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RÉSUMÉ – NP-difficulté de la détermination d’une relation d’équivalence médiane en 
classification (problème de Régnier) 
Étant donnée une collection Π de relations d’équivalence (ou partitions), le problème de Régnier consiste 
à déterminer une relation d’équivalence qui minimise l’éloignement par rapport à Π. L’éloignement est 
fondé sur la distance de la différence symétrique et mesure le nombre de désaccords entre Π et la 
relation d’équivalence considérée. Une telle relation d’équivalence minimisant l’éloignement est appelée 
une relation d’équivalence médiane de Π. On montre ici la NP-difficulté du problème de Régnier, c’est-à-
dire du calcul d’une relation d’équivalence médiane d’une collection Π de relations d’équivalence, du 
moins quand le nombre de relations d’équivalence de Π est suffisamment grand. 

MOTS CLÉS – Agrégation de relations, Classification, Complexité, Distance de la différence 
symétrique, NP-complétude, Partition, Problème de Régnier, Problème de Zahn, Relation d’équivalence, 
Relation médiane 

ABSTRACT – Given a collection Π of equivalence relations (or partitions), Régnier’s problem 
consists in computing an equivalence relation which minimizes the remoteness from Π. The remoteness is 
based on the symmetric difference distance and measures the number of disagreements between Π and 
the considered equivalence relation. Such an equivalence relation minimizing the remoteness is called a 
median equivalence relation of Π. We prove the NP-hardness of Régnier’s problem, i.e. the computation 
of a median equivalence relation of a collection of equivalence relations, at least when the number of 
equivalence relations of Π is large enough. 

KEYWORDS – Aggregation of relations, Classification, Complexity, Equivalence relation, NP-
completeness, Median relation, Partition, Régnier’s problem, Symmetric difference distance, Zahn’s 
problem 

1. INTRODUCTION 
Among several other scientific fields, Jean-Pierre Barthélemy was interested in the 
theory of algorithmic complexity and in classification (he was the vice-president of the 
French-speaking society of classification – SFC – in 1992-1993 and then the president 
of the SFC in 1994-1995 [SFC, 2012]). Two of his books give evidence of this: 
Algorithmic Complexity and Communication Problems, with Gérard Cohen and Antoine 
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Lobstein [Barthélemy et al., 1992], and Éléments de classification with François 
Brucker [Brucker, Barthélemy, 2007]. The issues dealt with in this paper belong to the 
intersection of these two fields, since they deal with complexity results of problems 
arising from classification, namely Zahn’s problem [Zahn, 1964] and Régnier’s problem 
[Régnier, 1965] (for references on classification, see for instance [Arabie et al., 1996], 
[Barthélemy et al., 1995], [Barthélemy, Monjardet, 1981], [Brossier, 2003], [Brucker, 
Barthélemy, 2007], [Everitt et al., 2011], [Mirkin, 1996], [Romesburg, 2004]). 

Imagine that we want to partition a finite set X of n objects into clusters so that the 
objects in a same cluster look like similar while the objects of two different clusters 
look like dissimilar. Of course, we must specify what we mean by “similar” and 
“dissimilar”. For this, assume that we have p criteria (R1, R2, ..., Rp). Each criterion Rk 
(1 ≤ k ≤ p) is in fact a binary relation defined as a subset of the Cartesian product X × X. 
It is usually assumed that Rk is at least reflexive (x is in relation with itself with respect 
to Rk) and symmetric (x and y are in relation with respect to Rk if and only if y and x are 
in relation with respect to Rk). When two elements x and y of X are in relation with 
respect to Rk, we consider that x and y are similar with respect to the kth criterion. In 
some context, we may also assume that Rk is transitive (if x and y are in relation with 
respect to Rk and if y and z are also in relation with respect to Rk, then x and z must be in 
relation with respect to Rk; in other words, if x and y are similar as well as y and z, then 
x and z are similar too, still with respect to Rk). If Rk is simultaneously reflexive, 
symmetric and transitive, then it is an equivalence relation or equivalently a partition. 
Indeed, partitioning X is the same as defining an equivalence relation on X since the 
clusters of the partition will provide the equivalence classes of the equivalence relation 
and conversely. 

With this context: 
• the problem considered by C.T. Zahn [1964] is the one for which we have only one 

criterion (p = 1) which is associated with a reflexive and symmetric relation R 
defined on X and we look for an equivalence relation defined on X fitting R “as well 
as possible”, 

• the problem considered by S. Régnier [1965] is the one for which we have p criteria 
(with p ≥ 1) which are equivalence relations defined on X and we look for an 
equivalence relation defined on X summarizing these equivalence relations “as well 
as possible”, 

where “as well as possible” will be specified in Section 2. 
M. Křivánek and J. Morávek [1986] proved that Zahn’s problem is NP-hard (more 

precisely, the decision problem associated with Zahn’s problem – see below – is NP-
complete). From this result, we can deduce the NP-hardness of Régnier’s problem, as 
done in [Barthélemy, Leclerc, 1995]. As this complexity result is not much detailed in 
[Barthélemy, Leclerc, 1995], the aim of this paper consists in making explicit the links 
between Zahn’s problem and Régnier’s problem from the complexity point of view. 

For this, Section 2 specifies some definitions and notations. Section 3 provides the 
way of computing the remoteness. The complexity results can be found in Section 4 and 
the conclusion in Section 5. 

 
 



NP-HARDNESS OF THE COMPUTATION OF A MEDIAN EQUIVALENCE RELATION IN CLASSIFICATION 

  

85 

2. DEFINITIONS AND NOTATIONS 
Let X = {1, 2, ..., n} be a finite set with n elements; we assume in the following that n is 
greater than or equal to 2. A binary relation R defined on X is a subset of the Cartesian 
product X × X. If (x, y) belongs to R, then we write xRy; otherwise we write yRx . Basic 
properties that R may fulfil are: 
• reflexivity: R is reflexive if, for any x ∈ X, we have xRx; 

• irreflexivity: R is irreflexive if, for any x ∈ X, we have xRx ; 
• symmetry: R is symmetric if, for any (x, y) ∈ X2 with x ≠ y, we have the equivalence 

xRy ⇔ yRx; 
• transitivity: R is transitive if, for any (x, y, z) ∈ X3 with x ≠ y ≠ z ≠ x, we have the 

implication (xRy and yRz) ⇒ xRz. 
From these basic properties, we may define more sophisticated relations, as the 

structure of equivalence relation: an equivalence relation is a reflexive, symmetric and 
transitive relation. 

From the point of view of the theory of NP-completeness (see [Barthélemy et al., 
1992] or [Garey, Johnson, 1979] for references on this theory), reflexivity does not 
matter: the results would remain the same if we require the reflexivity property, or the 
irreflexivity property, or if we require nothing about reflexivity or irreflexivity (see 
[Hudry, 2008]). 

In the following, we shall be interested in reflexive and symmetric relations and in 
equivalence relations; E will denote the set of equivalence relations defined on X. 

A profile Π = (R1, R2, ..., Rp) defined on X is a collection (or multi-set) of p 
binary relations Rk (1 ≤ k ≤ p) defined on X, where p is a positive integer. In our 
context, p denotes the number of criteria and Rk (1 ≤ k ≤ p) describes the similarities 
according to the kth criterion. Note that these relations are not necessarily distinct: two 
different criteria may induce the same relation. 

To define what we meant by “as well as possible” in Section 1, we use the 
symmetric difference distance δ between two binary relations R and Rʹ′ both defined on 
X. This distance is defined by: 

δ(R, Rʹ′) = RR ʹ′Δ , 

where Δ denotes the usual symmetric difference between sets. This distance, which 
owns good axiomatic properties (see [Barthélemy, 1979] and [Barthélemy, Monjardet, 
1981]), measures the number of disagreements between R and Rʹ′: 

δ(R, Rʹ′) = ( ){ }] and [or  ] and [:, 2 yRxyRxyRxxRyXyx ʹ′ʹ′∈ . 

The remoteness [Barthélemy, Monjardet, 1981] ρ(Π, R) between a profile 
Π = (R1, R2, …, Rp) and a binary relation R is defined by: 

( )∑
=

δ=Πρ
p

k
k RRR

1
,),( . 
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So, the remoteness ρ(Π, R) measures the total number of disagreements between 
Π and R. A median equivalence relation (also called central partition by S. Régnier 
[1965] or still consensus partition – see [Hudry, Monjardet, 2010] for consensus 
theories; for references on the median procedure and on the use of ordered sets in 
classification, see for instance [Barthélemy, Leclerc, 1995], [Barthélemy et al., 1986], 
[Barthélemy, Monjardet, 1981, 1988], [Hudry et al., 2006]) is a relation E* belonging to 
E and minimizing ρ: 

),(min*),( EE
E

Πρ=Πρ
∈E

. 

This formulation generalizes Régnier’s problem and Zahn’s problem: indeed, 
Régnier’s problem is the computation of a median equivalence relation of a profile of p 
equivalence relations, while Zahn’s problem is the computation of a median equivalence 
relation of a profile reduced to only one reflexive and symmetric relation (p = 1 in this 
case). A third problem related to these two ones is the case for which the p binary 
relations Rk (1 ≤ k ≤ p) of the profile are reflexive and symmetric (but not necessarily 
transitive). 

In the sequel, we shall pay attention also to the values taken by p with respect to n 
(the cardinality of X) in Régnier’s problem, in order to bring partial answers to the 
following question: what is the minimum number of p for which Régnier’s problem is 
NP-hard? We shall see in particular that the parity of p plays a role in the way to 
summarize a profile of p symmetric relations thanks to a matrix (the majority matrix, 
see below). 

More precisely, we are going to consider mainly the three decision problems 
specified below: 
Name: Zahn’s decision problem (noted ZDP below) 
Data: a finite set X, a reflexive and symmetric relation S defined on X; an integer h; 
Question: does there exist an equivalence relation E defined on X with δ(S, E) ≤ h? 

Name: Aggregation of an odd number of equivalence relations into an equivalence 
relation (Régnier’s decision problem for an odd number of equivalence relations, noted 
O-RDP below) 
Data: a finite set X, a positive odd integer p, a profile Π = (E1, E2, …, Ep) of p 
equivalence relations defined on X; an integer h; 
Question: does there exist an equivalence relation E defined on X with ρ(Π, E) ≤ h? 

Name: Aggregation of an even number of equivalence relations into an equivalence 
relation (Régnier’s decision problem for an even number of equivalence relations, noted 
E-RDP below) 
Data: a finite set X, a positive even integer p, a profile Π = (E1, E2, …, Ep) of p 
equivalence relations defined on X; an integer h; 
Question: does there exist an equivalence relation E defined on X with ρ(Π, E) ≤ h? 

To study the links between ZDP and O-RDP or E-RDP from the complexity point 
of view, we need some extra notations. 
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Let R be a reflexive and symmetric relation defined on X. We denote by 
C = ( ) 2),( Xyxxyc ∈

 the characteristic matrix associated with R, i.e. the matrix defined, 

for any pair x and y of elements of X, by cxy = 1 if we have xRy and cxy = 0 otherwise. 
Similarly, if Π = (R1, R2, …, Rp) is a profile of p reflexive and symmetric relations 
defined on X, for 1 ≤ k ≤ p, let ( ) 2),( Xyx

k
xyc ∈

 be the characteristic matrix of Rk: k
xyc  is 

equal to 1 if we have xRky and to 0 otherwise. Note the equalities 1=xxc  and 1=k
xxc  

for any x belonging to X and any k between 1 and p since the relations R and Rk are 
assumed to be reflexive, and the equalities yxxy cc =  and k

xy
k
xy cc =  for any elements x 

and y of X and any k between 1 and p since the relations R and Rk are assumed to be 
symmetric. 

Now, for any pair x and y of elements of X, let pcm
p

k

k
xyxy −= ∑

=

Π

1
2  denote twice 

the number of relations Rk of Π for which we have xRky (i.e., in our context, the 
number of criteria for which x and y are considered as similar) minus the total number p 
of relations. Note that the quantities Π

xym  have the same parity as p and that they range 

between –p and p: a positive (respectively negative) value of Π
xym  means that x and y 

are similar (respectively dissimilar) for at least half the criteria; a value of Π
xym  equal to 

p (respectively –p) means that x and y are similar for all (respectively none of) the 
criteria; more generally, the larger the value of Π

xym , the more similar x and y. In 

particular we have, for any x: Π
xxm  = p, since all the considered relations are reflexive. 

Similarly, as all the relations Rk for 1 ≤ k ≤ p are assumed to be symmetric, we have 
Π
yxm  = Π

xym  for any x and any y. In the following, the matrix ( ) 2),( XyxxymM ∈
ΠΠ =  will 

be called the majority matrix of the profile Π. Note that, for Zahn’s problem, Π contains 
only one reflexive and symmetric relation S: p = 1 and Π = (S); then the majority matrix 

ΠM  of Π contains only 1’s and –1’s, and is equal to 2CS – 1nn, where CS denotes the 
characteristic matrix of S and 1nn is the (n, n)-matrix of which all the entries are equal 
to 1. 

Last, we shall use the following four kinds of equivalence relations: 
• the equivalence relation X2 which contains only one class (which gathers all the 

elements of X); note that the majority matrix of a profile containing only one copy of 
X2 is the matrix 1nn; 

• the equivalence relation U which contains n classes (each class contains only one 
element of X); note that the majority matrix of a profile containing only one copy of 
U is the matrix 2Inn – 1nn, where Inn denotes the (n, n)-identity matrix (in fact, Inn 
is the characteristic matrix of U); 

• for i with 1 ≤ i ≤ n, the equivalence relation Ui contains two classes: the first one 
contains only the element i of X, the other one contains all the other elements of X; 
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• for i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ n and i ≠ j, Uij contains n – 1 classes: the first one 
contains the two elements i and j of X, each other class contains only one element of 
X (different from i and j). 

3. STATEMENT OF THE REMOTENESS 
Given a profile Π, Lemma 1 provides a link between the remoteness ρ and the entries of 
the majority matrix of Π. 

LEMMA 1. Let Π = (R1, R2, …, Rp) be a profile of p reflexive and symmetric relations 
defined on X. Let R be a reflexive and symmetric relation also defined on X and with 
( ) 2),( Xyxxyc ∈

 as its characteristic matrix. Then we have: 

),( RΠρ  = ∑
≠

Π
Π ⋅−λ

yx
xyxy cm  

where λΠ does not depend on R and where the Π
xym ’s are the entries of the majority 

matrix ΠM  of Π. 

Proof. By the definition of the remoteness, we have: 

( )∑
=

δ=Πρ
p

k
k RRR

1
,),( . 

Remember that δ(Rk, R) measures the number of disagreements between R and Rk: 

δ(Rk, R) = ( ){ }] and [or  ] and [:, 2 xRyyRxyRxyxRXyx kk∈ . 

This can be stated thanks to the quantities k
xyc  and cxy, where ( ) 2),( Xyx

k
xyc ∈

 is the 

characteristic matrix of Rk (1 ≤ k ≤ p): 

δ(Rk, R) = ∑
∈

−
2),( Xyx

xy
k
xy cc . 

Because the quantities k
xyc  and cxy are equal to 1 or 0, we have also: 

δ(Rk, R) = ∑
∈

−
2),( Xyx

xy
k
xy cc  = ( )∑

∈

−
2),(

2

Xyx
xy

k
xy cc   

 = ∑∑
∈∈

⋅−+
22 ),(),(

)21(
Xyx

xy
k
xy

Xyx

k
xy ccc . 

From this and from the fact that the considered relations are reflexive, we obtain: 
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( )∑
=

δ=Πρ
p

k
k RRR

1
,),(  

= ∑ ∑∑ ∑
= ∈= ∈

⋅−+
p

k Xyx
xy

k
xy

p

k Xyx

k
xy ccc

1 ),(1 ),( 22
)21(  

= ∑ ∑∑ ∑∑ ∑
≠ =∈ == ∈

⋅−+⋅−+
yx

p

k
xy

k
xy

Xx

p

k
xx

k
xx

p

k Xyx

k
xy ccccc

111 ),(
)21()21(

2
 

= ∑
≠

Π
Π ⋅−λ

yx
xyxy cm  

where  λΠ = npc
p

k Xyx

k
xy −∑ ∑

= ∈1 ),( 2
 is a constant for any given profile Π. ♦ 

Lemma 2 specifies the expression of the remoteness ρ when applied to a profile 
obtained as the concatenation of two profiles. 

LEMMA 2. Let Π1 = (R1, R2, …, Rp1) (respectively Π2 = (S1, S2, …, Sp2)) be a profile of 
p1 (respectively p2) reflexive and symmetric relations defined on X and let Π be the 
profile obtained as the concatenation of Π1 and Π2: Π = (R1, R2, …, Rp1, S1, S2, …, 
Sp2). Then we have, for any relation R defined on X: 

),( RΠρ  = ),(),( 21 RR Πρ+Πρ . 

Proof. By the definition of the remoteness, we have: 

 ( ) ( )∑∑
==

δ+δ=Πρ
21

11
,,),(

p

i
k

p

k
k RSRRR  = ),(),( 21 RR Πρ+Πρ . ♦ 

Similarly, Lemma 3 specifies the expression of the majority matrix of a profile 
obtained as the concatenation of two profiles. 

LEMMA 3. Let Π1 and Π2 be two profiles of reflexive and symmetric relations defined 
on X and let Π be the profile obtained as the concatenation of Π1 and Π2. Then the 
majority matrix of Π is the sum of the majority matrices of Π1 and Π2. 

Proof. Remember (see Section 2) that the entries Π
xym  of the majority matrix of the 

profile Π are equal to twice the number of relations of Π for which x and y are together 
minus the number of relations belonging to Π. Hence the result. ♦ 
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4. COMPLEXITY OF RÉGNIER’S PROBLEM 
As said above, M. Křivánek and J. Morávek [1986] studied the complexity of Zahn’s 
problem. More precisely, they proved the following theorem (see also [Brucker, 
Barthélemy, 2007]): 

THEOREM 4. The decision problem ZDP associated with the aggregation of one 
reflexive and symmetric relation into an equivalence relation is NP-complete. 

From the NP-completeness of ZDP, we are going to prove the NP-completeness 
of O-RDP and of E-RDP. This result, stated first by J.-P. Barthélemy and B. Leclerc in 
[1995], is based on a construction designed by B. Debord [1987], allowing to build a 
profile Π of equivalence relations from a profile Πʹ′ of reflexive and symmetric relations 
with ρ(Π, R) = ρ(Πʹ′, R) + λ, for any reflexive and symmetric relation R and where λ 
does not depend on R. Unfortunately, this construction is not utterly correct and 
contains some mistakes (see a corrected construction in [Hudry, 2012]), though this 
does not invalidate the complexity result of [Barthélemy, Leclerc, 1995]. Moreover, 
when the profile Πʹ′ contains only one reflexive and symmetric relation, as it will be the 
case for us, it is possible to design a construction involving a smaller number of 
equivalence relations than in Debord’s construction (Debord’s construction may involve 
O(n3) equivalence relations, while the transformations of Theorems 8 and 9 involve 
only O(n2) equivalence relations). We are going to detail this more efficient 
construction below. We first state some lemmas, useful to reach this aim. 

LEMMA 5. Let i and j be integers with 1 ≤ i < j ≤ n. Let ( ) 2),(),( Xyxijij yxmM
∈

++ =  be 

the symmetric matrix defined by: 
1. 2),(),( == ++ ijmjim ijij ; 

2. for any integer x with 1 ≤ x ≤ n, 2),( =+ xxmij ; 

3. for x and y with (x, y) ≠ (i, j), (x, y) ≠ (j, i) and x ≠ y, 0),( =+ yxmij . 

Then +
ijM  is the majority matrix of the profile +Π ij  = (Uij, X2). 

Proof. It is straightforward to check that the majority matrix of (Uij, X2) is indeed +
ijM : 

the elements i and j are together twice in +Π ij , while the other pairs of distinct elements 

are together once in +Π ij ; the diagonal entries are equal to the number of equivalence 

relations of the profile, i.e. 2. ♦ 

LEMMA 6. Let S be a reflexive and symmetric relation defined on X, and let 
( ) 2),(

)()(
Xji

S
ij

S mM
∈

=  be the majority matrix of the profile (S) reduced to S. Then, 

there exists a profile Π0(S) of an even number of equivalence relations such that the 
non-diagonal entries of the majority matrix of Π0(S) are the non-diagonal entries of 

)(SM  + 1nn. Moreover, Π0(S) contains at most n(n – 1) equivalence relations and half 
of the equivalence relations of Π0(S) are equal to X2. 
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Proof. As noticed above (see Section 2), all the entries of )(SM  belong to {–1, 1} and 
all the diagonal entries of )(SM  are equal to 1. Then all the entries of )(SM  + 1nn 
belong to {0, 2} and all the diagonal entries of )(SM  + 1nn are equal to 2. Let αS 

denote the number of entries )(S
ijm  of )(SM  with i < j and )(S

ijm  = 1; note that αS is 
between 0 (if S is the equivalence relation U) and n(n – 1)/2 (if S is the equivalence 
relation X2). 

If αS is not equal to 0, then )(SM  + 1nn can be written as follows: 
)(SM  + 1nn = ∑

=<

+

1 and )(S
ijmji

ijM  + (2 – 2αS)Inn. 

According to Lemma 5, +
ijM  is the majority matrix of (Uij, X2). So, thanks to 

Lemma 3, ∑
=<

+

1 and )(S
ijmji

ijM  is the majority matrix of the profile Π0(S) obtained by 

concatenating the αS profiles (Uij, X2) for i and j with i < j and )(S
ijm  = 1. Note that the 

non-diagonal entries of the majority matrix of Π0(S) and the ones of )(SM  + 1nn are 
then the same. Moreover, Π0(S) contains 2αS ≤ n(n – 1) equivalence relations of which 
half of them are equal to X2. 

If αS is equal to 0, then )(SM  + 1nn is equal to 2Inn, which is the majority matrix 
of the profile Π0(S) = (U, X2). 

In both cases, we obtain the result stated in Lemma 6. ♦ 

LEMMA 7. Let S be a reflexive and symmetric relation defined on X, and let )(SM  be 
the majority matrix of the profile (S) reduced to S. Then, there exists a profile Π1(S) of 
an odd number of equivalence relations such that the non-diagonal entries of the 
majority matrix of Π1(S) are the non-diagonal entries of )(SM . Moreover, Π1(S) 
contains at most n(n – 1) – 1 equivalence relations. 

Proof. With the same notations as for Lemma 6 and its proof, we know by Lemma 6 
that there exists a profile Π0(S) of pS = max(2αS, 2) equivalence relations such that: 

• the non-diagonal entries of the majority matrix of Π0(S) are the non-diagonal entries 
of )(SM  + 1nn; 

• pS/2 of the equivalence relations of Π0(S) are equal to X2. 

Consider the profile Π1(S) of pS – 1 equivalence relations obtained from Π0(S) by 
removing one copy of X2. As the majority matrix of the profile reduced to X2 is 1nn, the 
non-diagonal entries of the majority matrix of Π1(S) are the non-diagonal entries of 

)(SM , by Lemma 3. Hence the result, since Π1(S) contains pS – 1 equivalence relations 
with pS ≤ n(n – 1). ♦ 
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We may now study the complexity of Régnier’s problem. We begin with the case 
for which the number of relations is odd. 

Observe that an equivalence relation E defined on X and with q classes may be 
described as a vector v of n integers belonging to {1, 2, ..., q}: the ith component of v 
specifies the number of the equivalence class of E which the ith element of X is assigned 
to. As an equivalence class cannot be empty, all the values between 1 and q must appear 
in v. 

THEOREM 8. O-RDP is NP-complete. 

Proof. We proceed in two steps: we first show that O-RDP belongs to NP; then we 
prove the NP-completeness of O-RDP by reducing ZDP to O-RDP in polynomial time 
(ZDP   O-RDP). 

To show that O-RDP belongs to NP, consider any instance I = (X, p, Π = (E1, E2, 
…, Ep), h) as defined in Section 2 with p odd and assume that we are given a vector v* 
of n integers supposed to define an equivalence relation E* on X satisfying the 
inequality ρ(Π, E*) ≤ h. We want to check the two properties: 
• E* is indeed an equivalence relation; 
• the remoteness of E* from Π is at most h. 

Checking that E* is an equivalence relation can be done in O(n) since it is 
sufficient to check that the components of v* define a set of consecutive integers of 
which the minimum value is 1. Checking the inequality ρ(Π, E*) ≤ h can be done in 
O(n2p) since the computation of δ(Ek, E*) for 1 ≤ k ≤ p can be done in O(n2). So 
checking both properties can be done in O(n + n2p). Describing an equivalence relation 
E defined on X requires at least n bits (at least one bit for each element x of X in order to 
specify the number of the equivalence class of E which x belongs to; in fact, it requires 
more, but it does not matter here). So the (binary) size of I is at least np. As n + n2p can 
be upper-bounded by a polynomial with respect to np, then we can check the two 
properties in polynomial time with respect to the (binary) size of the instance I. Hence 
the belonging of O-RDP to NP. 

We turn now to the second step: ZDP   O-RDP. For this, consider any instance 
IZ = (X, S, hZ) of ZDP as defined in Section 2. We want to transform it, in polynomial 
time, into an instance IR of O-RDP admitting the same answer as IZ. In order to define 
IR, we keep the same set X on which the equivalence relations are going to be defined. 
Then we consider the profile Π1(S) as defined in Lemma 7 and the number p of 
equivalence relations contained in Π1(S) (i.e., pS = max(2αS, 2) – 1, with the same 

notations as in Lemma 7). Let ( ) 2
11

),(
)()(

Xyx
S

xy
S mM

∈
ΠΠ =  and 

( ) 2),(
)()(

Xyx
S
xy

S mM
∈

=  be respectively the majority matrix of Π1(S) and the majority 

matrix of the profile (S) containing only one relation, namely S. Thanks to Lemma 7, we 
know that the non-diagonal entries of )(1 SMΠ  and the ones of )(SM  are the same: for 
x ≠ y, )(1 Sxym

Π  = )(S
xym . Let λΠ1(S) and λ(S) be the constants computed in Lemma 1 
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associated to the profiles Π1(S) and (S). Then we set: hR = hZ + λΠ1(S) – λ(S). Thus IR is 
equal to (X, pS, Π1(S), hZ + λΠ1(S) – λ(S)). 

Encoding S requires n(n – 1)/2 bits in order to know, for any elements x and y of X 
with 1 ≤ x < y ≤ n whether we have xSy or ySx . So the size of IZ is at least n(n – 1)/2. 
With respect to IZ, the definition of IR requires only to construct the pS relations of 
Π1(S) and the computation of λΠ1(S) and λ(S). Each equivalence relation of Π1(S) can be 
described by at most about n.log2n bits by specifying, for any element x of X, which 
equivalence class contains x (such an equivalence class can be specified by a number 
less than or equal to n; the encoding of this number thus requires at most about log2n 
bits). Moreover, the computation of λΠ1(S) and λ(S) can be done in O(pS.n2) and O(n2) 
respectively. So, the construction of IR can be done in O(pS.n.log2n + pS.n2), i.e. in 
O(n4) since pS is upper-bounded by n2. Hence the polynomiality of the transformation, 
since n4 can obviously be upper-bounded by a polynomial in n(n – 1)/2. 

We must now check that the transformation keeps the answer: IZ admits the 
answer “yes” if and only if IR admits the answer “yes”. Let E be an equivalence relation 
defined on X and let ( ) 2),( Xyxxye ∈

 be the characteristic matrix of E. Then we have, by 

Lemma 1: 

( )ES),(1Πρ  = ∑
≠

Π
Π ⋅−λ

yx
xy

S
xyS em )(

)( 1
1 . 

Similarly, we have, by considering the profile (S) reduced to S: 

)),(( ESρ  = ∑
≠

⋅−λ
yx

xy
S
xyS em )(

)( . 

By Lemma 7, we have: 

∑
≠

Π ⋅
yx

xy
S

xy em )(1  = ∑
≠

⋅
yx

xy
S
xy em )(  

what involves: 

)),(( ESρ  = ( )ES),(1Πρ  – λΠ1(S) + λ(S). 

So, as hR is equal to hZ + λΠ1(S) – λ(S), we have ( )ES),(1Πρ  ≤ hR if and only if 
)),(( ESρ  ≤ hZ, and thus the transformation keeps the answer since )),(( ESρ  and 

δ(S, E) are equal. 
In conclusion, we have the following results: O-RDP ∈ NP, ZDP   O-RDP, and 

ZDP is NP-complete (Theorem 4). Hence the NP-completeness of O-RDP. ♦ 
The study of the case for which the number of relations is even is easier. 

THEOREM 9. E-RDP is NP-complete. 
Proof. The belonging of E-RDP to NP can be done exactly as the one of O-RDP (see 
the proof of Theorem 8: the parity of the number of relations does not play any role). 
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To prove that E-RDP is NP-complete, we are going to transform O-RDP into  
E-RDP in polynomial time: O-RDP   E-RDP. 

For this, consider any instance Io = (Xo, po, Πo, ho) of O-RDP as defined in 
Section 2. We want to transform it, in polynomial time, into an instance Ie = (Xe, pe, 
Πe, he) of E-RDP admitting the same answer as Io. In order to define Ie, we keep the 
same set Xo on which the equivalence relations are going to be defined. Then Πe is 
obtained by the duplication of Πo (in other words, we concatenate Πo with itself), what 
involves pe = 2po. Last we set he = 2ho. 

This transformation is obviously polynomial (and even linear) and keeps the 
answer, thanks to Lemma 2. Indeed we have, for any equivalence relation E: 
( ) ( )EE oe ,2, Πρ=Πρ . So ( )Ee ,Πρ  is less than or equal to he if and only if ( )Eo ,Πρ  

is less than or equal to ho. 

The NP-completeness of O-RDP (Theorem 8) yields the one of E-RDP. ♦ 
We may also pay attention to the aggregation of p reflexive and symmetric 

relations into an equivalence relation, as in the next theorem, still easier than the 
previous one. (Note that Y. Wakabayashi [1986, 1998] proved the NP-completeness of 
the following problem when the number p of relations is large enough with respect 
to n.) 

THEOREM 10. Let p be any positive integer. The following problem is NP-complete. 
Name: Aggregation of p reflexive and symmetric relations into an equivalence relation 
(ApSRER) 
Data: a finite set X, a profile Π = (S1, S2, …, Sp) of p reflexive and symmetric relations 
defined on X; an integer h; 
Question: does there exist an equivalence relation E defined on X with ρ(Π, E) ≤ h? 

Proof. The belonging of ApSRER to NP is easy and is left to the reader. 
To prove that ApSRER is NP-complete, we transform ZDP into ApSRER in 

polynomial time: ZDP   ApSRER. 
For this, consider any instance IZ = (X, S, hZ) of ZDP as defined in Section 2. In 

order to transform it, in polynomial time, into an instance of ApSRER admitting the 
same answer as IZ, we keep the same set X on which the equivalence relations are going 
to be defined, we consider the profile Π containing S exactly p times and we set h = phZ. 

This transformation is obviously polynomial (and even linear), since p is fixed, 
and keeps the answer, thanks to Lemma 2. Indeed we have, for any equivalence relation 
E: ( ) ( )ESpE ,, δ=Πρ . So ( )E,Πρ  is less than or equal to h if and only if δ(S, E) is less 
than or equal to hZ. 

The NP-completeness of ZDP (Theorem 4) yields the one of ApSRER. ♦ 
As said above, as the reflexivity or irreflexivity properties do not change anything 

to the complexity results, the previous complexity results can be extended to the cases 
where the considered relations must be irreflexive or where nothing is specified about 
reflexivity or irreflexivity. 
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5. CONCLUSION 
The results of the previous section show that Régnier’s problem, i.e. the aggregation of 
p equivalence relations into a median equivalence relation, is an NP-hard problem, and 
remains so even if we fix the parity of p. From a practical point of view, this involves 
that the computation of an exact solution may require a prohibitive CPU time; then the 
application of heuristics (as done in [de Amorim et al., 1992]; see also [Guénoche, 
2011] for a more recent reference or [Guénoche, 2012] in this special issue) may be 
more realistic. We may observe anyway that the range of the number p of equivalence 
relations involved in the proof is n2 (instead of n3 with the corrected version – see 
[Hudry, 2012] – of the construction designed by B. Debord [1987]). Is it possible to 
design a polynomial transformation involving less equivalence relations?  

For instance, instead of considering )(SM  + 1nn in the proof of Lemma 6, we 
may decompose )(SM  – 1nn thanks to matrices −

ijM  defined as +
ijM  but with –2 

instead of 2 for the two non-diagonal entries not equal to 0, and associate a profile of 
equivalence relations to −

ijM . Unfortunately, as the entries equal to 1 or to –1 do not 
play the same role in a majority matrix, the profiles of equivalence relations associated 
with −

ijM  in Debord’s corrected construction [Hudry, 2012] require a greater number of 

equivalence relations than the profiles associated with +
ijM  (the ratio is about n). Then, 

this strategy usually does not improve qualitatively the sizes of the associated profiles 
(to obtain smaller profiles thanks to this strategy, it is necessary that the number of 
entries of )(SM  equal to –1 is less than or equal to n; but, on the opposite, if )(SM  
contains many entries equal to –1, then this strategy leads to profiles with about n3 
equivalence relations; this is why we do not develop such a construction here). 

Indeed, an interesting question would be to determine the complexity of Régnier’s 
problem when p is smaller than n2, in particular when p is a constant: is there a constant 
p for which the aggregation of p equivalence relations into a median equivalence 
relation remains NP-hard? Theorem 10 shows that if we consider a profile of p reflexive 
and symmetric relations instead of a profile of p equivalence relations, then the problem 
is NP-hard for any value of p greater than or equal to 1. Obviously, for p = 1, Régnier’s 
problem (the aggregation of one equivalence relation into a median equivalence 
relation) is polynomial: the unique equivalence relation of the profile is a median 
equivalence relation. Similarly, for p = 2, Régnier’s problem is polynomial: indeed, 
consider a profile Π = (E1, E2) of two equivalence relations; it is easy to check that  
E1 ∩ E2 (the relation keeping only the unanimous pairs) is a median equivalence 
relation of Π since E1 ∩ E2 gathers exactly all the elements x and y of X for which the 
entries Π

xym  are positive (for the contribution of Jean-Pierre Barthélemy to the study of 
the unanimity rule – also called Pareto rule –, see [Barthélemy, 1976] and [Monjardet, 
2012]). But what about greater values of p? 

Acknowledgement. I would like to thank Alain Guénoche and Bruno Leclerc for their help. Their 
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