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LTE and LTE-Advanced

Cellular Networks Evolution (3GPP) I

UMTS R99 UMTS R4 HSDPA R5 HSUPA R6 HSPA+ R7 HSPA+ R8

LTE R8 LTE R9 LTE-A R10 LTE-A R11

WCDMA IP core network DL improvements:
16 QAM 
AMC/HARQ
Fast scheduling
MAC in Node-B

UL improvements:
AMC/HARQ
Fast scheduling
MAC in Node-B

MBMS (DL)

DL improvements:
MIMO
64 QAM
L3 improvements
L2 improvements

UL improvements:
16 QAM
L2 improvements

Voice over HSPA

OFDMA (DL)
SC-FDMA (UL)
MIMO
AMC/HARQ
64 QAM (DL) 
16 QAM (UL)

MBSFN
MIMO improv.

MIMO improv.
Relays
Carrier aggregation
Het Nets

CoMP

Figure: Evolution of the 3GPP Standards.
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LTE and LTE-Advanced

Cellular Networks Evolution (3GPP) II

M. Coupechoux and Ph. Martins, ”Vers la quatrième génération”
(Towards Fourth Generation), Springer Verlag, 315 pp, to appear
(hopefully) mid 2012.
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LTE and LTE-Advanced

LTE

LTE Requirements:

Peak data rates: 300 (DL) / 75 Mbps (UL)
Peak spectrum efficiency: 15 (DL) / 3.75 bps/Hz (UL)
Average spectrum efficiency: 2.67 (4x4 DL) / 0.74 (UL 1x2)
bps/Hz/cell
U-plane latency < 5 ms
Spectrum flexibility: from 1.4 to 20 MHz

LTE Key Features:

OFDMA (DL) / SC-FDMA (UL)
Adaptive Modulation (up to 64-QAM) and Coding / HARQ
MIMO (up to 4x4): Spatial Multiplexing, Transmit Diversity,
Beamforming, MU-MIMO
Frequency selective fast scheduling
IP-based flat architecture
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LTE and LTE-Advanced

LTE-Advanced Release 10

LTE-Advanced Requirements:

Peak data rates: 1 Gbps (DL) / 500 Mbps (UL)
Peak spectrum efficiency: 30 (DL) / 15 bps/Hz (UL)
Average spectrum efficiency: 3.7 (4x4 DL) / 2.0 (UL 2x4) bps/Hz/cell

LTE-Advanced Rel. 10 Features:

Carrier aggregation (up to 100 MHz)
Clustered SC-FDMA (UL)
MIMO: 8x8 (DL), 4x8 (UL), enhanced MU-MIMO
Relaying
Heterogeneous Networks (HetNets)
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LTE and LTE-Advanced

Coordinated Multi-Point for LTE-A Rel. 11

Goal: coordinate BS transmissions in order to reduce interference and
improve cell-edge throughput.

CS/CB: scheduling and beamforming are coordinated among
clustered BS.

JP: data is transmitted from several BS to the same UE coherently

(tight synchronization is needed) or non-coherently (gain obtained
from power boost).

Figure: Coordinated Multi-Point (CoMP).
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LTE and LTE-Advanced

Outage Probability and SIR CDF

SINR/SIR CDF is a crucial input
for cellular network dimensioning:

Coverage studies:
P [γ < γth], where γth is the
the common control channel
SIR threshold provides
coverage; γth s.t.
P [γ < γth] = 10% provides
cell-edge throughput.

Capacity studies:
channel state distribution
+ M/G/1-PS (or other
Markov chain [25]) approach
provides capacity figures.

SIR threshold

p
ro
b
a
b
ili
ty

Capacity studies

=
M/G/1-PS queueCoverage studies

SIR threshold

p
ro
b
a
b
ili
ty

coverage probability

cell edge throughput

Figure: Outage probability and
dimensioning issues.
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LTE and LTE-Advanced

Outlines

Related Work

Maximum Ratio Transmission

System Model

Outage Probability

Numerical Results
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Related Work

Related Work I

Performance of CoMP has been asserted in several works:

The JP strategy offers larger performance gain than the CS/CB [1, 2].

Multicell cooperation attain larger capacity than an isolated cell
(measurement study [3]).

A field trial [4] confirms the throughput enhancement introduced by
JP-CoMP.

In [5], different JP schemes are proposed and compared numerically.

In [6], zero forcing (ZF) and maximum ratio transmission (MRT)
schemes are studied for femto cell coordination. Two power allocation
algorithms are proposed and compared.

In [3, 4, 5, 6], authors performed simulation, measurement or field
study but no theoretical studies were conducted.
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Related Work

Related Work II

There are few analytical works:

In [7], an analytical expression of the capacity outage probability was
derived for an open-loop Alamouti-like CoMP downlink transmission in
Rayleigh fading. The proposed SINR expression can only be achieved
when using a distributed Alamouti for two cooperating BSs.

In [8], an analytical study of a multi-cell multi-antenna cooperative
MRT/MRC scheme was conducted. An analytical expression of the
PDF of the SIR was derived considering path-loss, shadowing and
Rayleigh fading. Limitations of the study are:

User is supposed to be at equal distances from cooperative BSs,

Shadowing is modeled with a Gamma distribution,

Transmitters are supposed to be Poisson distributed,

Significant differences bw. simulations and theoretical results.

Several works on feedback constraints.

Several works on BS selection algorithms.
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Maximum Ratio Transmission

Maximum Ratio Transmission I

Assume nt Tx antennas and nr Rx antennas without interference, then the
received signal is:

y = Hws + n,

where

H is the nr × nt channel gain matrix,

w is the nt × 1 precoding vector with ||w ||2 ≤ 1,

s is the information symbol, n is AWGN.

n
t
 transmit antennas n

r
 receive antennas

Figure: MRT Model.
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Maximum Ratio Transmission

Maximum Ratio Transmission II

This equation can be interpreted as an AWGN channel with SNR:

γ =
||Hw ||2

σ2
n

E [|s|2].

The scheme that maximizes ||Hw ||2 under the constraint ||w ||2 ≤ 1 is
called MRT.

In general:
||Hw ||2
||w ||2 ≤ λmax(H

HH),

and the optimal precoder is the normalized eigenvector associated to the
largest eigenvalue of HHH.
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Maximum Ratio Transmission

Maximum Ratio Transmission III

If nr = 1, then H = h and using Cauchy-Schwartz inequality:

|hw |2 ≤ ||h||2||w ||2 = ||h||2,

with equality if w is proportional to h∗.

The MRT precoder can thus be written:

wMRT =
h∗

||h|| .

MRT maximizes the received signal power.

Drawbacks of the scheme:

Interference is not taken into account.

Perfect channel information is required at transmitter.
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System Model

System Model I

We consider the following system model:

user k

Cluster B
k

M Tx antennas

N BSs/cluster

K users

Interfering cluster

B BSs in the network

Figure: System Model.
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System Model

System Model II

We assume that JP-CoMP is based on MRT [14].

Received signal can be written:

yk =
∑

b∈Bk

√
pb,khb,kxb,k +

K
∑

i=1,i 6=k

∑

j∈Bi

√
pj ,khj ,kxj ,i + n, (1)

where

pb,k is the power received by user k from BS b, n is the AWGN,

hb,k ∈ C
1×M is the complex Gaussian channel bw. k and b,

xb,k ∈ C
M×1 is the MRT data vector:

xb,k =
h∗

b,k

‖hb,k‖
sk . (2)
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System Model

System Model III

The received power pb,k includes path-loss and shadowing:

pb,k = PTxCr
−η
b,k 10

ξb,k
10 , (3)

where PTx is the total transmit power of BS b, C is a constant, rb,k is the
distance bw. k and b, η is the path-loss exponent and ξb,k is N (0, σ).
Shadowing is now assumed to be constant.

The output SIR perceived by a user k is given by:

γk =

(

∑

b∈Bk

√
pb,k ‖hb,k‖

)2

∑K
i=1,i 6=k

∣

∣

∣

∣

∑

j∈Bi

√
pj ,khj ,k

h∗

j,i

‖hj,i‖

∣

∣

∣

∣

2 =
X

Y
. (4)
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Outage Probability

Outage Probability I

Useful signal CDF

We can write:
X = U2, U =

∑

b∈Bk

√
pb,k ‖hb,k‖ . (5)

U can also be written as:

U =
∑

b∈Bk

√
pb,k

√

√

√

√

M
∑

i=1

|hb,k,i |2. (6)

Closed form expression of the PDF of U is not known, we thus rely on the
central limit theorem for causal functions.

M. Coupechoux (TPT) Outage Prob. for JP-CoMP 09 Mar. 2011 17 / 48



Outage Probability

Outage Probability II

Theorem (CLCF)

Consider n RV Xi ≥ 0 with density fi , means ηi and variances σ2
i . Let

X = X1 + · · · + Xn with density f (t) = f1(t) ⋆ f2(t) · · · ⋆ fn(t). Denote

η = η1 + η2 + · · · + ηn,

σ2 = σ2
1 + σ2

2 + · · · + σ2
n.

Under certain conditions, f (t) ∼ tαe−t/β

βα+1Γ(α+1)
as n → ∞,

where α + 1 = η2

σ2 and β = σ2

η
.

Proof.

see [13].
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Outage Probability

Outage Probability III

The use of the CLCF provides:

fU(u) =
uν−1e−

u
θ

Γ(ν)θν
. (7)

where ν = E[U]2

var(U) and θ = var(U)
E[U] . Denoting V =

√

∑M
i=1 |hb,k,i |2, V is a

square root of a Gamma RV and thus we can write the PDF of V as:

fV (v) =
2

(M − 1)!
v2M−1e−v2

, (8)

E[V ] can be derived using (8) and is given by:

E[V ] =

∫ ∞

0

2

(M − 1)!
v2Me−v2

dv =
(2M − 1)!!

2M(M − 1)!

√
π, (9)
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Outage Probability

Outage Probability IV

So that:

E[U] =
(2M − 1)!!

2M(M − 1)!

√
π
∑

b∈Bk

√
pb,k . (10)

On the other hand:

var(U) =
∑

b∈Bk

pb,kE[‖hb,k‖2] −
∑

b∈Bk

pb,kE[‖hb,k‖]2

= (M − π(
(2M − 1)!!

2M(M − 1)!
)2)
∑

b∈Bk

pb,k . (11)

Note: (2N)!! = 2 × 4 × · · · × (2N) and (2N + 1)!! = 3 × 5 × · · · × (2N + 1).
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Outage Probability

Outage Probability V

The parameters ν and θ are thus given by:

ν =
(2M − 1)!!2

M22M(M − 1)!2−π(2M − 1)!!2
(
∑

b∈Bk

√
pb,k)2

∑

b∈Bk
pb,k

,

(12)

θ =
M22M(M − 1)!2−π(2M − 1)!!2

2M(M − 1)!(2M − 1)!!
√

π

∑

b∈Bk
pb,k

∑

b∈Bk

√
pb,k

. (13)

From (10) and (11):

Mean useful signal power increases with N.

Variability also increases with N.

It can be shown that mean and variance increase with M.
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Outage Probability

Outage Probability VI

Using the Gamma approximation of the PDF of U, we can derive the CDF
of X as follows:

FX (v) =

∫

√
v

0

uν−1e−
u
θ

Γ(ν)θν
du, (14)

=
γ(ν,

√
v

θ
)

Γ(ν)
, (15)

where γ(., .) is the lower incomplete gamma function:

γ(a, x) =

∫ x

0
ta−1e−tdt.
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Outage Probability

Outage Probability VII

Interference PDF

We can write now:

Y =
K
∑

i=1,i 6=k

∣

∣

∣

∣

∣

∣

∑

j∈Bi

√
pj ,kgj ,k,i

∣

∣

∣

∣

∣

∣

2

, (16)

where gj ,k,i = hj ,k
h∗

j,i

‖hj,i‖ .

gj ,k,i is complex Gaussian independent of hj ,i .
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Outage Probability

Outage Probability VIII

Claim ([15])

Consider zero-mean complex Gaussian vectors h0 = [h1,0, h2,0, · · · , hN,0]
H

and hj = [h1,j , h2,j , · · · , hN,j ]
H . Let gj =

hH
0 hj

‖h0‖ .

Then, gj is independent on h0.

Proof.

gj |h0 is zero-mean complex Gaussian and:

E [gj |h0] =
hH

0

‖h0‖
E [hj ] = 0

E [|gj |2|h0] =
hH

0 E [hjh
H
j ]h0

‖h0‖2
=

hH
0 INh0

‖h0‖2
= 1
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Outage Probability

Outage Probability IX

Let ck,i =
∑

j∈Bi

√
pj ,kgj ,k,i , it is the sum of independent complex

Gaussian random variables. Y can be written as:

Y =

K
∑

i=1,i 6=k

|ck,i |2 , (17)

{ck,i}(i=1...K ,i 6=k) being independent zero-mean complex Gaussian
elements with variances:

λi ,k = var(ck,i ) =
∑

j∈Bi

pj ,k . (18)
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Outage Probability

Outage Probability X

The PDF of Y is, hence, given by [16]:

fY (y) =
K
∑

i=1,i 6=k

Πi

λi ,k

exp(− y

λi ,k

), (19)

where Πi =
∏

p=1..K ,p 6=i ,p 6=k

λp,k

λp,k−λi,k
.

Having the PDF of X and the PDF of Y , and since they are independent
RV, we derive the outage probability as follows:

P(γk < γth) =

∫

FX (γthy)fY (y)dy , (20)

=
K
∑

i=1,i 6=k

Πi

λi ,kΓ(ν)

∫

exp(− y

λi

)γ(ν,

√
γthy

θ
)dy . (21)

M. Coupechoux (TPT) Outage Prob. for JP-CoMP 09 Mar. 2011 26 / 48



Outage Probability

Outage Probability XI

The outage probability is given by [17] [18]:

P(γk < γth)=
K
∑

i=1,i 6=k

Πi

(

√

γthλi ,k

2θ

)ν

U

(

ν

2
,
1

2
,
γthλi ,k

4θ2

)

(CoMP)

where U(., ., .) is the confluent hypergeometric function of second kind:

U(a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt.
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Numerical Results

Numerical Results I

Figure: Comparison between simulated and analytical results of the outage
probability without CoMP and with CoMP MRT strategy for 3, 4 or 5
cooperating BSs.

M. Coupechoux (TPT) Outage Prob. for JP-CoMP 09 Mar. 2011 28 / 48



Numerical Results

Numerical Results II

Figure: Influence of the number of transmit antennas.
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Numerical Results

Numerical Results III

Figure: Impact of the noise power on the outage probability.
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Numerical Results

Numerical Results IV

Figure: Comparison with an isolated cell.
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Other Obtained Results

Other Obtained Results I

OFDMA Cellular networks [19]:

P
(

SIReff < δ) = 1 − Q

[

log2(1 + δ) − µMIC

σMIC

]

. (OFDMA)

µMIC = E [Cn], (22)

σ2
MIC =

1

Nsc
(E [C 2

n ] − E [Cn]
2). (23)

E [Cn] =

∫ ∫

(1 − Qf (x , t)) e−xdxdt, (24)

E [C 2
n ] =

∫ ∫

2t (1 − Qf (x , t)) e−xdxdt. (25)

Qf (x , t) = Q

[

10 log10(
x

2t−1) − mf

sf

]

. (26)
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Other Obtained Results

Other Obtained Results II
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Figure: Outage probability at cell edge (r = Rc) and inside the cell (r = Rc/2);
comparison between analysis (solid curves) and simulations (dotted curves) on a
hexagonal network (Nsc = 48, η = 3, σ = 6 dB).

M. Coupechoux (TPT) Outage Prob. for JP-CoMP 09 Mar. 2011 33 / 48



Other Obtained Results

Other Obtained Results III
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Figure: SIR threshold δ in the cell (r = Rc/2) for 2% outage probability as a
function of the shadowing standard deviation; comparison between analysis (solid
curves) and simulations (dotted curves) on a hexagonal network (Nsc = 48,
η = 3).
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Other Obtained Results

Other Obtained Results IV

MIMO Alamouti transmission [20]:

Pout(γth) = 1−
(

p0

2γthβ+p0

)α(

1+
2γthβ

2γthβ+p0

Γ(α+1)

Γ(α)

)

. (ALAM)

α =
2

1 + ρz

(
∑B

j=1 pj)
2

∑B
j=1 p2

j

, (27)

β =
1 + ρz

2

∑B
j=1 p2

j
∑B

j=1 pj

. (28)

ρz = 0.0167 (29)
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Other Obtained Results

Other Obtained Results V

Figure: Pout versus SINR threshold for 2 × 1 MISO Alamouti and 2 × 2 MIMO
Alamouti with MRC receiver systems in case of equal (a) and unequal (b)
received interference power (EP and UEP resp. in legends).
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Other Obtained Results

Other Obtained Results VI

MU-MIMO Zero-Forcing/Beamforming [21]:

Pout(γth) =
Γ(ν + α)

Γ(ν)µνα!

pν
0 (Kγth)

α

(γthK + p0

µ
)ν+α 2F1(1,ν+ α;α + 1;

γthK

γthK + p0

µ

)

(ZF)

where 2F1(., .; .; .) is the Gauss’ hypergeometric function [17],

ν = (1−2(2α−1)θ2−(α−1)2(α−2)

(5α−4)θ2+2(α−1)(α−2)θ
)

(

∑B
j=1 pj

)2

∑B
j=1 p2

j

(30)

µ =
(5α−4)θ2+2(α−1)(α−2)θ

(α−1)(α−2)θ+(α−1)2(α−2)

∑B
j=1 p2

j
∑B

j=1 pj

(31)

α = M − K + 1, θ = (1 − ρ2), ρ = 0.154 (32)
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Other Obtained Results

Other Obtained Results VII

Figure: Outage probability of a zero forcing multicellular precoded system (4
users, 6 antennas at the BS).
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Conclusion

Conclusion

We have derived an approximate closed form expression of the SIR CDF.
Further work:

Consider more realistic scenarios

Compare with other beamforming schemes

Consider dynamic studies

Outage probabilities can be efficiently used for solving various
dimensioning issues:

Effect of network densification [22]

Limiting transmit power in green cellular networks [23]

Perf. evaluation of frequency reuse schemes in OFDMA networks [24]

Dynamic performance study of WiMAX networks [25]
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