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ABSTRACT

In this article, we are interested in the problem of blind source sep-
aration (BSS) for the robot audition, we study the performance of
blind source separation with a varying number of sensors in a mi-
crophone array placed in the head of an infant size dummy. We pro-
pose a two stage blind source separation algorithm based on a fixed
beamforming preprocessing using the head related transfer functions
(HRTF) of the dummy and a separation algorithm using a sparsity
criterion. We show that in the case of robot audition, the use of
a multisensor array improves significantly the performance of the
source separation algorithm, as compared to the binaural case, up to
a limit number of microphones studied in this paper.

Index Terms— Blind source separation, beamforming, binaural
BSS, multisensors BSS, robot audition

1. INTRODUCTION

Blind source separation (BSS) consists in recovering the original
sources from their mixtures, using the received microphone signals
and without prior knowledge of the mixing process. Our work is
focused on BSS using a microphone array for robot audition, in the
context of the ROMEO project1. Robot audition consists in the apti-
tude of an humanoid to understand its acoustic environment, separate
and localize sources, identify speakers and recognize their emotions.
This complex task is one of the target points of the ROMEO project
which aims to build a humanoid (ROMEO) to help aged people in
their everyday lives.

Blind source separation has been tackled many times [1]. In this
article, we study the influence of the number of the microphones
on the BSS performance in a robot audition context. For that, we
have considered a BSS approach that combines spatial information
(source location, beamforming) with structural information of the
source signals (statistical independence, sparsity, etc ...). Indeed, it
is shown in [2] and recently in [3] that such an approach leads to
an improved BSS performance. In this paper, we propose to use
a fixed beamforming technique based on the HRTFs knowledge as
a preprocessing step, followed by a separation technique based on
source sparsity in the time-frequency domain.

With respect to this separation method, a main objective consists
in studying the effect of the number of microphones on the source
separation quality. More specifically, we attempt to find out the “op-
timal” number of microphones that should be used for robot audition
given a specified array geometry (i.e. the microphones are around
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the robot’s head as shown in figure 4, in the 16 sensors case). This
is done by comparing the BSS performance for different array sizes
(from 2 to 16 microphones) in order to find the number of micro-
phones above which the performance gain becomes negligible.

2. SIGNAL MODEL

Assume N sound sources s (t) = [s1 (t) , . . . , sN (t)]T and an
array of M microphones. The outputs are denoted by x (t) =

[x1 (t) , . . . , xM (t)]T , where t is the time index and M ≥ N .
When the sources are placed in a real reverberant environment, the
output signals in the time domain are modeled as the sum of the con-
volution between the sound sources and the impulse responses of
the different propagation paths between the sources and the sensors,
truncated at the length of L+ 1:

x (t) =

L∑
l=0

h (l) s (t− l) + n (t) (1)

where h (l) is the lth impulse response matrix coefficient and
n (t) is a noise vector. In the frequency domain, when the analy-
sis window of the Short Time Fourier Transform (STFT) is longer
than the length of the mixing filter, the output signals at the time-
frequency bin (f, k) can be approximated as:

X (f, k) ' H (f)S (f, k) (2)

where X (respectively S) is the STFT of {x (t)}1≤t≤T (respec-
tively {s (t)}1≤t≤T ) and H is the Fourier transform of the mixing
filters {h (l)}0≤l≤L. In the blind source separation task, our goal is
to find for each frequency bin a separation matrix F (f) that leads to
an estimation of the original sources:

Y (f, k) = F (f)X (f, k) (3)

This introduces the well known permutation problem: from one
frequency to the adjacent one, the order of the estimated sources may
be different. The permutation problem can be solved by the method
described in [4] based on the signal correlation between two adja-
cent frequencies. The sources in the time domain can be recovered
by taking the inverse short time Fourier transform of the estimated
sources in the frequency domain, after solving the permutation prob-
lem.

3. COMBINED BEAMFORMING AND BSS ALGORITHM

To compare the performance of the binaural case and the multimi-
crophone one in the context of robot audition, we present here the
two steps blind source separation algorithm based on the sparsity of



Fig. 1: The processing scheme of the combined beamforming-BSS algorithm

the sources in the time-frequency domain and using a fixed beam-
forming preprocessing. Figure 1 shows the separation process.

3.1. Fixed beamforming using HRTFs

The role of the beamforming is essentially to reduce the reverbera-
tion so that equation (2) is satisfied with better precision, which leads
to an improvement in the BSS quality. The beamformer also reduces
the interferences coming from directions other than the looked up
ones.

The desired steering direction is determined by a localization
technique or arbitrarily. Estimating the direction of arrivals of the
sources as it was done in [2] is time consuming and not always accu-
rate in the reverberant environments. As an alternative solution, we
propose to build a fixed beamformer containing K fixed beams with
desired directions chosen in such a way that they cover all useful di-
rections. We consider {B (f)}1≤f≤Nf/2

a set of fixed beamforming
filters of sizeK×M , whereNf is the length of the Fourier analysis
window and K is the number of the desired beams, K ≥ N . The
outputs of the beamformers at each frequency f are:

Z (f, k) = B (f)X (f, k) (4)
To design a fixed beamformer that will achieve the desired beam

pattern (according to a desired direction response), the least-square
(LS) technique is used [5] and thus the steering vectors are needed.
In the case of robot audition, the microphones are often fixed in the
head of the robot and it is generally hard to know exactly the ge-
ometry of the microphone array (cf. figure 3). Besides, the phase
and magnitude of the steering vectors do not take into account the
influence of the head on the surrounding acoustic fields. So we pro-
pose to use the Head Related Transfer Functions (HRTFs) as steering
vectors {a (f, θ)}θ∈Θ, where Θ = {θ1, . . . , θK} is a group of K a
priori chosen steering directions (cf. figure 2). The HRTF charac-
terizes how the signal emitted from a specific direction is received
at a sensor fixed in a head. It takes into account the geometry of the
head, and thus the geometry of the microphone array.

We use the following steering vector:

a (f, θ) = [h1 (f, θ) , . . . , hM (f, θ)]T (5)

where hm (f, θ) is the HRTF at frequency f from the emission
point located at θ to the mth sensor. Given equation (5), one can
express the normalized LS beamformer for a desired direction θi as
[5]:

b (f, θi) =
R−1

aa (f)a (f, θi)

aH (f, θi)R
−1
aa (f)a (f, θi)

(6)

where Raa (f) = 1
NS

∑
θ∈Θ a (f, θ)aH (f, θ). Given K de-

sired steering directions θ1, . . . , θK , the beamforming matrix B (f)
is:

B (f) = [b (f, θ1) , . . . ,b (f, θK)]H (7)
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Fig. 2: Beamforming with fixed DOAs: the selection of the beams
with the highest energy is optional

Beam selection

After the fixed beamforming, the signal is spatially filtered toward
the K chosen steering directions θ1, . . . , θK . As an alternative so-
lution, we propose to choose the N beamformer outputs with the
highest energies that correspond to the closest beams to the sources,
supposing that the energies of the sources are quite close (cf. figure
2). This step leads to a reduced computational cost in the following
BSS step.

3.2. Blind source separation

The blind source separation step consists in estimating a separation
matrix W (f) that leads to separated sources at each frequency bin
f . The separation matrix is estimated from the beamformers outputs
Z (f, k), the estimated sources are then written as:

Y (f, k) = W (f)J(f)Z (f, k) (8)

where J(f) is aN×K selection matrix that selects theN “high-
est energy” beam outputs.

The separation matrix W (f) is estimated using a sparsity crite-
rion. We assume that the sources in the time-frequency domain are
the sparsest state to reach from their mixtures and we use the l1 norm
minimization criterion:

min
W

N∑
i=1

NT∑
k=1

|Yi (f, k)| (9)

where Yi (f, k) is the (f, k)th bin of the ith extracted signal.
The update given by equation 10 of W (f) using the natural gradient
descent technique [6]:

Wt+1(f) = Wt(f)− µ∇ψ (Wt(f))WH
t (f)Wt(f) (10)

where ψ (W(f)) =
∑N
i=1

∑NT
k=1 |Yi (f, k)| is the cost func-

tion, ∇ψ (W(f)) is the gradient of ψ (W(f)) and t refers to the



iteration index (or time index for an adaptive processing). The final
separation matrix F(f) is written as:

F (f) = W (f)J(f)B (f) (11)

Once the sources are separated, the permutation problem is
solved as in [4].

4. EXPERIMENTAL RESULTS

4.1. Experimental database

To evaluate the proposed BSS techniques and the effect of the num-
ber of sensors on the separation performance, we built two databases:
a HRTF database and a speech database. We recorded the HRTF
database in the anechoic room of Telecom ParisTech (cf. figure 3).
As we are in a robot audition context, we model the future robot by
a child size dummy (1m20) for the sound acquisition process, with
16 sensors fixed in its head (cf. figure 3). We measured 504 HRTF
for each microphone as follow:

• 72 azimuth angles from 0° to 355° with a 5° step

• 7 elevation angles: -40°, -27°, 0°, 20°, 45°, 60° and 90°

The HRTFs were measured by a Golay codes process [7] at a
sampling frequency of 48 kHz downsampled to 16 kHz. The
HRTF database is available for download at http://www.tsi.
telecom-paristech.fr/aao/?p=347.

Fig. 3: The dummy in the anechoic room (left) and the microphone
array of 16 sensors (right)

We also recorded, with the same dummy, a reverberant speech
database to evaluate and compare the proposed methods. The
output signals x (t) are the convolutions of 2 sources (male and
female speaking French and English) by the impulse responses
{h (l)}0≤l≤L measured from different angles of arrivals in a mod-
erately reverberant room where the reverberation time is RT30 =
300 ms. Source 1 is at 0° and source 2 varies from 20° to 90°. 30
different source pairs were used for each DOA for the evaluation of
the separation performance with respect to the change of the number
of sensors. The characteristics of the signals and the BSS algorithms
are summarized in table 1.

Sampling frequency 16 kHz
Analysis window Hanning

Analysis window length 2048
Shift length 1024

µ 0.2
Signals length 5s

Number of iterations 100

Table 1: Parameters of the blind source separation algorithms

4.2. Results and discussion

We evaluate the proposed two stage algorithm by the Signal-to-
Interference Ratio (SIR), the Signal-to-Distortion Ratio (SDR) and
the Signal-to-Artifact Ratio (SAR) calculated using the BSS-eval
toolbox [8]. All the SIR, SDR and SAR curves are the averages of
the results obtained by using the 30 separation cases. We used the
two-stage algorithm with fixed beam pattern: we suppose that the
sound sources come from the front of the dummy, so we consider
fixed beams from -90 to 90, with a step of 5°. The number of sensors
varies from 2 to 16 according to the distribution shown in figure 4.

Fig. 4: A view from above of the sub-arrays configuration using 2 to
16 sensors

Figure 5 shows the increase of the SIR thanks to the beamform-
ing preprocessing in the case of 16 sensors. Sensors Data is the SIR
of the mixture, BF[5°] is the SIR when only the beamforming is
used, BSS-l1 is the SIR when only the separation algorithm is used,
BF[5°]+BSS the SIR of BSS with beamforming preprocessing with-
out lobe selection and BF[5°]+BS+BSS is the SIR of the BSS with
beamforming preprocessing using the lobe selection.

Fig. 5: SIR comparison in a real environment: source 1 is at 0°
and source 2 varies from 20° to 90° - Effect of the beamforming
preprocessing on the SIR of the estimated sources

Now if we vary the number of sensors from 2 to 16, we can see
in figure 6 that, for any number of sensors, blind source separation
using a beamforming preprocessing performs better that a source
separation algorithm only.

Figure 7 shows the variation of the average SIR versus the num-
ber of microphones for a separation of 2 sources: source 1 is placed



Fig. 6: SIR, SDR and SAR variation with the number of sensors
for the separation of 2 sources from different DOAs: effect of the
beamforming preprocessing

at 0° and source 2 varies from 20° to 90°. We can see a signifi-
cant performance improvement in terms of SIR when the number
of sensors increases. When the number of microphones is M ≥ 8,
no significant gain is observed for all the DOAs. This observation
rises our interest and can be explained by: first the moderately rever-
berant room, we expect more important effect of the increase of the
number of microphone in more reverberant room, second the effect
of the beamforming lobe shape. We also note that the bigger is the
difference between the directions of arrivals, the faster is the conver-
gence to a constant state of performance with respect to the number
of microphones.

Fig. 7: SIR, SDR and SIR variation with the number of sensors
for the separation of 2 sources and for different DOAs using the
BF[5°]+BS+BSS algorithm

In figure 8, we compare the iterative algorithm convergence rate
with respect to the number of sensors. This experiment shows that
the former is roughly independent from the array size.

5. CONCLUSION

In this paper, we studied the effect of the number of microphones on
the blind source separation performance in a robot audition context,
which is useful for an effective choice of the microphone array size.
We used a two-stage BSS algorithm: the first stage consists in a fixed
beamforming preprocessing to reduce the reverberation and noise

Fig. 8: The mean of the l1 norm through the iteration of the BSS
algorithm

coming from directions other that the desired ones and the second
stage is a BSS algorithm based on a sparsity criterion. In this context
and using the proposed microphone array geometry, we show that
when using a microphone array (in the range of [2,16] sensors in our
case) the performance of the separation increases significantly with
respect to the binaural case until M = 8 for all the tested direction
of arrivals, then no significant gain is observed for M ≥ 8.
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