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SUMMARY

DIPLODOCUS is a UML profile intended for the modeling and the formal verification
of real-time and embedded applications commonly executed on complex Systems-on-
Chip. DIPLODOCUS implements the Y-Chart Approach, i.e., application tasks and
architectural elements (e.g., CPUs, bus, memories) are first described independently and
are related in a subsequent mapping stage in which tasks are mapped onto architectural
elements. DIPLODOCUS endows both application models and mapping models with
a formal semantics, thereby paving the way for formal proofs both before and after
mapping. More concretely, application, architecture and mapping models can be edited
in TTool - an open-source toolkit - using UML diagrams. Then, pre or post mapping UML
models may be automatically transformed into a LOTOS-based representation. This
specification is in turn amenable to model-checking techniques to evaluate properties of
the system, e.g., safety, schedulability, and performance properties. A smart card system
serves as case study to exemplify formal verification capabilities of DIPLODOCUS.
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1. Introduction

A System-on-Chip (SoC) is a set of functions distributed over hardware computation elements
(CPUs, hardware accelerators) interconnected with complex communication elements (e.g.,
Network-on-Chip). The high complexity of applications executed on SoC - the smart card
example provided in this paper is one prominent example of complex application - along with
shortened time-to-market have pushed to their limits usual SoC designs methodologies. The
analysis of systems at low abstraction levels yields a high degree of accuracy but comes with
the downside of being demanding and slow. Indeed, traditional simulation techniques operating
at register transfer level (RTL), instruction or transaction level are not appropriate for early
design stages for two reasons: Only a very limited number of implementation alternatives can
be examined due to the high modeling effort and extensive simulation runtime. Also, the lack
of specification early in the design flow may prohibit the construction of detailed models even
if the effort was acceptable. Thus, abstractions are the key to success and furthermore make
the models amenable to formal methods by reducing the state space. This article elaborates
on these formal techniques which are exhaustive by definition and thus provide the highest
possible degree of confidence.
Design Space Exploration (DSE) is a major step in SoC design: it consists in selecting
a software / hardware architecture complying to a set of functional and non-functional
constraints (performance, power consumption, etc.). At Design Space Exploration stage, the
complexity may already be non-manageable, and so, we suggest to perform that stage on
very abstract models to pave the way for fast performance estimations as soon as possible
in the SoC design flow, i.e., at system-level. DIPLODOCUS † is the environment we propose
for addressing Design Space Exploration. As it relies on the Y-Chart approach, architecture
and application are represented in an orthogonal fashion. DIPLODOCUS explicitly takes
into account the hardware platform on which application tasks are executed. All system
elements (application, architecture, mapping) can be efficiently represented in an abstract way
using non-deterministic operators, complexity operators, and abstract hardware components.
While modeling [1] and simulation [2] capabilities of DIPLODOCUS, as well as the toolkit
supporting DIPLODOCUS [3] - TTool [4] - were already described in previous publications,
the semantic support, one of the main strengths of DIPLODOCUS, has not been addressed
so far. More precisely, for formal verification purpose, we have provided a formal semantics
to all DIPLODOCUS diagrams (applications, hardware architectures, mapping of applications
onto hardware architectures). Formal analysis is based on a process algebra named LOTOS [5]
and on UPPAAL [6]. The paper is more particularly focused on abstractions applied to tasks
and hardware platforms, on how formal analysis is leveraged by these abstractions, and on the
associated toolkit (TTool) in which all underlying formal techniques are totally masked to the
designer (press-button approach).
The paper is organized as follows. Section 2 reviews related contributions. Section 3 recalls
the DIPLODOCUS environment. Section 4 focuses on the formal semantics in DIPLODOCUS,

†DIPLODOCUS stands for design space exploration based on formal description techniques, UML and SystemC
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FORMAL SYSTEM-LEVEL DESIGN SPACE EXPLORATION 3

and more precisely on the abstractions offered by DIPLODOCUS to allow formal analysis with
limited combinatory explosion. Section 5 presents the implemented support toolkit. Section 6
illustrates our approach with a smart card system. Finally, section 7 concludes the article.

2. Related Work

Design Space Exploration (DSE) of Systems-on-Chip is the process of analyzing various
functionally equivalent implementation alternatives to select an optimal solution [7]. The most
suitable design is commonly chosen based on metrics such as functionality, performance, cost,
power, reliability, and flexibility. At system-level, DSE is challenging because the system design
space is extremely large and so usual simulation-based analysis techniques fail to efficiently
observe the above mentioned metrics. Contributions on DSE environments such as [8–15]
generally rely on a high-level language to describe application functions and architectures.
For example, [13–15] rely on UML or MARTE diagrams. Functions are sometimes described
with only their cost [16]. Unfortunately, in many of these environments, architecture and
application concerns are not independent [10], making the study of alternative solutions
more complex. Second, they propose a way to map functions onto hardware execution nodes.
Lastly, they introduce simulation techniques to simulate the system built from the mapping
of functions over hardware nodes. The level of abstraction is commonly rather low to the
detriment of simulation performance. For example, [8] relies on an Instruction Set Simulator
which executes the real code of the application. In [12], hardware components are considered at
micro-architecture level, hence leading to long simulation times. Otherwise, other environments
offer formal exploration, but generally limited to sub-elements of the platform [17], or suffering
the limitations described just below.
SymTA/S [18] [19] and Real Time Calculus (RTC) rely on formal methods such as the real-time
scheduling theory and deterministic queuing systems to determine characteristics of distributed
systems. In SymTA/S the behavior of the environment is modeled by means of standard event
arrival patterns including periodic and sporadic events with jitters or bursts. RTC imposes
less restrictions by allowing deterministic event streams to be modeled with the aid of arrival
curves denoting lower and upper bounds for event occurrences. Event streams are propagated
among resources of distributed systems in a way that each resource may be analyzed separately
with classical algorithms. However, the applicability of scheduling theories requires the task
model to be simplistic and thus it merely reflects best case and worst case execution times.
Control flow within tasks cannot be considered at all. For that reason it may be tedious if not
impossible to model tasks exhibiting a data dependent or irregular behavior.
The work of Hendriks and Verhoef [20] relies on timed automata to analyze timeliness
properties of embedded systems. The UPPAAL model checker is used to evaluate the automata
which must be created manually. There is no automated translation routine from a high level
language (UML,...) and thus the creation of the automata turns out to be quite error prone,
and not reusable.
Viehl et al. [21] provide means for formal and simulation based evaluation of UML/SysML
models for performance analysis of SoC. UML Sequence diagrams constitute the starting point
for the functional description. They are subsequently transformed into so-called communication
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4 D. KNORRECK, L. APVRILLE, R. PACALET

dependency graphs (CDGs) which thus capture the control flow, synchronization dependencies
and timing information. CDGs are in turn amenable to static analysis in order to determine
key performance parameters like best case response times, worst case response times and I/O
data rates. A drawback of this approach is that data flow independence has to be kept, thus
preventing case distinctions and loops with variable bounds to be part of the application model.
Marculescu et al. [22] present a framework for computation and communication refinement for
multiprocessor Soc Design. Stochastic automata networks represent the application behavior
and the authors claim that this formalism allows for fast analytical performance evaluations.
When it comes to mapping an application on an architecture, transitions and states have to be
added to the application model. Hence, application and architecture matters and not strictly
handled in an orthogonal fashion. Due to a lack of data abstraction, the modeling of memory
elements can quickly lead to state space explosion problem.
The PUMA [23] framework is a unified approach to software modeling. It provides an interface
between high level input models (such as UML diagrams) and performance oriented models.
For that purpose, input models are first translated into an intermediate format called CSM so
as to filter out irrelevant information for performance evaluations. In a second step, CSM can
be converted to Petri Nets, Markov models, etc., and the resulting performance figures and
design advice is fed back to the initial model. However, this framework concentrates on the
modeling of software and thus does not yield a mapping where functionality is associated to
software or hardware elements.
DIPLODOCUS [1] offers a very clear separation between applications and architectures, and
includes a high level of abstraction. Indeed, DIPLODOCUS is focused on control rather than
on data, i.e., only abstract samples of data can be manipulated in the profile. Samples are
untyped and carry no value: only their size is a relevant attribute. This high level of abstraction
greatly reduces simulation times and makes formal proof techniques usable. In this paper, we
apply these formal proof techniques to safety, performance and schedulability analysis purpose
using the LOTOS process algebra. While LOTOS has already been successfully experimented
for property proofs on hardware [24], we propose its use to more generic platforms (SoCs).

3. The DIPLODOCUS UML Profile

A UML profile customizes the UML language [25] for a given domain of systems. It may extend
the UML meta-model, according to semantic variation points, and may provide a methodology.
The DIPLODOCUS UML profile targets the modeling and Design Space Exploration of
Systems-on-Chip at a high level of abstraction [1]. The DIPLODOCUS methodology, depicted
in Figure 1, complies with the Y-Chart approach and comprises three main steps, that are
further reviewed in next subsections:

1. Applications are first described as a network of abstract communicating tasks using a
UML class diagram. The latter represents the static view of the application. Each task
behavior is expressed in terms of one UML activity diagram.

2. Targeted architectures are modeled independently from applications as a set of
interconnected generic hardware nodes modeled in UML: execution nodes (e.g. CPUs,

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



FORMAL SYSTEM-LEVEL DESIGN SPACE EXPLORATION 5

Figure 1. Methodology for Design Space Exploration

hardware accelerators), communication nodes (e.g., buses, bridges), and storage nodes
(e.g., memories). These nodes are parametrized to offer specific behavior.

3. A mapping phase defines how application tasks are bound to execution nodes and also
how abstract communications between tasks are assigned to communication and storage
nodes.

3.1. Application modeling

At first, the application is modeled using UML class and activity diagrams. Tasks are modeled
as classes interconnected with channels, events, or requests to communicate. Data abstraction
is a key point: channels do not convey values, but only a number of samples (data abstraction).
Also, events are used for synchronization purpose, and requests are used to spawn the execution
of tasks.
As stated before, functions are modeled as a set of abstract tasks described with UML
class diagrams. Task behavior is modeled using UML activity diagrams which are built
upon the following operators: control flow and variable manipulation operators (loops,
tests, assignments, etc.), communication operators (reading/writing abstract data samples in
channels, sending/receiving events and requests), and computational cost operators (refer to
4.2.1 and 4.4.1 for detailed semantics and abstractions respectively). Operators are abstraction-
focused, i.e., they have been defined for encouraging designers of performing the following data
and functional abstractions.

• Data abstraction: Only the amount of data exchanged between functional entities
is modeled. Data dependent decisions are abstracted and expressed in terms of
non-deterministic operators, such as non-deterministic choices, complexity and time
operators.

• Functional abstraction: Algorithms are described using abstract cost operators. The
complexity of computations is thus taken into account without actually having to perform
computations.

Three communication and synchronization primitives have been defined:
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6 D. KNORRECK, L. APVRILLE, R. PACALET

• Channels are characterized by a point-to-point unidirectional communication between
two tasks. Channel types are:

– Blocking Read/Blocking Write (BR-BW)
– Blocking Read/Non Blocking Write (BR-NBW)
– Non Blocking Read/Non Blocking Write (NBR-NBW)

• Events are characterized by a point-to-point unidirectional asynchronous communica-
tion between two tasks. Events are stored in an intermediate FIFO between the sender
and the receiver. This FIFO may be finite or infinite. In case of an infinite FIFO, incoming
events are never lost. Indeed, when adding an event to a finite FIFO, the incoming event
may be discarded or the oldest event may be dropped if the FIFO is full. Thus, a single
element FIFO may be used to model hardware interrupts. In tasks, events can be sent
(notify), received (wait) and tested for their presence (notified).

• Requests are characterized by a multipoint-to-point unidirectional asynchronous
communication between tasks. A unique infinite FIFO between senders and the receiver
is used to store requests. Consequently, a request cannot be lost.

3.2. Architecture modeling

A candidate architecture is modeled in terms of interconnected hardware components (or
nodes) using UML components placed in UML deployment diagrams. The following nodes
types are available in DIPLODOCUS:

• Computation nodes. Typically, an abstract CPU model merges both the functionality
of the hardware component and its operating system. The behavior of a CPU model
can be customized with parameters such as: data size, pipeline size, cache miss ratio
and scheduling algorithm. For the time being, DMAs and hardware accelerators
are represented by adequately parametrized CPU nodes. See 4.4.2 for comments on
abstractions made on CPU nodes.

• Communication nodes. A communication node is either a bus or a bridge. The bus
model has the following parameters: data size, latency and arbitration policy. A Link
connects a hardware node - except for buses - to a bus. A link may be annotated with a
priority which may be considered by the bus arbitration policy.

• Storage nodes. Memories are characterized by the following parameters: latency and
data size.

3.3. Mapping

A mapping imposes additional constraints on the application model by associating the latter
to shared hardware resources. The objective of the mapping stage is to determine whether an
architecture is able to accommodate the load defined by the application whilst complying to
constraints. Application tasks and channels are therefore distributed over hardware nodes. A
UML deployment diagram is used for that purpose. A given task must be mapped onto exactly
one execution node. Also, channels are mapped onto paths built upon links, communications
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nodes, and storage nodes.

3.4. Simulation and formal verification

As previously stated, the DIPLODOCUS design flow is supposed to be carried out at a very
early stage. Hence, the main DIPLODOCUS objective is to help designers to spot a suitable
hardware architecture even if algorithmic details have not yet been stipulated thoroughly.
To achieve this, DIPLODOCUS relies (i) on fast simulation and formal proof techniques,
both at application and mapping level, and (ii) on application models clearly separated from
architecture models. Due to the high abstraction level of both application and architecture
models, simulation speed can be significantly increased with regards to simulations usually
performed at lower abstraction level [2], and formal proofs can be achieved: this article focuses
on formal analysis techniques that may be applied before and after mapping. While simulation
and formal verification usually target functional properties at application level, performance
properties are rather investigated after mapping, e.g., resource sharing, that is, the scheduling
on CPUs (can the architecture execute tasks on time), bus load (can a bus handled all data
transfers), and also properties related to power consumption and silicon area.

4. Formal semantics and abstractions
4.1. Formal support: LOTOS and UPPAAL

The semantics of DIPLODOCUS models is defined both in LOTOS and UPPAAL, but the
latter is out of scope of this paper.
LOTOS [5] is an ISO-standardized Formal Description Technique for distributed system
specification and design. A LOTOS specification, being itself a process, is structured into
processes. A LOTOS process is a black box that communicates with its environment through
gates using a multiway rendezvous offer. Values can be exchanged at synchronization time.
That exchange can be mono- or bi-directional. LOTOS specifications may be formally verified
with, for instance, the CADP toolkit [26] . CADP implements model-checking and reachability
graph minimization techniques

4.2. Semantics at application level

4.2.1. Tasks operators

As described in previous section, an application is composed of a set of communicating tasks.
Operators used to describe task behavior are of four types:
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8 D. KNORRECK, L. APVRILLE, R. PACALET

• Communication operators: read from a channel, write a sample to a channel, notify
an event, wait for an event, know whether an event has been sent (notified), request
a task.

• Control operators: usual control operators, such as variable modifications, loops,
tests, random number.

• Complexity operators: operators to model a number of operations on integers
(EXECI), floats (EXECF) or custom (EXECC).

• Temporal operators: operators to model deterministic and non-deterministic physical
delay.

This set of operators makes it possible to describe the communication behavior of applications
and algorithms whilst encouraging the modeler to abstract data, thanks to channels that
merely account for the amount of transmitted data, and thanks to non deterministic versions
of some operators (e.g., choice).
The LOTOS semantics of all task operators is further described in Table I, column “LOTOS
Semantics before mapping”.

4.2.2. Communications between tasks

While channels are used to model data stream between tasks - i.e., channels carry
unvalued samples -, events and requests represent synchronization schemes.
The semantics of these channels (as explained in 3.1) is quite obvious to describe in LOTOS:
since channels convey no value, but only a number of samples, BR-BW and BRNBW channels
can easily be translated into a simple process (see Figure 2) sharing a natural value (which
represents the number of elements in the FIFO) between two processes using two gates: one
gate to add a sample (wr ch), another one to remove a sample (rd ch). The last channel
type (NBR-NBW) is also translated into a similar LOTOS process apart from the fact that
no counter is necessary - since its is always possible to read and write -, and so no guards ([]
operator) are used before the actions on gates wr ch and rd ch.

proce s s ChannelBRBW ch [ rd ch , wr ch ] ( samples : nat ) : e x i t := (
[ samples < 8 ] −> ( wr ch ; ChannelBRBW ch [ rd ch , wr ch ] ( samples + 1) )
[ ]
[ samples > 0 ] −> ( rd ch ; ChannelBRBW ch [ rd ch , wr ch ] ( samples − 1) ) )

Figure 2. Application-level LOTOS semantics for a BR-BW channel, containing at most 8 samples

Events are meant to model synchronization between tasks. They can carry up
to three parameters, and support three semantics: infinite FIFO, finite blocking FIFO, and
non-blocking FIFO. The two first semantics have been selected because they reflect common
synchronization schemes of embedded systems. The last one (Non-blocking finite FIFO) is
particularly useful to model signal exchanges between tasks: indeed, software and hardware
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Type Task oper-
ators

LOTOS Semantics be-
fore mapping

LOTOS Semantics after
mapping

Channel
Write n
samples to a
channel

n Write operations in
FIFO, i.e., n times action
on gate wr ch, see Figure
2

n cycles, and a request on a bus.

Read n sam-
ples from a
channel

n read operations from
FIFO, i.e., n times action
on gate rd ch, see Figure
2

n cycles and a request on a bus.

Event
Notify an
event

Adds an event to the
corresponding FIFO, i.e.,
performs an action on gate
notify evt, see Figure 3

Same as before mapping.

Wait for an
event

Tries to get an event from
a FIFO, i.e., performs an
action on gate wait evt,
see Figure 3

Same as before mapping.

Notified Returns the number of
event in a FIFO using
action notified evt, see
Figure 3

Same as before mapping.

Request Send a re-
quest (opera-
tor is called
“request”)

FIFO management is sim-
ilar to the one used for
events

Same as before mapping.

Control loop,
variable
modifica-
tions, tests

Direct translation in LO-
TOS with corresponding
LOTOS operators

Direct translation. Operators are
executed in 0-cycle.

Com-
plexity

EXECx n,m
i.e., between
n and m
integer
instructions

No semantics before map-
ping, i.e., this operator is
ignored

The task executes between n ∗
perf and m ∗ perf cycles with
perf being a constant value de-
pending on the hardware per-
formance on which the task is
mapped.

Tem-
poral

Delay
dmindmax

unit

No semantics before map-
ping, i.e., this operator is
ignored

The task is blocked for Between
n and m cycles with n = dmin ∗
frequency and m = dmax ∗
frequency.

Table I. Task operators
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10 D. KNORRECK, L. APVRILLE, R. PACALET

signals usually erase the previous one (e.g., Programmable Interrupt Controller, or UNIX
signals). A separate LOTOS process accounts for each of the three semantics using the
Queue nat algebraic type. Figure 3 illustrates a non-blocking finite FIFO (the most complex
case) for an event carrying only one natural parameter. Five cases have been taken into account:

1. The FIFO is not empty, and so, a wait action can be performed on the FIFO.
2. The FIFO is not full, and so, an event can be added to the FIFO (notify).
3. The FIFO is full, and so, an event can be added to the FIFO (notify) after the oldest

one has been removed.
4. The FIFO is not empty, the notified action returns the value 1.
5. The FIFO is empty, the notified action returns the value 0.

Unlike channels and events which are one-to-one communications, requests are many-to-
one communications. They rely on n-to-one infinite FIFO. The translation of requests is
similar to the one of FIFO for events, apart from the fact that notification gates are instantiated
n times, e.g., notify i with i ∈ 1 . . . n.

proce s s Event evt [ n o t i f y e v t , wa i t ev t , n o t i f i e d e v t ]
( f i f o 1 : Queue nat , f i f o v a l 1 : nat , nb : nat , maxs : nat ) : e x i t :=

[ not (Empty ( f i f o 1 ) ) ] −> wa i t ev t ! F i r s t ( f i f o 1 ) ; p 0 Event evt [ n o t i f y e v t ,
wa i t ev t , n o t i f i e d e v t ] ( Dequeue ( f i f o 1 ) , f i f o v a l 1 , nb−1, maxs )

[ ] [ nb<maxs ] −> n o t i f y e v t ? f i f o v a l 1 : nat ; p 0 Event evt [ n o t i f y e v t ,
wa i t ev t , n o t i f i e d e v t ] ( Enqueue ( f i f o v a l 1 , f i f o 1 ) , f i f o v a l 1 , nb+1,
maxs )

[ ] [ nb == maxs ] −> n o t i f y e v t ? f i f o v a l 1 : nat ; p 0 Event evt [ n o t i f y e v t ,
wa i t ev t , n o t i f i e d e v t ] ( Enqueue ( f i f o v a l 1 , Dequeue ( f i f o 1 ) ) ,
f i f o v a l 1 , nb , maxs )

[ ] [ not (Empty ( f i f o 1 ) ) ] −> n o t i f i e d e v t ! 1 ; p 0 Event evt [ n o t i f y e v t ,
wa i t ev t , n o t i f i e d e v t ] ( f i f o 1 , f i f o v a l 1 , nb , maxs )

[ ] [ Empty ( f i f o 1 ) ] −> n o t i f i e d e v t ! 0 ; p 0 Event evt [ n o t i f y e v t , wa i t ev t ,
n o t i f i e d e v t ] ( f i f o 1 , f i f o v a l 1 , nb , maxs )

endproc

Figure 3. Application-level LOTOS semantics for a Non-blocking Finite FIFO

4.3. Semantics at mapping level

A mapping involves an application (i.e., a set of tasks and communications between those
tasks), an architecture (i.e., a set of hardware nodes), a distribution of tasks onto hardware
nodes (e.g., map the task task1 onto the CPU cpu1 ), and a mapping of communication channels
onto buses / memories. We have therefore defined a transformation function tf() that takes
as argument all above mentioned elements and generates a LOTOS specification (see Figure 4).
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Figure 4. General approach

4.3.1. Mapping issues

The mapping phase sheds light on the question whether a system made of an application
executed on a given architecture satisfies a set of constraints. More precisely, a mapping shall
resolve contentions on shared resources (typically, a CPU, a bus, etc.) and therefore answer
whether the computational and communication power offered by the architecture can execute
the desired application, i.e., respect deadlines, etc. The LOTOS semantics is first defined with
those issues in mind. As a consequence, the LOTOS specification of a mapping should take
into account:

• The access control to shared resources, e.g., for tasks: access to CPUs, and for
communication: access to buses. To that end, we explicitly account for scheduling policies
of operating systems as well as for arbitration policies of buses.

• The time taken by tasks to execute operators, and the time taken by communications,
e.g., bus and memory latencies.

4.3.2. The Mapping-to-LOTOS transformation

All task operators and hardware nodes parameters are taken into account by the Mapping-
to-LOTOS transformation (tf()). However, the transformation does not yet incorporate the
latest proposals on resource sharing in DIPLODOCUS, e.g., we do not yet support hierarchical
scheduling and virtual nodes [27] but no technical limitation has been identified which could
hamper their integration.
Basically, the LOTOS specification is built upon four functional blocks:

• The Scheduling manager schedules tasks on each CPU. tf() transforms each task into
a state machine modeled in LOTOS: preemption can occur when a task is blocked in a
state, but never when a task performs a transition from one state to another.

• The Communication manager handles channel-based communication between tasks
running on the same CPU, or on different CPUs. Events and requests are assumed not
to consume communication resources. Indeed, the amount of data represented by those
two synchronization features are assumed to be negligible with regards to channel-based
communications. Similar assumptions were made for the simulation semantics [2] (which
is less abstract and more tailored to simulation runtime issues).
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12 D. KNORRECK, L. APVRILLE, R. PACALET

• The Task execution manager handles operators to execute in each task, that is
transitions between various task states.

• The Clock manager handles clock cycles on hardware nodes, i.e., it activates necessary
hardware nodes when a new cycle begins.

The main process of the LOTOS specification works as follows:

1. At first, an initialization phase is used to settle various data structures, for each CPU
(e.g., all tasks of a CPU are put in ”ready” state), and for the communication manager:
data structures related to channels, queues related to events, and so on.

2. A main loop on clock cycles is started: The system waits for the next tick (tick bas been
defined as a LOTOS action). Then, each CPU plus its operating system are considered
one after another. Basically, a CPU is meant to interpret DIPLODOCUS application-
level operators of the task selected by the scheduler. More precisely:

(a) Depending on its clock rate, the CPU is activated or not by the Clock manager.
(b) If it is activated, then a first test is performed to see whether one task is in running

state, or not.
(c) If one task is in running state, then, the running state is activated from its former

state. The task executes until either (i) it blocks (for example, it tries to receive one
given event, and that event is not available): in that case, the scheduler is called,
or (ii) it can perform an instruction consuming cycles (e.g., writing a sample to a
non-full channel).

(d) When the scheduler is called, it first checks whether at least one task is runnable.
If no task is runnable, the CPU goes idle. Otherwise, a scheduling algorithm -
implemented in LOTOS - is called to select another task. Then, the state machine
of that task may be called, and so on.

3. Once all CPUs have been selected, a communication manager resolves all inter-CPUs
communication, i.e., all communications set-up by tasks in previous cycle (i.e., all read,
write, notify events, etc.) are really performed only when all CPUs have terminated that
cycle. This ensures (i) that a sample written on a CPU during a cycle may not be read
by another CPU in the same cycle, and (ii) that the order of CPU evaluation has no
impact on results.

The tf() function may also generate debug information in the form of LOTOS actions
performed at well-chosen points: actions to show scheduler data structures (e.g., list of runnable
or blocked tasks), actions to monitor tasks states, actions to monitor the communication
manager, etc.
Finally, tf() has been defined with combinatory explosion in mind. Hence, tf() tries
to precompute possible synchronization between LOTOS processes: if possible, these
synchronization are removed, and resulting processes put in sequence. Unfortunately,
combinatory explosion may also be due to (i) non-deterministic elements: for example random,
choice and temporal operators of tasks; (ii) Non-determinism in scheduling models: for
example, in the round-robin scheduling policy, the possible indexes of tasks, in the tasks list.
Abstraction is a key factor to reduce combinatory explosion. The main idea behind abstractions
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is to remove all software and hardware-related concerns that have no or little impact on
evaluated properties (e.g., load on CPUs and buses). The next subsection is dedicated to
abstractions.

4.4. Abstractions
4.4.1. Task abstraction (see Table I, column “LOTOS Semantics after mapping”)

• Communication operators. These operations are given a cost (in clock cycles), and
are executed by the execution manager along with the communication manager, to
make request on related buses. The cost in cycle depends of the hardware platform.
For example, writing an 8-byte sample on a 32-bit processor takes two cycles. Also, the
communication manager is involved for storing output samples, and for providing data
to input operations. Note that these operations may be blocking, and so, the scheduling
manager may also be involved.

• Cost operators are defined by the number of cycles depending on the hardware
platform.

• Other operators: choice, loop, variable manipulation, etc. These operations are
executed by the task execution manager. They take no cycle since there are used for
modeling the control part of applications only, i.e., the execution cost in DIPLODOCUS
is modeled only with EXECx operations, and definitely not with control operators.

• Temporal operators: They are defined by a number of time units.

4.4.2. CPU abstractions
• Parameters of CPU: Data size (used for communication in channels), size of default

integer and floating point data (used for EXEC operations), cost for each EXECx
instructions, pipeline size (used for calculating the penalty induced by miss branching),
miss branching rate, data cache-miss ratio and penalty, time to enter/leave the idle mode,
clock ratio.

• The Operating System is taken into account with scheduling algorithms (e.g.,
Preemptive priority-based, round-robin), switching time, synchronization management
(events, requests) and communication delay (buffering for handling channels).

4.4.3. Communication abstractions (buses, memories)
Buses are meant to carry data samples with an arbitration policy between requests. The time
a given transfer takes depends on the width of the bus. Bus arbitration is done on each cycle.
Memory delays are modeled throughout bus latencies and cache-miss rates at CPU level, as
proposed for the simulation semantics [2].
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4.5. Formal verification

LOTOS specifications may be derived either from an application modeling, or from a mapping
of applications onto a given architecture (Figure 1).
At application level, tasks have a maximum concurrency between themselves, concurrency
which is reduced when the mapping phase occurs: buses and CPUs are shared resources.
For example, two tasks mapped on the same CPU do not execute in parallel any more. An
interesting property would be that formal traces obtained after mapping are a subset of formal
traces obtained before mapping, that is, a mapping only constrains possible application-level
traces, without violating application-level safety properties (e.g., absence of deadlock). One
of our ongoing work is to prove that scheduling and arbitration policies we have defined for
CPUs and buses, respectively, preserve safety properties proved at application level, that is a
mapping is always correct-by-construction with regards to safety properties.

5. Toolkit

5.1. General overview

TTool [4] is an open-source toolkit initially developed for the TURTLE UML profile [28]. It
now supports several other UML profiles such as the CTTool profile [29], the DIPLODOCUS
profile [1] and the AVATAR profile [?] [30]. TTool includes diagramming facilities, code
generators (LOTOS, etc.) and graph analysis tools.
TTool includes a Graphical User Interface for drawing DIPLODOCUS UML diagrams. From
those diagrams, simulation or formal analysis (see Figure 5) may be performed. Underlying
simulation and validation languages (e.g., LOTOS) are totally hidden to DIPLODOCUS users.
From LOTOS specification, TTool relies on CADP [26] to generate a reachability graph than
can be analyzed directly in TTool (in particular, to detect deadlock situations), to minimize it,
and to compare it with other graphs (bisimulations). UPPAAL offers simulation and model-
checking capabilities. Furthermore, TTool has very fast simulation capabilities [2]. Moreover,
during simulations, UML models can be accordingly animated [31].

5.2. Property analysis with TTool and CADP

1. At first, an application is modeled (e.g., a Smart Card functionalities: its main
application, its TCP protocol stack, etc.). From that modeling a reachability graph is
generated (let us call it rga), and model-checking techniques are used to prove a set P
of properties on the application itself.

2. A hardware architecture is described in terms of CPUs, buses, etc..
3. From the mapping (tasks onto CPUs, etc.), a LOTOS specification is generated, and

from that specification, CADP is used to obtain a reachability graph rg. The following
verification features are supported:

• Minimizing the reachability graph to tick actions. From that minimization, the
longest path of ticks is calculated, therefore resulting in a performance information
on the application (e.g., Worst Case Execution Time).
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Figure 5. TTool for DIPLODOCUS: code generation capabilities

• Minimizing the reachability graph to tick and transferOnBusX. From that
minimization, loads on buses can be deduced. Similar techniques can be used to
compute CPU loads.

• Comparing rg and the reachability graph generated at application level, i.e., to
rga. To do so, a toolkit integrated in TTool first modifies rg so as to make rg
action names compatible with the one of rga, then CADP minimizes the resulting
graphs: if it is proved that rg ⊂ rga, then safety properties proved at application
level are preserved.

• Of course, all usual model-checking techniques can be directly applied to rga and
rgb (e.g., using CADP).

6. Case Study

6.1. TCP/IP Protocol Implementation of a Smart Card

A smart card has the size of a credit card and is equipped with a microchip that securely
stores data mainly used for identification purposes. The data may be periodically refreshed
in order to maintain or enhance the functionality of the card. Smart cards are commonly
used for telephone calling, electronic cash payments, establishing identity when logging on
to some online account or when demanding public health services, paying small amounts of
money (bus, parking, subway fees, etc.). Smart Cards comprise several hardware components
like a microprocessor and different kinds of (non-)volatile memories (ROM, EEPROM, RAM
Flash). Most smart card systems adhere to the standard ISO-7816 standard [32] which includes
multiple parts defining for example physical characteristics, dimensions, involved protocols and
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Figure 6. Component based Diagram of the Smart Card Application

other system properties. For the creation of our model, we mainly relied on the third part of
the standard dealing with electronic signals and transmission protocols (ISO 7816-3).

6.2. Application modeling

The communication application has been decomposed into four DIPLODOCUS tasks
corresponding to the main functional blocks. A task called InterfaceDevice represents the
terminal the smart card communicates with, for instance the card reader at a cash desk.
Another task (SmartCard) models the transmission protocol defined in ISO 7816-3. The
Application task models a basic exemplary application which merely makes use of the basic
TCP services: establishing a session, sending some application data and finally tearing down
the connection. The TCP task accounts for the different phases of the TCP protocol like
connection establishment, data transfer, connection termination. Last but not least, a Timer
task may trigger time outs in the main TCP task.

6.3. Architecture and mapping

To demonstrate the applicability of our methodology, two candidate architectures are
experimented with. A first basic mapping consists of one single CPU onto which all tasks
are mapped. A second option is to map the SmartCard, TCP and Application tasks on one
CPU named MainCPU, and to provide a dedicated Hardware Accelerator to the Timer and
InterfaceDevice task respectively (see Figure 7). The three CPUs are connected via an on chip
bus. For space reasons, the mapping of channels, events and requests is not shown on the figure.
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Figure 7. The Second Mapping for the Smart Card Application

Mapping Min. Cycles Max. Cycles
1 2474 3500
2 198 456

Table II. Verification Results: Performance and Reachability Graph Statistics

In this second mapping, up to three tasks may execute concurrently and thus application
level parallelism can be better exploited. Due to data and synchronization dependencies,
further increasing the number of processing elements would not yield considerable performance
improvements.

6.4. Property analysis

At first, performance measurements are carried out by transforming the UML model into
its LOTOS equivalent. Subsequently, we rely on the CADP model checker to construct a
reachability graph comprising all relevant system transitions. From TTool, the user is able
to define state transitions of interest and to minimize the reachability graph accordingly.
Depending on the respective verification objective, the user may select synchronization or
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Figure 8. Minimized Reachability graph according to property

execution related transitions or add special transitions every x clock cycles. By counting the
latter for every possible system execution, upper and lower bounds on the execution time
can be obtained. An analysis of the first mapping revealed a minimum of 2474 cycles and a
maximum of 3500 cycles, for the second mapping we obtained a minimum of 198 cycles and
a maximum of 456 cycles (cf. Table II). TTool provides means for analyzing the reachability
graph generated by CADP so that these results can be easily deduced (see statistics depicted in
Table II). In addition to performance measurements, we are interested in proving the property
that every established connection is correctly relinquished (hence either closed or aborted).
To that end, we minimize the reachability graph to transitions corresponding to open, close
and abort events generated by the TCP task. That way, we do not even have to express the
property in temporal logics. The proof can be simply conducted by examining the reachability
graph depicted in Figure 8.

7. Conclusions and future work

The paper presents an environment - named DIPLODOCUS - for formal functional and
performance analysis of complex embedded and distributed systems. A system is described
with communicating tasks, hardware architectures and a mapping of tasks and channels onto
hardware architectures. A formal semantics is provided to tasks, communication between
tasks and hardware architectures, making it possible to perform formal analysis before and
after mapping. Moreover, DIPLODOCUS has been implemented in a UML-based and open-
source toolkit named TTool. Formal analysis can be performed with absolutely no expertise
in formal techniques. The DIPLODOCUS environment has been experimented within the
scope of several case studies, including an MPEG2 application, a Smart Card Application and
industrial case studies [27]. As stated in section 4, abstractions are a key factor of our models
in order to alleviate combinatory explosion (and to greatly increase simulation speed [2]): Data
and control flow abstraction at application level (see 3.1) and generic hardware components
at architecture level (see 3.2).
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Trading off accuracy against model complexity of hardware components will remain subject to
our research. For example, instruction cache-misses and data cache-misses have been accounted
for by static probabilities so far. Indeed, as algorithmic details are represented by symbolic
instructions, the real code of the application is not available thus making state of the art cache
models unsuited. Furthermore, the accuracy of bus and memory models shall be validated
against a real embedded system. A fair comparison with a real implementation shall therefore
reveal whether a set of parameters can be found to limit the inaccuracy to a reasonable
percentage. To simplify the modeling of systems making extensive use of DMA engines, a
specific UML stereotype could be introduced. This way, the designer would not have to model
DMA transfers explicitly using a dedicated execution unit.
While being already operational, our environment will be enhanced with three main features.
First, we will define a refinement process from the application modeling step to the after-
mapping step, in order to preserve properties proved at application level. Second, we intend
to assess and adapt post-mapping hardware abstractions - e.g., the ones used for memories
and buses - by confronting mapping results with real implementations. Third, effort will be
dedicated to finding adequate trade-offs between the two extreme cases of formal verification
and conventional simulation. Simulation could cover several alternative system executions by
exploiting indeterminsism inherent to the application model. In case the state space cannot be
explored exhaustively, simulation could be guided by heuristics based on non-functional (CPU
usage, bus loads, power consumption,...) or functional properties (for instance expressed in
TEPE language [30]).
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