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ABSTRACT

Nowadays, the amount of video data acquired for observa-
tion or surveillance applications is overwhelming. Due to
these huge volumes of video data, focusing the attention of
operators on “areas of interest” requires change detection al-
gorithms. In the particular task of aerial observation, cam-
era motion and viewpoint differences introduce parallax ef-
fects, which may substantially affect the reliability and the
efficiency of automatic change detection.

In this paper, we introduce a novel approach for change
detection that considers the geometric aspects of camera sen-
sors as well as the statistical properties of changes. Indeed,
our method is based on optical flow matching, constrained by
the epipolar geometry, and combined with a statistical change
decision criterion. The good performance of our method is
demonstrated through our new public Aerial Imagery Change
Detection (AICD) dataset of labeled aerial images.

Index Terms— Change detection, aerial observation,
constrained optical flow, epipolar geometry, parallax effects,
AICD dataset.

1. INTRODUCTION

These last few years have witnessed a rapid development of
video acquisition devices, which are becoming cheaper and
more efficient. In the context of observation via airborne cam-
eras, the volume of data being acquired is overwhelming hu-
man operators and most of it is stored unprocessed or lost.
As a consequence, it becomes necessary to develop solutions
addressing this bottleneck.

This paper addresses the specific problem of change de-
tection in aerial images, and aims at focusing the operator’s
attention on areas containing changes. Change detection [1]
refers to the problem of detecting significant and possibly
subtle changes between a reference and a new (called test)
image (e.g. appearing or disappearing buildings or vehicles),
while ignoring insignificant ones. General change detection
is particularly challenging: difficulties arise when the refer-
ence and test images are acquired at distinct dates and with
large viewpoint differences. Such conditions usually intro-
duce many environmental changes (illumination, weather, ...)
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Fig. 1. This figure shows the reference image (a), the new
image (c) with a change near the center (circle) and the image
differences (b). True changes and parallax effects are funda-
mentally indistinguishable using image difference.

and parallax effects due to scene content (trees, buildings, re-
lief) and camera motion. Although a human expert may iden-
tify significant changes successfully, such conditions make
the task extremely challenging to most of the current auto-
matic approaches.

The method we present focuses on achieving resilience
to viewpoint differences and parallax effects while remain-
ing computationally efficient (involving no time-consuming
search, for instance [2, 3]) and simple (involving no heavy
scene model, like in [4, 5]) in order to allow for future real-
time processing of aerial videos. For that purpose, we intro-
duce a novel approach based on optical flow constrained with
the epipolar geometry [6]. More precisely, our contribution is
twofold: (i) the underlying mask of change is efficiently esti-
mated using an optical flow algorithm constrained by epipo-
lar geometry, and (ii) our change detection criterion is purely
statistical and able to distinguish between real changes and
parallax effects.

The remainder of this paper is organized as follows. First,
section 2 explains why epipolar geometry provides an appro-
priate framework in order to cope with parallax effects. Then,
section 3 emphasizes on our change detection algorithm, fol-
lowed in Section 4 by the results obtained on an annotated
data-set of aerial images. This benchmark will be publicly
available as we believe such data-sets may play a great role
in further developments and comparisons of efficient algo-
rithms.



Fig. 2. This figure shows that the residual parallax field after
surface alignment is epipolar (reproduced from [7])

2. PARALLAX EFFECTS AND EPIPOLAR
GEOMETRY

In order to be robust to viewpoint differences, an algorithm
should distinguish between real changes and parallax effects.
Many existing change detection criteria rely on simple image
differences [1], even though this makes true changes and par-
allax effects indistinguishable, as shown in Figure 1.

As demonstrated in [7], the residual parallax field after
surface alignment, or in other words the motion of objects af-
ter image registration, is an epipolar field. This is explained
by a very clear drawing reproduced in Figure 2. LetR2 be the
ray joining a 3D point P and the center of camera 2 (denoted
M ); R2 intersects a given arbitrary surface at a 3D point de-
noted Q. The projection of the ray R2 on camera 1 includes
the projections of the underlying 3D points Q, P and M (de-
noted q, p, and m respectively). Since m is the epipole in
image 1, this means that the residual parallax vector ~qp, after
registration of both images with respect to an arbitrary sur-
face, is oriented along the epipolar line ~qm. Notice that ~qp
can either be directed towards or opposite to the direction of
the epipole depending on the relative position of 3D point P
and the surface. On the contrary, because true changes appear
in only one of the two images, the residual parallax vector
will not be defined. Therefore, reasoning on residual parallax
vectors, which we obtain using optical flow, provides an ef-
fective way to distinguish between true changes and parallax
effects.

3. OVERVIEW OF OUR ALGORITHM

As discussed in the previous section, images should be
aligned with respect to an arbitrary surface. A given test
image is registered to the reference one using a homography
transformation. First, SURF keypoints are extracted from
both images, possible matches are identified using their de-
scriptors and the epipolar geometry is then estimated using
the Random Sample Consensus (RANSAC) algorithm. No-
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Fig. 3. This figure presents the color orientation images cor-
responding to the true epipolar field (a) and the raw optical
flow results (b). Hue encodes vector angles while saturation
codes for vector norms, value being constant and equal to 255.
We can see that angles (hues) are very similar in both images,
except for the change (circle) and a few little areas, even with-
out constraining the optical flow to follow epipolar lines. En-
forcing the epipolar geometry constraint removes most of the
remaining false alarms.

tice that this step may be accelerated if camera parameters
are roughly known both for the reference and the test images
(which is usually the case in the context of our applications).
Afterwards, more accurate keypoint matches, based on the
epipolar geometry, together with RANSAC are again used in
order to estimate the homography transformation.

In order to estimate residual parallax vectors, we use the
optical flow algorithm described in [8], which is fast and pro-
vides a dense vector field. Experiments showed that although
most of the optical flow vectors are consistent with the epipo-
lar field (see Figure 3), some of them are spurious and are a
source of false alarms in the resulting change mask. Conse-
quently, we constrain, in our algorithm, optical flow vectors to
be collinear to the epipole direction. Then we detect changes
using a likelihood ratio test on the local matching score.

Let X be a random variable standing for a pixel into a test
image. Let H0 denote the ”null hypothesis” meaning that X
is unchanging (according to a well established ground truth);
the alternative hypothesis (denoted H1) stands for the con-
verse (i.e., X is changing). Now, we consider the following
likelihood ratio and its corresponding threshold:

L(X) =
P
(
ε(X,ψ(X))|H1

)
P
(
ε(X,ψ(X))|H0

)
τ =

P (H0)(C10 − C00)

P (H1)(C01 − C11)
,

where ε denotes an error function and ψ is the optical flow
mapping which given X in the test image, finds its unique
matching point in the reference image. Cij is a cost associ-
ated with making a decision in favor of hypothesis Hi when
Hj is true. The decision as whetherX is changing depends on
the sign of L (X)−τ . In order to model P (ε(X,ψ(X)) | H1)
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Fig. 4. This figure describes the probability density functions
of optical flow matching errors for Changed and Unchanged
pixels.
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Fig. 5. This figure shows the reference image (a), test image
(b) with change (circle), ground truth (c) and estimated (d)
change masks.

and P (ε(X,ψ(X)) | H0), we analyze the optical flow match-
ing error ε(X,ψ(X)) through a population of changing and
unchanging points using our dataset (see section 4). The dis-
tributions of these errors are described in Figure 4 with the
corresponding models.

Figure 5 illustrates an example of change detection re-
sults obtained on a test image. As we can see, the optical flow
matching score corresponds very accurately to the change
mask of the ground truth. In mono-thread mode, this result
was estimated in less than 3 seconds on a standard 2.4 GHz
PC.

4. EVALUATION

In order to evaluate our approach quantitatively, we built the
Aerial Imagery Change Detection (AICD) dataset using re-
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Fig. 6. This figure presents Precision/Recall curves for our
method with and without epipolar geometry constraint. The
performance is reported on our new AICD dataset.

alistic aerial images rendered artificially1. A hundred scenes
were created, with and without changes and illumination dif-
ferences. Although reference and test images include illu-
mination variations, dealing with hard shadows is out of the
scope of this paper. Every scene was rendered from five dif-
ferent viewpoints, the last four viewpoints being more and
more distant from the first one (by steps of 10 degrees), en-
abling the analysis of the influence of viewpoint difference on
change detection performances. In addition, the true pixel-
based change mask is available for each viewpoint, allowing
an objective comparison of performances. This dataset will be
made publicly available2 to enable benchmarking of change
detection algorithms.

In order to compare detection results with respect to the
ground truth, we define a precision recall criterion at the com-
ponent level (instead of the pixel level). This criterion is based
on intersecting connected components which is more relevant
to our objective of attention focusing than a pixel-based com-
parison.

Figure 6 compares these precision recall performances
obtained for a viewpoint difference of 10 degrees, using the
method presented above with and without the epipolar ge-
ometry constraint. These curves show that constraining the
optical flow algorithm using the epipolar geometry makes it
possible to achieve far better performance than leaving the
optical flow unconstrained, especially the number of false
alarms. Indeed, unconstrained optical flow may result into
wrong matches between reference and test images. Con-
straining the optical flow using the epipolar geometry reduces
such errors and thereby the false alarm rate.

Notice that the curve obtained without the epipolar ge-
ometry constraint converges to the bottom-left corner of the
diagram in Figure 6. This behavior corresponds to a scoring

1We used the built-in rendering engine of the serious game Virtual Battle
Station 2, edited by BISimulations.

2The dataset will be hosted on ComputerVisionOnline.com.
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Fig. 7. This figure compares the area under Precision vs Re-
call curves for the method with and without epipolar geometry
constraint, on scenes with or without ground relief.

function whose highest scores occur on false alarms instead
of desired detections. This usually means that the considered
scoring function cannot appropriately handle some of the pro-
vided examples.

As shown in Figure 6, considering the epipolar geometry
constraint attenuates these effects, as it aligns the orientation
of optical flow to match the true direction, which makes the
results more reliable. Figure 7 shows performances obtained
on two subsets of images including scenes with and without
relief. The underlying ground truth (relief vs. non relief) was
generated using a hard decision on the rate of outliers dur-
ing the estimation of homography with RANSAC (see sec-
tion 3); resulting into two subsets of comparable sizes. Fig-
ure 7 shows that the performance does not significantly de-
crease in the constrained case, whereas in the unconstrained
one, the performance drops by 50%. These results demon-
strate that the proposed approach increases robustness to the
presence of relief in images, and more generally to poor pre-
liminary registrations between images.

Finally, using the five viewpoints available for each scene,
we analyze the performances of our approach with respect
to viewpoint variation. Figure 8 shows a consistent gain
of the constrained approach compared to the unconstrained
one. Limited variations of the viewpoint angle (10 degrees
in practice) degrade the performance by less than 20% for
the constrained case while for the unconstrained one, the
performance decreases by more than 50%. For viewpoint
angles larger than 10 degrees, the two methods show similar
behaviors. This may result from the presence of challenging
occlusions, due to important viewpoint variations, thereby
introducing many false detections.
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Fig. 8. This figure compares the area under Precision/Recall
curves of our method with and without epipolar geometry
constraint and for various viewpoint angles.

5. CONCLUSION

In this paper, we introduced a change detection algorithm
which successfully handles challenging aerial images with
strong parallax effects, reliefs and illumination variations
while being simple and fast. Obtained results are satisfactory
both in terms of visual inspection and Precision/Recall mea-
sures. Indeed, our method demonstrates its ability to achieve
good robustness to relief and viewpoint changes.

It is known that strong shadows and occluded objects are
also challenging for change detection. As a future work, we
will address these issues for the purpose of achieving more
effective and real-time change detection in aerial videos.
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