
Session Types for BPEL

Jonathan Michaux1, Elie Najm1, and Alessandro Fantechi2

1 Télécom Paristech, 46 rue Barrault, 75013, Paris, France
michaux@telecom-paristech.fr, najm@telecom-paristech.fr

2 Universita’ degli Studi di Firenze, via S. Marta 3 I-50139, Firenze, Italy
fantechi@dsi.unifi.it

Abstract. We address the general problem of interaction safety between
orchestrated web services. By considering an essential subset of the BPEL

orchestration language, we show how the session paradigm with session
types can be used to address the problem. During a session, a client and
a service can engage in a complex series of interactions. We introduce
session types in order to prescribe the correct orderings of these interac-
tions. Service providers must declare their provided and required session
types. We define a typing algorithm that checks if an orchestrated service
behaves according to its declared provided and required types. Using a
compatibility and a subtyping relation defined on session types, we show
that any collection of well typed service partners with compatible session
types are interaction safe, i.e., involved partners never receive unexpected
messages.

Keywords: Session types, Orchestration, BPEL, Formal semantics, Sub-
typing, Behavioural types

1 Introduction

In service-oriented computing, services are exposed over a network via well de-
fined interfaces and specific communication protocols. The design of software as
an orchestration of services is an active topic today. A service orchestration is a
local view of a structured set of interactions with remote services. In this paper,
we strive to determine whether or not interacting services are compatible. We
state that interacting services are compatible if their execution does not lead to
the exchange of unexpected messages or arguments.

The elementary construct in a web service interaction is a message exchange
between two partner services. The message specifies the name of the operation
to be invoked and bears arguments as its payload. An interaction can be long-
lasting because multiple messages of different types can be exchanged in both
directions before a service is delivered. The set of interactions supported by
a service defines its behaviour. We argue that the high levels of concurrency
and complex behaviour found in orchestrations make them susceptible to pro-
gramming errors. Widely adopted standards such as the Web Service Descrip-
tion Language (WSDL) [5] provide support for syntactical compatibility analysis
by defining message types in a standard way. However, WSDL defines one-way
or request-response exchange patterns and does not support the definition of

more complex behaviour. Relevant behavioural information is exchanged be-
tween participants in human-readable forms, if at all. Automated verification of
behavioural compatibility is impossible in such cases.

In the present paper, we address the problem of behavioural compatibility
of web services by using a session based approach. Indeed, the session paradigm
is now an active area of research with potential to improve the quality and cor-
rectness of software. The present paper is an exercise in the application of the
session paradigm that illustrates some of its benefits. To that end, we choose to
adapt and sessionize a significant subset of the industry standard orchestration
language BPEL [17]. SeB (Sessionized BPEL) supports the same basic constructs
as BPEL, but being a proof of concept, it does not include the non basic BPEL

constructs such as, for example, exception handling. These differences are ex-
plained in more detail in section 2. On the other hand, SeB extends BPEL by
featuring sessions as first class citizens. Sessions are typed in order to describe
not only syntactical information but also behaviour. With SeB, a service exposes
its required and provided session types. A client wishing to begin an interaction
with a service first opens a session with the service. The type of this session
defines the type and structure of possible interactions.

We provide an algorithm that verifies if a service written in SeB is well-typed.
A well-typed service is one that correctly implements its declared required and
provided session types. We also provide an algorithm that determines whether
or not a collection of services are able to interact correctly by verifying the
compatibility of the client’s required session type with the provider’s provided
session type. Finally, we can prove that a well typed collection of interacting
services is interaction-safe, meaning that no unexpected messages or arguments
are exchanged.

The rest of this paper is organised as follows. Section 2 provides an informal
introduction to the SeB language and contrasts its features with those of BPEL.
Sections 3 and 4 give the syntax and semantics of untyped SeB. These sections
are self contained manner and do not require any previous knowledge of BPEL.
Section 5 presents the semantics of networked service configurations described
in SeB. Section 6 introduces session types and typed SeB. It includes a typing
algorithm and discusses the properties of well typed configurations. Relevant
related work is surveyed in section 7 and the paper is concluded in section 8.

2 Informal introduction to SeB

Session initiation. The main novelty in SeB, compared to BPEL, is the addition
of the session initiation, a new kind of atomic activity, and the way sessions
impact the invoke and receive activities. The following is a typical sequence of
three SeB atomic activities that can be performed by a client (we use a simplified
syntax): s@p; s!op1(x); s?op2(y). This sequence starts by a session initiation
activity, s@p where s is a session variable and p a service location variable. The
execution of s@p by the client and by the target service (the one whose address
is stored in p) have the following effects: (i) a fresh session id is stored in s, (ii)
a new service instance is created at the service side and is dedicated to interact

with the client, (iii) another fresh session id is created on the service instance
side and is bound to the one stored in s. The second activity, s!op1(x), is the
sending of an invocation operation, op1, with argument x. The invocation is sent
precisely to this newly created service instance. The third activity of the se-
quence, s?op2(y), is the reception of an invocation operation op2 with argument
y that comes from this same service instance. Note that invocation messages are
all one way and asynchronous: SeB does not provide for synchronous invocation.
Furthermore, SeB does not make use of correlation sets, as BPEL does, to desig-
nate the instance that is targeted by a message. Instead, it is the session id that
plays this role, as illustrated in the above example where the session variable s is
systematically indicated in the invoke and receive activities. Moreover, sessions
involve two and only two partners and any message sent by one partner over a
session is targeted at the other partner. Biparty sessions are less powerful than
correlation sets and in particular they do not allow for complex choreography
configurations. At the end of the paper, we will give some ideas as to how this
limitation can be lifted.

Structured activities. SeB inherits the principal structured activities of BPEL,
i.e., flow, sequence and pic. It also inherits the possibility of having links between
different subactivities contained in a flow, as well as adding a join condition to
any activity. As in BPEL, a join condition requires that all its arguments have a
defined value (true or false) and must evaluate to true in order for the activity to
be executable. SeB also implements the so-called dead path elimination whereby
all links outgoing from a canceled activity, or from its subactivities, have their
values set to false.

Sequential Computations. Given that SeB is a language designed as a proof
of concept, we wished to limit its main features to interaction behaviour. Hence,
sequential computation and branching are not part of the language. Instead,
they are assumed to be performed by external services that can be called upon
as part of the orchestration. This approach is similar to languages like Orc [9]
where the focus is on providing the minimal constructs that allow one to perform
service orchestration functions and where sequential computation and boolean
tests are provided by external sites. In particular, the original do until iteration
of BPEL is replaced in SeB by a structured activity called “repeat”, given by the
syntax: (do pic1 until pic2). The informal meaning of repeat is: perform pic1
repeatedly until the arrival of an invocation message awaited for in pic2.

3 Syntax of SeB

3.1 Basic Sets

SeB assumes four categories of basic sets: values, variables, type identifiers and
others. They are introduced in the following tables where, for each set, a short
description is provided as are the names of typical elements. All the sets are
pairwise disjoint unless otherwise stated.

Some explanations are in order: (i) the set ExVal of exchangeable values
contains the set SrvVal of service locations. As it will be shown later, in SeB

Values

Set Description Ranged over by

DatVal Data Values u, u′, ui, · · ·
SrvVal Service Locations π, π′, πi · · ·
ExVal = DatVal] SrvVal Exchangeable Values w,w′, wi, · · ·
SesVal Session ids α, α′, αi · · · β · · ·
Val = ExVal] SesVal All Values v, v′, vi, · · ·
LocVal = SrvVal] SesVal All Locations δ, δ′, δi, · · ·

Variables

Set Description Ranged over by

DatVar Data Variables y

SrvVar Service Location Variables p0, p, p
′, pi · · · q · · ·

ExVar = DatVar] SrvVar Variables of Exchangeable Values x, x′, xi · · ·
SesVar Session Variables s0, s, s

′, si · · · r · · ·
Var = ExVar] SesVar All Variables z, z′, zi · · ·

Type Identifiers

Set Description Ranged over by

DatTyp Data Types t, t′, ti, · · ·
SrvTyp Service Types P, P ′, Pi · · ·
ExTyp = DatType] SrvTyp Types of Exchangeable Values X,X ′, Xi · · · Y
SesTyp ⊃ SrvTyp Session Types T, T ′, Ti · · ·P, P ′, Pi
Typ = ExType ∪ SesTyp All Types Z,Z′, Zi · · ·

Others

Set Description Ranged over by

Op Operation Names op, op′, opi · · ·
Lnk Control Links l, l′, li · · ·
Exp Join Conditions e, e′, ei · · · f · · ·

Table 1. Basic Sets

services may dynamically learn about the existence of other services and may
interact with dynamically discovered services; (ii) the set, LocVal, of all locations
contains the set of session ids. Hence, session ids also play the role of locations
for sending and receiving invocation messages. (iii) p0 is a distinguished variable
name dedicated to hold a service’s own location (similar to self); (iv) s0 is a
session variable dedicated to hold a service’s root session id, i.e., the session id
handled by a service instance that is created as a response to a session initiation
request from a client. The use of p0 and s0 will be described in detail later on
in the paper.

3.2 Syntax of Activities

SeB being a dialect of BPEL, XML would be the most appropriate metalanguage
for encoding its syntax. However, for the purpose of this paper, we have adopted
a syntax based on records (à la Cardelli and Mitchell [3]) as it is better suited for
discussing the formal semantics and properties of the language. By virtue of this

syntax, all SeB activities, except nil, are records having the following predefined
fields: knd which identifies the kind of the activity, beh, which gives its behaviour,
src (respectively tgt), which contains the set of control links for which the activ-
ity is the source (respectively target), jcd which contains the join condition, i.e.,
a boolean expression over control link names (those given in field tgt). More-
over, the flow activity has an extra field, lnk, which contains the set of links that
can be used by the subactivities contained in this activity. Field names are also
used to extract the content of a field from an activity, e.g., if act is an activity,
then act.beh yields its behaviour. For example: a flow activity is given by the
record 〈knd = FLO , beh = my behaviour, src = L

s
, tgt = L

t
, jcd = e, lnk = L〉

where Ls , Lt and L are sets of control link names, and e is a boolean expression
over link names. Finally, for the sake of conciseness, we will drop field names in
records and instead we will associate a fixed position to each field. Hence, the
flow activity given above becomes: 〈FLO ,my behaviour, L

s
, L

t
, e, L〉.

We let ACT be the set of all activities and act a running element of ACT ,
the syntax of activities is given in the following table:

act ::= nil (* nil activity *)
| ses | inv | rec (* atomic activities *)
| seq | flo | pic | rep (* structured activities *)

ses ::= 〈SES , s@p, L
s
, L

t
, e〉 (* session initiation *)

inv ::= 〈INV , s!op(x1, · · · , xn), Ls , Lt , e〉 (* invocation *)

rec ::= 〈REC , s?op(x1, · · · , xn), L
s
, L

t
, e〉 (* reception *)

seq ::= 〈SEQ , (act1; · · · ; actn), Ls , Lt , e〉 (* sequence *)

flo ::= 〈FLO , (act1| · · · |actn), L
s
, L

t
, e, L〉 (* flow *)

pic ::= 〈PIC , (rec1; act1) + · · ·+ (recn; actn), Ls , Lt , e〉 (* pick *)

rep ::= 〈REP , (do pic1 until pic2), L
s
, L

t
, e〉 (* repeat *)

Note that in the production rule for flo, “|” is to be considered just as a
token separator. It is preferred over comma because it is more visual and better
conveys the intended intuitive meaning of the flo activity being the container of
a set of sub activities that run in parallel. The same remark applies to symbols,
“;”, “+”, “ do” and “ until”, which are used as token separators in the produc-
tion rules for seq, pic and rep to convey their appropriate intuitive meanings.

Subactivities For an activity act, âct is the set of all subactivities transitively

contained in act: âct
∆
= {act} ∪ âct.beh.

3.3 Well structured activities

A SeB activity act0 is well structured iff the control links occuring in any ac-
tivity of âct0 satisfy the unicity, scoping and non cyclicity conditions given below.

Control links unicity

Given any control link l, and any pair of activities act and act’:
if (l ∈ act.lnk ∩ act’.lnk) or (l ∈ act.src ∩ act’.src) or (l ∈ act.tgt ∩ act’.tgt)
then act = act’

Control links scoping

if l ∈ act.src (respectively if l ∈ act.tgt) then ∃ act’, act” with act ∈ âct” and

act’ ∈ âct” and with l ∈ act”.lnk and l ∈ act’.tgt. (respectively l ∈ act’.src).

Control links non cyclicity

Relation pred defined by: act pred act’ iff act.src ∩ act’.tgt 6= ∅, is acyclic.

4 Semantics of SeB

The semantics of SeB will be given in two steps. First, we show how SeB activities
translate into control graphs, then we use control graphs to provide the semantics
of networked services. In this section, we start by presenting control graphs and
then provide the SOS rules that define a translation of well structured activities,
then we present configurations of networked services and provide the reduction
rules defining their operational semantics.

4.1 Control Graphs

Observable Actions The set ACTIONS of observable actions is defined by:
ACTIONS =def { a | a is any action of the form: s@p, s!op(x̃) or s?op(x̃) }

All actions We define the set ACTIONSτ of all actions (ranged over by σ):
ACTIONSτ =def ACTIONS ∪ {τ} where τ denotes the unobservable action.

Control Graphs A control graph, Γ , is a labeled transition system with the
following structure: Γ =< G, g

0
,A,→> where

− G is a set of states, called control states
− g

0
is the initial control state

− A is a set of actions (A ⊂ ACTIONSτ)
− → ⊂ G x A x G

4.2 Semantics of activities

Control Links Maps: A Control link map c is a partial function from control
links to booleans extended with the undefined value. c : Lnk → {true, false,⊥}
Initial Control Links Map: For an activity act we define cact, the initial con-
trol links map: dom(cact) = { l | l occurs in âct} and ∀l ∈ dom(cact) : cact(l) =⊥
Evaluation of a join condition: If L is a set of control links, e a boolean expres-
sion over L and c a control links map, then the evaluation of e in the context
of c is written: c . e(L). Furthermore we consider that this evaluation is defined
only when ∀l ∈ L, c(l) 6= ⊥.

Control states of activities: A couple (c, act) is said to be a valid activity con-
trol state iff for any control link, l, occuring in âct: l ∈ dom(c).

In table 2, we provide the SOS rules defining a translation from activities to
control graphs. The rules for the seq activity have been skipped as for any seq
one can construct a behaviourally equivalent flo activity that defines the same

ordered list of subactivities by defining control links between consecutive activ-
ities. The rules for the repeat rep are given by first substituting the behaviour
part of the rep record, (do pic1 until pic2), with a triple noted (pic1[pic1>pic2)
where the second occurence of pic1 encodes the current state of the repeat, while
the first occurence is the activity to be repeated when the current state reaches
activity nil. Also, in order to have an escape from the repeat, a static rule en-
forces that pic2 is not equal to nil. Finally, in activity flo we dropped field lnk

since its value is constant (lnk is used to define a scope for control link variables).
The notation for value substitution in control link maps used in the rules of

Table 2 needs an explanation: c[true/l] =
def

c′ where c′(l′) = c(l) for l 6= l′ and
c′(l) = true. By abuse of notation, we also apply value substitution to sets of

control links. Hence, if Π is a set of activities, then, e.g., c[false/Π̂.src] is the

subsitution whereby any control link occuring as source of an activity in Π̂ has
its value set to false.

SES c . e(Lt) = true

(c, 〈SES , s@p, Lt , Ls , e〉)
↓ s@p

(c[true/Ls
] , nil)

INV c . e(Lt) = true

(c, 〈 INV , s!op(x̃) , Lt , Ls , e〉)
↓ s!op(x̃)

(c[true/Ls
] , nil)

REC c . e(Lt) = true

(c, 〈REC , s?op(x̃) , Lt , Ls , e〉)
↓ s?op(x̃)

(c[true/Ls
] , nil)

FLO1

c . e(Lt)=true (c, acti)
σ−−→ (c′, act′)

(c, 〈FLO, act1|···|acti|···|actn , Lt , Ls , e〉)
↓σ

(c′, 〈FLO, act1|···|act′|···|actn , Lt , Ls , e〉)

FLO2 c . e(Lt) = true

(c, 〈FLO, act1|···|nil|···|actn , Lt , Ls , e〉)
↓τ

(c′, 〈FLO, act1|···|···|actn , Lt , Ls , e〉)

FLO3 c . e(Lt) = true

(c, 〈FLO, nil, Lt , Ls , e〉)
τ−−→ (c[true/Ls

], nil)

PIC

c . e(Lt)=true (c, rec)
σ−−→(c′, nil)

(c, 〈PIC , (rec; act) +Π , Lt , Ls , e 〉)
↓σ

(c′′, 〈FLO , act , Lt , Ls , e 〉)

where Π =
∑

(reci ; acti)

and c′′ = c′[false/Π̂.src]

REP1

c . e(Lt) = true (c, act)
σ−−→ (c′, act′)

(c, 〈REP , pic1[act>pic2, Lt , Ls , e〉)
↓σ

(c′, 〈REP , pic1[act’>pic2, Lt , Ls , e〉)

REP2

c . e(Lt)=true (c, pic2)
σ−−→ (c′, act′)

(c, 〈REP , pic1[pic1>pic2, Lt , Ls , e〉)
↓σ

(c′, 〈FLO , act’ , Lt , Ls , e〉)

REP3

c . e(Lt)=true pic1 6= nil

(c, 〈REP , pic1[nil >pic2, Lt , Ls , e〉)
↓τ

(c′, 〈REP , pic1[pic1>pic2, Lt , Ls , e〉)

where c′ = c[⊥/
p̂ic1.src

,⊥/
p̂ic1.tgt

]

DPE c . e(Lt) = false

(c, 〈∗ , act, Lt , Ls , e〉)
↓τ

(c[false/âct.src], nil)

Table 2. SOS Rules for Activities

Rules priorities. On the ground SOS rules, i.e., those having no transitions in
their premise, we define a priority order as follows: FLO2 > FLO3 > REP3 > DPE > SES =

INV > REC. This means that when two transitions are possible from a given state,
each deriving from a ground rule such that the two corresponding ground rules
have differing priorities, then the one having a lower priority is pruned. We will
discuss the properties of control graphs obtained from such prioritised SOS rules
in the a subsequent section.

4.3 Control Graphs of SeB Activities

When applied to the initial control state (cact, act) of a well structured activity
act, the SOS rules with priorities defined above yield a control graph that we note
cg(act).

Properties of Control Graphs of Activities The following properties can be
proven about control graphs of activities: In cg(act), the set of control states
is finite and is partitioned into four categories: silent states, receiving states,
transient states, and terminal states. All terminal states are of the form (c, nil).
Hence they differ only by their control link map. The transitions leaving a silent
state are all labeled with the silent action τ . The transitions leaving a receiv-
ing state are all labeled with reception actions, while the transitions leaving a
transient state are labeled with either invocation or session initiation actions.
Moreover, the silent τ transitions are confluent since no two τ transitions can be
mutually conflicting (in fact, the same applies to transient transitions). Hence,
using observation equivalence minimisation, a control graph can be reduced to
a minimal control graph with no τ actions and one and only terminal state (be-
cause all terminal states are observationally equivalent). The graph resulting of
such a reduction is said to verify the run to completion property. This property
implies the following behaviour of control graphs: when a message is received,
it is only after all other possible transient actions have taken place that another
message can be received.
Henceforth, when we write cg(act) we will consider that we are dealing with the
minimised control graph, and we will name its unique terminal state term(act).

Considering a well structured activity act, we will adopt the following no-
tations: init(act) denotes the initial state of cg(act); states(act) is the set of
control states of cg(act); trans(act) is the set of transitions of cg(act). For

g ∈ states(act) and g′ ∈ states(act): g
σ−−→
act

g′ ⇔ (g, σ, g′) ∈ trans(act)

Open for reception. A state, g, of cg(act) is said to be open on session s and we
note open(act, g, s), iff state g has at least one outgoing transition labeled with a
receive action on session s. More formally: open(pic, g, s) =def ∃ op, x1 . . . xn, g′

such that g
s?op(x1,··· ,xn)−−−−−−−−−→

act
g′

4.4 Free, bound, usage and forbidden occurrences of variables

Thanks to control graphs of (well structured) activities, we can define the notions
of free, usage, bound and forbidden occurences of variables. For an activity act
we define the set of variables occurring in act: V (act) =def { z | z occurs in âct }

Binding occurrences. For variables y ∈ V (act), s ∈ V (act) and p ∈ V (act),
the following underlined occurrences are said to be binding occurrences in act:
s@p, s?op(· · · , y, · · ·) and s?op(· · · , p, · · ·). We denote BV (act) the set of vari-
ables having a binding occurrence in act.

Usage occurrences. For variables y ∈ V (act), s ∈ V (act) and p ∈ V (act), the
following underlined occurrences are said to be usage occurrences in act: s@p,
s?op(· · ·), s!op(· · ·), s!op(· · · , p, · · ·) and s!op(· · · , y, · · ·). We denote UV (act)
the set of variables having at least one usage occurrence in act.

Free occurrences. A variable z ∈ V (act) is said to occur free in act, iff there is

a path in cg(act): g0
σ1−−−→
act

g1, · · · , gn−1
σn−−−→
act

gn where z has a usage occurrence

in σn and has no binding occurrence in any of σ1, · · · , σn−1. We denote FV (act)
the set of variables having at least one free occurrence in act.

Forbidden occurences. op?(· · · p0 · · ·) and s0@p are forbidden occurences. As
we shall explain later, p0 is reserved for the own location of the service, while
s0 is a reserved session variable that receives a session id implicitly at service
instantiation time.

5 Syntax and Semantics of Networked Services

5.1 Service Configurations

Let m be a partial map from variables Var to Val ∪ {⊥}, the set of values aug-
mented with undefined value. Henceforth, we consider couples (m, act) where
dom(m) = V(act).

Deployable services. The couple (m, pic) is a deployable service iff:
– m(p0) 6=⊥ (the service has a defined location address recorded in p0),
– pic.beh =

∑
s0?opi(x̃i) ; acti (pic has all its receive actions on session s0),

– FV(act) ∩ SesVar={s0} (s0 is the only free session variable),
– ∀z∈FV(act) \ {s0} : m(z) 6=⊥ (free variables, except s0, have defined values)

Running service instances. Informally, a deployed service behaves like a factory
creating a new running service instance each time it receives a session initiation
request. The initial state of the instance is given by a triple (m[β/s0], pic I init(pic))
where s0 has received an initial value, β, a freshly created session id, and where
init(pic) is the initial control state. The new instance will then run and inter-
act with the client that initiated the session and with other services that it
orchestrates. The running state of a service instance derived from the deploy-
able service (m, pic) is the triple (m′, pic Ig) where g ∈ states(pic) is the current
control state of the instance and m′, with dom(m′) = dom(m), is its current map.

Deployable clients. We can define similarly the concepts of deployable “pure”
client and client instance. A deployable client is a couple (m, act) where act.beh =

s@p; s!op(x1, · · · , xn); act′ where s is the only session variable occurring in
act and where s@p is the only session initiation action present in âct. The
deployment of a deployable client (m, act) yields the running client instance
(m, act I init(act)).

Well partnered sets of services. A set, {(m1, pic1), · · · , (mk, pick)}, of deploy-
able services is said to be well partnered iff:

– ∀i, j : i 6= j ⇒ mi(p0) 6= mj(p0) (any two services have different location
addresses),

– ∀i, p : mi(p) 6=⊥⇒ ∃j with mi(p) = mj(p0) (any partner required by one
service is present in the set of services).

Running configurations. A running configuration, C, is a collection made of
a well partnered set of services, a set of service instances and a set of client
instances, all running in parallel. We use the symbol � to denote the associative
and commutative parallel operator:

C ::= (m, pic) (* service *)
| (m, pic Ig) (* service instance *)
| (m, act Ig) (* client instance *)
| C � C (* running configuration *)

Networked configurations. A networked configuration is a triple b C eb Q eb B e
where C, is a running configuration, Q is a set of message queues and B a set of
session bindings. Q and B are introduced hereafter.

Message queues. Q is a set made of message queues with Q ::= q | q � Q,

where q is an individual FIFO message queue of the form q ::= δ ←↩ M̃ with M̃
a possibly empty list of ordered messages and δ the destination of the messages
in the queue. The contents of M̃ depend on the destination type. If δ is a service
location, M̃ contains only session initiation requests of the form new(α). How-

ever if δ is a session id, then M̃ contains only operation messages of the form
op(w̃).

Session bindings. A session binding is an unordered pair of session ids (α, β). A
running set of session bindings is noted B and has the syntax B ::= (α, β) | (α, β) � B.
If (α, β) ∈ B then α and β are said to be bound and messages sent on local session
id α are routed to a partner holding local session id β, and vice-versa.

5.2 Semantics of Networked Services

SES1 g
s@p−−−−→
act

g′ m(p) = π

b ··· (m, act Ig) ···eb···(π ←↩ M̃)··· eb B e −→

b ··· (m[α/s], act Ig′) ··· eb···(π ←↩ M̃ ·new(β)) ··· eb (α, β) � B e

α, β fresh

SES2 m(p0) = π

b ··· (m, pic) ··· eb ··· (π ←↩ new(β)·M̃) ··· eb B e −→

b···(m, pic) � (m[β/s0], pic I g0)···eb···(π←↩M̃)···eb B e

g
0
=init(pic)

INV g
s!op(x1,···,xn)−−−−−−−−−−→

act
g′ m(s) = α (α, β) ∈ B

b ··· (m, act Ig) ··· eb···(β ←↩ M̃)··· eb B e −→

b ··· (m, act Ig′) ··· eb··· (β ←↩ M̃ ·op(m(x1), ···, m(xn))) ··· eb B e

REC g
s?op(x1,···,xn)−−−−−−−−−−→

act
g′ m(s) = β

b ··· (m, act Ig) ···eb···(β ←↩ op(w1, ···, wn)·M̃)··· eb B e −→

b ··· (m[w1/x1
, ···, wn/xn

], act Ig′) ··· eb···(β ←↩ M̃) ··· eb B e

6 Typed SeB

6.1 Session Types

Action types. An action type, η, is either a send action type, written η =
!op(X1, · · · , Xn), or a receive action type, η =?op(X1, · · · , Xn), where Xi is ei-
ther a session type name, T , or a data type identifier, t. We let ACTIONTYPES

denote the set of all action types, and will adopt the notation X̃ to denote a
vector of dimension 0 or more: X1, · · · , Xn.

Syntax of session types. We let ST run over session types. ST is as follows:

ST ::= 4 (* Terminal State *)

| T, P (* Session Type name *)

|
∑
I ?opi(X̃i); Ti (* Input Choice *)

| ⊕I !opi(X̃i); Ti (* Output Choice *)

| 5 (* Error State *)

where we assume a set of defining equations associating names to session types:
E = {T1 = ST1, · · · , Tn = STn} and we adopt the notation E(Ti) = STi.
Moreover, we assume that the operations, opi, appearing in the input and output
choice are all different, i.e., session types are deterministic.

Semantics of Session Types. The semantics of session types is given through a
translation to labelled transition systems with labels in ACTIONTYPES, and defined
with the 3 SOS rules below. Moreover, we will consider this labelled transition
system endowed with its natural bisimulation relation, noted ≡.

⊕
I
!opi(X̃i); Ti

!opi(X̃i)−−−−−→ Ti

Send ∑
I
?opi(X̃i); Ti

?opi(X̃i)−−−−−→ Ti

Receive

E(T) = ST, ST
η−−→ ST ′, E(T ′) = ST ′

T
η−−→ T ′

Session Type Name

Service Type. The session type ST is said to be a service type iff the following
three conditions are met: (i) ST =

∑
I ?opi(X̃i); Ti, (ii) 4 is a sink state of

ST and (iii) 5 is not a sink state of ST . We will use P to run over service type
names, i.e., E(P) = ST where ST is a service type.

Dual Session Types. For a session type, ST , its dual ST is obtained by swaping
sends and receives. The dual of a session type name, T , is another name T with

E(T) = E(T). Of course we have ST = ST .

Client Type. ST is said to be a client type iff its dual ST is a service type.

6.2 Subtyping with Progress

Subtyping relation. We need an adpated version of the classical subtyping re-
lation and define subtyping with progress on session types as follows: SwP is a
subtyping with progress relation iff for all ST1 and ST2: (i) (ST1 SwP ST2) ⇒
(ST1 ≡ 4 ⇔ ST2 ≡ 4) and (ii) the following two diagram conditions hold where
continuous lines and arrows represent the “if exists” part and dotted lines and
arrows represent the “then exists” part:

ST1
SwP

ST2

ST ′1

!op(X1,··· ,Xn)
∨

...........................
SwP

ST ′2

!op(Y1,··· ,Yn)
∨

........

ST1
SwP

ST2

ST ′1

?op(X1,··· ,Xn)
∨

........
............................

SwP

ST ′2

?op(Y1,··· ,Yn)
∨

where ∀i : Xi SwP Yi where ∀i : Xi SwP Yi

In the above digrams, we consider that if Xi and Yi are data types, then
Xi SwP Yi ⇔ Xi = Yi. A session type ST1 is said to be a sub-progress type
of a session type ST2, written ST1 � ST2, iff there exists a subtyping with
progress relation, SwP, such that ST1 SwP ST2.

6.3 Adding types to SeB

In this section we extend SeB with explicit types. We consider now the map m̂
as composed of two maps: m̂ = (ḿ, m̀), where ḿ is the value map (previously
noted m) and m̀ the type map, mapping variables to types:

m̀ : (DatVar → DatTyp) ∪ (SrvVar → SrvTyp)) ∪ (SesVar → SesTyp ∪ {⊥}).
We need to redefine the notions of deployable service and of well partenered
configuration.

Deployable typed service. A couple (m̂, pic) is a deployable typed service iff:

– (ḿ, pic) is a deployable service,
– dom(m̀) = V(act) (all variables must have initial types),

– m̀(s0)=m̀(p0) (session variable s0 is initiated with the dual type of the the
service type),

– ∀s∈V(act)\{s0}:m̀(s)=⊥ (the initial type of all other session variables is ⊥)

The initial running instance of a deployable typed service (m̂, pic) is given by
the triple (ḿ, pic I init(pic)) and its well typedness is assessed by considering
the typing part, i.e., the triple (m̀, pic I init(pic)).

6.4 Well typedness

Notations for typing rules. Before tackling the typing rules, we need to intro-
duce the following notations, where m̀ is used as a typing environment (with
∗ ∈ {!, ?}):

m̀`z :Z ⇔ m̀(z)=Z where (z : Z) can be any of {(s : T), (y : t), (p : P), (x : X)}

m̀`g s∗op(X1,...,Xn)−−−−−−−−−−→
Types act

g′ ⇔
∃ op, x1, . . . xn with m̀` x1:X1, . . . xn:Xn and g

s∗op(x1,...,xn)−−−−−−−−−→
act

g′

m̀`g s∗op(X̃)−−−−−→
Types act

⇔ ∃g′ with m̀`g s∗op(X̃)−−−−−→
Types act

g′ m̀`g s∗op(X̃)−−−−−→
Types act
6 ⇔ ¬(m̀`g s∗op(X̃)−−−−−→

Types act
)

Typing procedure for SeB We now consider a deployable typed service (m̂0, pic).
The SOS typing rules (provided in the appendix), when applied to this typed ser-
vice starting from its initial state, (m̀0, act I init(pic)), define a translation into
a finite non-labelled transition system, called the typing graph of (m̀0, pic) and
noted tg(m̀0, pic). A running state of tg(m̀0, pic) is given by a triple (m̀, act Ig))
where m̀ is the current typing map and g the current control state of the service.

The typing rules explore the joint behaviour of the service and the session types
whereby an input/output transition can be taken only if both the service and
the coresponding session have matching transitions. In case of mismatch, the
state of the session type is set to ∇, the error state. Also, the rules enforce that
a session cannot be re-initiated if its current state is not 4, the terminal state.
It is possible to define a strong and a weak typedeness, depending on whether
we allow sessions other than s0 to be stopped by the service before reaching the
terminal state 4. We provide herafter the definition of the strong version.

Strong well typedeness. A typed service, (m̀0, pic), is strongly well typed iff:

– ∀(m̀, pic Ig) ∈ states(m̀0, pic),∀s ∈ dom(m̀0) : m̀0(s) 6= ∇
– ∀(m̀, pic Ig) ∈ states(m̀0, pic) : if (m̀, act Ig) is a sink state of tg(m̀0, pic)

then g = term(pic) and ∀s ∈ dom(m̀0) : m̀0(s) ∈ {4,⊥}
Well typed collection of services A set {(m̂1, pic1), · · · , (m̂k, pick)} of well part-
nered services is said to be a well typed collection iff:
– ∀i, (m̀i, pici) is strongly well typed,
– ∀i, j, p : ḿi(p) = ḿj(p0) ⇒ m̀j(p0) � m̀i(p) (each provided type is a sub-

progress type of a required type).

Property of strong well-typedness

In a running configuration made of a well typed collection of services, a service
instance never blocks. More formally, considering a state, Ω, reached by a well
typed collection, with Ω = b ··· (ḿ, pic Ig) ···eb···(β ←↩ op(w̃)·M̃)··· eb B e where
ḿ(s) = β and open(pic, g, s) then Ω → b ··· (ḿ′, pic Ig′) ···eb···(β ←↩ ·M̃)··· eb B e

7 Related work

Behavioural types associated to sessions have been studied for protocols [7] and
software components [19]. Service orchestration calculi including the notion of
sessions have also been defined [1, 12], as well as session-based graphical orches-
tration languages [6]. Correlation is a different approach in which messages that
are logically related are identified as sharing the same correlation data [13] as
it occurs, for example, when a unique id related to a client is passed in any
message referring to that client. Notably BPEL [17] features correlations sets,
and we could have defined a “session oriented” style in BPEL using correlation
sets. However, this approach would not lend itself easily to typing. On the other
hand, BPEL correlation sets allow for multi-party choreographies to be defined.
We argue that similar expressivity is attainable with session types by extending
them to support multi-party sessions. This is a challenge for future work, par-
ticularly considering that another layer of complexity is added with the concept
of multi-party session types [8, 2] . In both session-based and correlation based
approaches, defining behavioural types has often proved difficult: while sessions
make simpler, with respect to correlation approaches, the identification of in-
teraction patterns that are to be typed, session based calculi with higher order
session communication, defined in π-calculus style, have also been studied, but
make typing non-trivial and difficult to support automatic verification [11, 16].

Session types usually take the form of finite-state automata, sometimes bor-
rowing process algebra concepts. The distinction between external and internal
choice corresponding to input and output messages is the major source of diffi-
culty for determining compatibility between components or services [15, 4].

The work on BPEL described in [10, 18, 14] is most related to ours. In [10]
the authors provide a full static semantics for data flow in BPEL, covering also
xpath data types. In [18] the authors provide a full semantics of control flow
of a comprehensive part of BPEL. Their approach is based on a translation on
Petri Nets. We have shown that using a direct semantics based on records and
SOS rules can be also elegant and concise. Perhaps the work that is closest is the
one given in [14]. The authors present an interesting typing system on a process
calculus inspired from BPEL, but it does not cover behavioural typing and does
not tackle BPEL control links.

8 Conclusion

We have shown that one approach to verify the behavioural compatibility of
web services is to introduce a behavioural typing system. In order to prove
this concept, we have adapted and formalised a subset of the widely adopted
orchestration language BPEL to support typed sessions. We call the resulting
formalism SeB, for Sessionized BPEL. A typed session is used to prescribe the
correct structure of an interaction between two partner services during the ful-
filment of a service. A SeB service declares the session types that it can provide
to prospective partners, while also declaring its required session types. Based on
these declarations, we can verify whether or not a service is well-typed, hence
answering the question of whether or not the service respects its required and
provided types. We are also able to verify the compatibility of two sessions types,

which allows us to determine whether or not two partners that correctly imple-
ment their own declared required and provided sessions types are able to interact
together.
When a set of interacting services are well typed in this way, we call it a well-
typed service configuration. We have shown that a well-typed service configu-
ration is interaction-safe. The formal approach taken with SeB as presented in
this paper opens up the possibility of defining and proving other properties of
web service interactions. These include but are not limited to controllability and
progress properties, which we hope to tackle in future work.

References

1. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. A
service centered calculus. In M. Bravetti, M. Nez, and G. Zavattaro, editors, Web
Services and Formal Methods, volume 4184 of Lecture Notes in Computer Science,
pages 38–57. Springer Berlin / Heidelberg, 2006. 10.1007/11841197 3.

2. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in soc. In
D. Lea and G. Zavattaro, editors, Coordination Models and Languages, volume 5052
of Lecture Notes in Computer Science, pages 67–82. Springer Berlin / Heidelberg,
2008. 10.1007/978-3-540-68265-3 5.

3. L. Cardelli and J. Mitchell. Operations on records. In M. Main, A. Melton, M. Mis-
love, and D. Schmidt, editors, Mathematical Foundations of Programming Seman-
tics, volume 442 of Lecture Notes in Computer Science, pages 22–52. Springer
Berlin / Heidelberg, 1990. 10.1007/BFb0040253.

4. G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Founda-
tions of Session Types. In PPDP’09, pages 219–230. ACM Press, 2009. Full
version:http://www.di.unito.it/ dezani/papers/cdgpFull.pdf.

5. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Service Definition
Language (WSDL) Version 2.0. Technical report, June 2007.

6. A. Fantechi and E. Najm. Session types for orchestration charts. In D. Lea and
G. Zavattaro, editors, Coordination Models and Languages, volume 5052 of Lecture
Notes in Computer Science, pages 117–134. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-68265-3 8.

7. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In C. Hankin, editor, Program-
ming Languages and Systems, volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0053567.

8. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
SIGPLAN Not., 43:273–284, January 2008.

9. D. Kitchin, A. Quark, W. Cook, and J. Misra. The orc programming language.
In D. Lee, A. Lopes, and A. Poetzsch-Heffter, editors, Formal Techniques for Dis-
tributed Systems, volume 5522 of Lecture Notes in Computer Science, pages 1–25.
Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-02138-1 1.

10. O. Kopp, R. Khalaf, and F. Leymann. Deriving explicit data links in ws-bpel
processes. In IEEE SCC (2), pages 367–376, 2008.

11. R. P. A. R. L. Caires, G. Ferrari. Behavioural types for service composition.
Technical report, Sensoria project, 2006.

12. I. Lanese, V. T. Vasconcelos, F. Martins, C. Gr, I. Lanese, V. T. Vasconcelos, and
F. Martins. Disciplining orchestration and conversation. In in Service-Oriented

Computing. In 5th IEEE International Conference on Software Engineering and
Formal Methods, 2007.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web ser-
vices. In R. De Nicola, editor, Programming Languages and Systems, volume 4421
of Lecture Notes in Computer Science, pages 33–47. Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-71316-6 4.

14. A. Lapadula, R. Pugliese, and F. Tiezzi. A wsdl-based type system for asyn-
chronous ws-bpel processes. Formal Methods in System Design, 38(2):119–157,
2011.

15. A. Martens. Analyzing web service based business processes. In M. Cerioli, editor,
Fundamental Approaches to Software Engineering, volume 3442 of Lecture Notes in
Computer Science, pages 19–33. Springer Berlin / Heidelberg, 2005. 10.1007/978-
3-540-31984-9 3.

16. D. Mostrous and N. Yoshida. Two session typing systems for higher-order mobile
processes. In S. Della Rocca, editor, Typed Lambda Calculi and Applications, vol-
ume 4583 of Lecture Notes in Computer Science, pages 321–335. Springer Berlin /
Heidelberg, 2007. 10.1007/978-3-540-73228-0 23.

17. Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Business Process Execution Language (WS-BPEL) Version 2.0, Apr.
2007.

18. C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas, and
A. H. M. ter Hofstede. Formal semantics and analysis of control flow in ws-bpel.
Sci. Comput. Program., 67(2-3):162–198, 2007.

19. A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of objects
and components using session types, 2003.

Appendices

A Typing Rules

g
s@p−−−−→
pic

g′ m̀`p :P (m̀`s :∆ or m̀`s :⊥) @

(m̀, pic Ig) → (m̀[P/s], pic Ig′)

g
s@p−−−−→
pic

g′ m̀`p :P ¬(m̀`s :∆ or m̀`s :⊥) @

(m̀, pic Ig) → (m̀[∇/s], pic Ig′)

m̀ ` g s!op(X̃)−−−−−−→
Types pic

g′ m̀`s :T T
?op(X̃)−−−−−−→ T ′ !?

(m̀, pic Ig) → (m̀[T
′
/s], pic Ig′)

m̀ ` g s!op(X̃)−−−−−−→
Types pic

g′ m̀ ` s : T T
?op(X̃)−−−−−−→6 !?

(m̀, pic Ig) → (m̀[∇/s], pic Ig′)

m̀ ` g s?op(X̃)−−−−−−→
Types pic

g′ m̀ ` s : T T
!op(X̃)−−−−−→ T ′ ?!

(m̀, pic Ig) → (m̀[T
′
/s], pic Ig′)

open(pic, g, s) m̀`s :T T
!op(X̃)−−−−−→ T ′ m̀ ` g s?op(X̃)−−−−−−→

Typee pic
6 ?!

(m̀, pic Ig) → (m̀[∇/s], pic Ig)

open(pic, g, s) m̀`s :T T
!−→6 ?!

(m̀, pic Ig) → (m̀[∇/s], pic Ig)

g = term(pic) m̀`s :T T
?−−→ !?

(m̀, pic Ig) → (m̀[∇/s], pic Ig)

g = term(pic) m̀`s :T T
!−→ ?!bis

(m̀, pic Ig) → (m̀[∇/s], pic Ig)

Notations for session types transitions

(T
η−−→)⇔ (∃T ′ : T

η−−→ T ′) (T
η−−→6) = ¬(T

η−−→)

(T
!−−→)⇔ (∃op, X̃ : T

!op(X̃)−−−−−→) (T
!−−→6) = ¬(T

!−−→)

(T
?−−→)⇔ (∃op, X̃ : T

?op(X̃)−−−−−−→) (T
?−−→6) = ¬(T

?−−→)

