, if in addition Dv,ρ,D,C belongs to NP and D1,ρ1,D,C is NP-complete, the conclusion
is that Dv,ρ,D,C is NP-complete. �

In the next theorems, the individual preferences Ri (1 ≤ i ≤ v) of the considered profiles
are assumed to belong to a set D containing at least T . For instance, because of the relation
T = Co ∩ A ⊂ R, the relations Ri (1 ≤ i ≤ v) can be assumed to be tournaments, com-
plete relations, antisymmetric relations, or also binary relations without noticeable structural
properties, or still a mixture of these kinds of relations.
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The belonging of Dv,ρ,D,C to NP is usually easy to prove. It is the case for the different
types of remoteness of Sect. 2 and for different sets C , as specified by Lemma 2.

Lemma 2 For any integer v with v ≥ 1, any v-tuple (α1, α2, . . . , αv) of integers with
α1 ≥ α2 ≥ · · · ≥ αv ≥ 0 and α1 > 0, any integer p ≥ 1, any remoteness ρ belonging to
{ρmax,(α1,α2,...,αv), ρmin,(α1,α2,...,αv), ρp,(α1,α2,...,αv), ρg,(α1,α2,...,αv), ρh,(α1,α2,...,αv)}, any set D con-
taining T and any set C belonging to {L, P, W, Ac}, Dv,ρ,D,C belongs to NP.

Proof We do not detail all the steps of the proof of Lemma 2, what would be tedious while
the proof is not difficult. We just give the main features of the proof.

Let I = (X,Π,k) denote any instance of Dv,ρ,D,C admitting the answer “yes”.
First, note that any relation R defined on X can be encoded with n2 bits, with n = |X|:

for each ordered pair (x, y) of elements of X, a 1 will code the fact that x and y are in
relation with respect to R (i.e. xRy), while a 0 will code the contrary (i.e. xR̄y). Moreover,
if R is a tournament, the definition of R requires the specification of at least n(n − 1)/2
bits: one bit for each pair {x, y} of elements of X. As D contains T as a subset, there is
no qualitatively more compact representation of the preferences belonging to Π than the
previous one, with a size about n2 for each preference belonging to Π . Thus the size of I is
in θ(log2 n + vn2 + log2 k).

Imagine now that we guess an element R belonging to C providing the answer “yes” to
the instance I . We want to check, in polynomial time with respect to the size of I , that:

– R does belong to C ;
– R does provide the answer “yes”.

Checking that R is a linear order, or a complete preorder, or the asymmetric part of a
complete preorder, or an acyclic relation defined on X can easily be done in O(n2), i.e. in
polynomial time with respect to the size of I , for instance by considering the strongly con-
nected components of the directed graph induced by R, which can be computed in O(n2),
(see Cormen et al. 1990).

Then, given R, the computation of ρ(Π,R) can also be done in polynomial time with
respect to the size of I for any remoteness ρ considered here. Indeed, the computation of
δ(Ri,R) for any relation Ri (1 ≤ i ≤ v) of the profile Π can be done in O(n2). Then, the
computation of ρ(Π,R) can be done in O(vn2) (or even in O(n2), since v is fixed), which
can be once again upper-bounded by a polynomial in the size of I . Last, we just have to
compare ρ(Π,R) with k, what can be done in O(1).

As all these steps can be done in polynomial time with respect to the size of I,Dv,ρ,D,C
belongs to NP under the hypotheses of Lemma 2. �

Thanks to Theorem 1 and to complexity results dealing with ρ1, we can now obtain new
results about the other kinds of remoteness depicted in Sect. 2, since they fulfill property
(P), as shown by Lemma 3.

Lemma 3

• For any integer v with v ≥ 1, any v-tuple (α1, α2, . . . , αv) of numbers with α1 ≥ α2 ≥ · · · ≥
αv ≥ 0 and α1 > 0, any integer p ≥ 1, ρmax,(α1,α2,...,αv), ρp,(α1,α2,...,αv) and ρg,(α1,α2,...,αv)

fulfill property (P).
• For any integer v with v ≥ 1, any v-tuple (α1, α2, . . . , αv) of numbers with α1 ≥ α2 ≥

· · · ≥ αv > 0, ρmin,(α1,α2,...,αv), ρh,(α1,α2,...,αv) fulfill property (P).
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Proof Let Π0 denote any profile (R0,R0, . . . ,R0) in which a same binary relation R0 is re-
peated v times. Then we have, for any binary relation R: ρ1(Π0,R) = vδ(R0,R) or, equiv-
alently: δ(R0,R) = ρ1(Π0,R)/v.

It is not difficult to check that the following functions ϕv satisfy the requirements of
Definition 2.

• For ρmax,(α1,α2,...,αv): ϕv(x) = α1x/v; indeed, we have:

ρmax,(α1,α2,...,αv)(Π0,R) = max
1≤i≤v

αiδ(R0,R) = α1ρ1(Π0,R)/v.

• For ρmin,(α1,α2,...,αv): ϕv(x) = αvx/v; indeed, we have:

ρmin,(α1,α2,...,αv)(Π0,R) = min
1≤i≤v

αiδ(R0,R) = αvρ1(Π0,R)/v.

• For ρp,(α1,α2,...,αv): ϕv(x) = (
∑v

i=1 αi)
1/px/v; indeed, we have:

ρp,(α1,α2,...,αv)(Π0,R) =
(

v∑

i=1

αiδ(R0,R)p

)1/p

=
(

v∑

i=1

αi

)1/p

δ(R0,R).

• For ρg,(α1,α2,...,αv): ϕv(x) = x/v; indeed, we have:

ρg,(α1,α2,...,αv)(Π0,R) =
(

v∏

i=1

(
δ(R0,R)

)αi

)1/
∑v

i=1 αi

= δ(R0,R) = ρ1(Π0,R)/v.

• For ρh,(α1,α2,...,αv): ϕv(x) = x/v; indeed, we have:
– if δ(R0,R) is equal to 0, then ρh,(α1,α2,...,αv)(Π0,R) is set to 0, and ρ1(Π0,R) is also

equal to 0;
– otherwise, the terms αiδ(R0,R) are not equal to 0 for 1 ≤ i ≤ v; then we have:

∑v

i=1
1
αi

ρh,(α1,α2,...,αv) (Π0,R)
=

v∑

i=1

1

αiδ(R0,R)
,

i.e. ρh,(α1,α2,...,αv)(Π0,R) = δ(R0,R) = ρ1(Π0,R)/v.

In both cases, ρh,(α1,α2,...,αv)(Π0,R) is equal to ϕv(ρ1(Π0,R)) with ϕv(x) = x/v. �

Theorem 4 specifies some complexity results dealing with the different kinds of remote-
ness described in Sect. 2 for any set D containing T , what includes the cases D = R, D = A,
D = Co.

Theorem 4

• For any integer v with v ≥ 1, any v-tuple (α1, α2, . . . , αv) of integers with α1 ≥
α2 ≥ · · · ≥ αv ≥ 0 and α1 > 0, any integer p ≥ 1, any remoteness ρ belonging to
{ρmax,(α1,α2,...,αv), ρp,(α1,α2,...,αv), ρg,(α1,α2,...,αv)}, and any set D containing T , Dv,ρ,D,L ,
Dv,ρ,D,Ac , Dv,ρ,D,P and Dv,ρ,D,W are NP-complete problems.

• For any integer v with v ≥ 1, any v-tuple (α1, α2, . . . , αv) of integers with α1 ≥ α2 ≥
· · · ≥ αv > 0, any remoteness ρ belonging to {ρmin,(α1,α2,...,αv), ρh,(α1,α2,...,αv)}, and any set
D containing T , Dv,ρ,D,L , Dv,ρ,D,Ac , Dv,ρ,D,P and Dv,ρ,D,W are NP-complete problems.

Proof By Lemma 2, we know that Dv,ρ,T ,L , Dv,ρ,T ,Ac , Dv,ρ,T ,P and Dv,ρ,T ,W belong to
NP. Moreover, it is known that D1,ρ1,T ,L (i.e. Slater problem) and D1,ρ1,T ,Ac (i.e. the Feed-
back Arc Set problem for tournaments) are NP-complete (see Alon 2006; Charbit et al. 2007;
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Conitzer 2006; Hudry 2010), as well as D1,ρ1,T ,P and D1,ρ1,T ,W (see Hudry 2012). Since,
by Lemma 3, ρ fulfills property (P), we may apply Theorem 1. Hence the results of Theo-
rem 4 for D = T .

Now, consider any set D containing T . By Lemma 2, we know that Dv,ρ,D,L,Dv,ρ,D,Ac ,
Dv,ρ,D,P and Dv,ρ,D,W belong to NP. Then, for C ∈ {L, Ac, P, W}, let I be any instance
of Dv,ρ,T ,C and consider it as an instance of Dv,ρ,D,C (this is possible since D is assumed
to contain T ). This transformation (the identity!) is obviously polynomial and keeps the
answer “yes” or “no”. Hence the NP-completeness of the problems Dv,ρ,D,L , Dv,ρ,D,Ac ,
Dv,ρ,D,P and Dv,ρ,D,W . �

Remarks

1. It is because reflexivity or irreflexivity do not matter (see Hudry 2008) for problems
D1,ρ1,T ,L , D1,ρ1,T ,Ac, D1,ρ1,T ,P and D1,ρ1,T ,W that they do not matter for problems
Dv,ρ,D,L,Dv,ρ,D,Ac,Dv,ρ,D,P and Dv,ρ,D,W either.

2. Quite obviously, problems Dv,ρ,D,L,Dv,ρ,D,Ac,Dv,ρ,D,P and Dv,ρ,D,W become polyno-
mial for ρ = ρmin,(α1,α2,...,αv−1,0) or ρ = ρh,(α1,α2,...,αv−1,0) since, in these cases, ρ(Π,R) is
always equal to 0 for any profile Π and any relation R. Hence the hypothesis αv > 0 (i.e.,
all the weights are positive) in the statement of Theorem 4 (otherwise, the functions ϕv

would not be increasing).

In several places, we assume that v is fixed (it can be necessary to provide the polynomi-
ality of some transformations). Theorem 5 states that the problems similar to Dv,ρ,D,C but
without v fixed remain NP-complete as soon as Dv,ρ,D,C is NP-complete for some values of
v and for the types of remoteness of Sects. 2.1 to 2.4.

Theorem 5 For any integer p ≥ 1, any remoteness ρ belonging to {ρmax, ρmin, ρp,ρg, ρh},
any set D containing T and any set C belonging to {L, Ac, P, W}, the following problem is
NP-complete:

Name: Dρ,D,C (aggregation of an unfixed number of binary relations belonging to D into a
(ρ, C )-central relation);

Instance: a set X of n elements, an integer v, a profile Π of v relations defined on X and
all belonging to D; an integer k;

Question: does there exist a relation R defined on X and belonging to C with ρ(Π,R) ≤ k?

Proof As before, it is easy to show that the problems Dρ,D,C belong to NP (details are left
to the reader). Now, consider any instance of D1,ρ,D,C , which is an NP-complete problem
by Theorem 4. Let I be any instance of D1,ρ,D,C and consider it, with v = 1, as an instance
of Dρ,D,C . Obviously, this transformation is polynomial and keeps the answer. Hence the
results of Theorem 5. �

More generally, this result can be extended to any remoteness ρ such that Dρ,D,C belongs
to NP and such that there exists some constant c for which Dc,ρ,D,C is NP-complete. It is also
possible to extend these results by introducing the weights (α1, α2, . . . , αv) into the instance
when v depends also on the instance.

4 Conclusion

We may summarize the previous results as follows: the aggregation of v binary relations
belonging to any set containing the set T of tournaments as a subset into a (ρ, C )-central
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relation is an NP-hard problem for any given value of v with v ≥ 1, when C is the set L of
linear orders, the set Ac of acyclic relations, the set P of complete preorders or the set W of
weak orders, for any remoteness ρ fulfilling property (P), which is the case of many types
of remoteness, including the ones of Sect. 2. The similar problems in which v is not fixed
but depends on the instance remain NP-hard in the same conditions (except the one on v, of
course).

Two types of open problems related to these results can be studied.
The first one consists in considering other kinds of central relations: what happens for

other sets C , for instance if C stands for the set of partial orders? The answer to this question
is not obvious. For instance, if C stands for the set of partial orders, the complexity of
D1,ρ1,T ,C is not known, i.e. for the usual remoteness ρ1 when v is equal to 1 (some results
are known for larger values of v or for other sets C , see for instance Hudry 1989, 2008;
Wakabayashi 1986, 1998).

The second one consists in considering other types of partially ordered sets for D, i.e.
other partially ordered structures to represent the individual preferences that we want to
aggregate. For instance, what happens if all the individual preferences are linear orders (i.e.
D = L)? Clearly, all the problems D1,ρ,L,C for any remoteness ρ become polynomial for any
set C with L ⊆ C (what is quite often the case). More generally, all the problems D1,ρ,D,C
for any remoteness ρ are polynomial for sets D and C with D ⊆ C : the unique relation of the
considered profile provides a central relation. Thus, the approach applied in Sect. 3, based
on NP-hardness results when v is equal to 1, is no longer possible to prove NP-hardness
results. And, indeed, some problems are polynomial. For instance, for D = L and C = L,
D1,ρ1,L,L and D2,ρ1,L,L are polynomial (see Charon and Hudry 2010) while Dv,ρ1,L,L is
known, from Dwork et al. (2001), to be NP-complete for any even v with v ≥ 4. Similarly,
Dv,ρmin,C,C , Dv,ρg,C,C and Dv,ρh,C,C are obviously polynomial for any set C and any v (since
any relation belonging to the profile that we want to aggregate provides an optimal solution,
with a value equal to 0 for the remoteness). But what about the complexity for instance
of Dv,ρmax,L,L when v is greater than 1? We may conjecture that many problems Dv,ρ,D,C
remain NP-complete, but not all of them, as we have just noticed. In this case, it would be
also interesting to determine the minimum value of v from which Dv,ρ,D,C is NP-complete.

Acknowledgements I would like to thank Fred McMorris for the question he set me during a DIMACS
workshop at the university of Paris-Dauphine about considering an unusual remoteness to define central
relations.
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