Impact on Coverage and Capacity of Reduced Transmit Power in Cellular Networks

Marceau Coupechoux* * TELECOM ParisTech (INFRES/RMS) and CNRS LTCI Joint work with Jean-Marc Kélif (Orange Labs) and Frédéric Marache (Orange Labs)

Green Telecom and IT Workshop, Indian Institute of Science, Bangalore

4 April 2012

- Interference Model
- Outage Probabilities
- Interference Factor Analysis
- Noise and Power Analysis
- Applications
- Conclusion

Interference Model: SINR

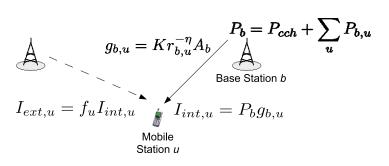


Figure: Interference model.

• SINR is a central parameter for performance evaluation:

$$\gamma_u^* = \frac{S_u}{\alpha(I_{int,u} - S_u) + I_{ext,u} + N_{th}}$$

Interference Model

Interference Model: Output Power

• Other-cell interference factor: $f_u = I_{ext,u}/I_{int,u}$

$$f_u = \frac{\sum_{j \neq b} P_j g_{j,u}}{P_b g_{b,u}}$$

• Transmitted power for mobile u: $P_{b,u} = S_u/g_{b,u}$

$$P_{b,u} = \frac{\gamma_u^*}{1 + \alpha \gamma_u^*} (\alpha P_b + f_u P_b + N_{th}/g_{b,u}).$$

• Total BS output power:

$$P_b = \frac{P_{cch} + \sum_u \frac{\gamma_u^*}{1 + \alpha \gamma_u^*} \frac{N_{th}}{g_{b,u}}}{1 - \sum_u \frac{\gamma_u^*}{1 + \alpha \gamma_u^*} (\alpha + f_u)}.$$

Outage Probabilities: Generic Expression

• For *n* MS with a single service:

$$P_{out}^{(n)} = \Pr\left[\sum_{u=0}^{n-1} T_u > \frac{1-\varphi}{\beta} - n\alpha\right],$$

• where $\varphi={\cal P}_{cch}/{\cal P}_{max}$, $\beta=\gamma^*/(1+\alpha\gamma^*)$ and

$$T_u = f_u + h_u.$$

• Two terms appear:

• The OCIF:
$$f_u$$
 and
• A noise factor: $h_u = \frac{N_{th}}{P_{max}g_{b,u}}$.

Outage Probabilities: Without Shadowing

• The outage probability is now (Gaussian approx.):

$$P_{out}^{(n)} = Q\left(\frac{\frac{1-\varphi}{\beta} - n\mu_T - n\alpha}{\sqrt{n\sigma_T}}\right)$$

where:

$$\mu_T = \mu_{f_0} + \mu_{h_0}$$

$$\sigma_T^2 = \sigma_{f_0}^2 + \sigma_{h_0}^2 + 2\mathbb{E}[f_0 h_0] - 2\mu_{f_0} \mu_{h_0}$$

 Means and standard deviations are taken over the uniform distribution of MS on the cell area.

Outage Probabilities: With Shadowing

• The outage probability is now:

$$P_{out}^{(n)} = Q\left(\frac{\frac{1-\varphi}{\beta} - nM_T - n\alpha}{\sqrt{n}S_T}\right),\,$$

where:

$$\begin{aligned} M_T &= M_f + M_h, \\ S_T^2 &= S_f^2 + S_h^2 + 2\mathbb{E}[f_u h_u] - 2M_f M_h, \end{aligned}$$

• Means and standard deviations are taken both over the shadowing variations and mobile location.

Interference Analysis

Interference Analysis: Fluid Model

- Interfering BS are approximated by a continuum of BS.
- Each elementary surface $zdzd\theta$ at distance z from u contains $\rho_{BS}zdzd\theta$ BS and contributes with $\rho_{BS}zdzd\theta P_bKz^{-\eta}$ to the interference.

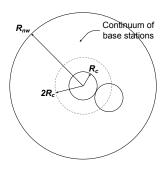
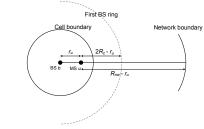


Figure: Cellular network approximation.

M. Coupechoux (TPT)

Interference Analysis: Fluid Model


 Discrete sum is approximated by an integral:

$$I_{ext,u} = \int_0^{2\pi} \int_{2R_c - r_u}^{R_{nw} - r_u} \rho_{BS} P_b K z^{-\eta} z dz d\theta$$
(1)

• If network size is large:

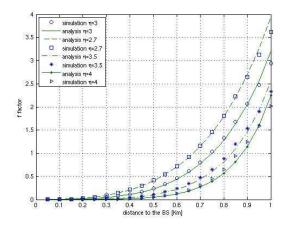

$$f_0 = \frac{2\pi\rho_{BS}r_u^{\eta}}{\eta - 2}(2R_c - r_u)^{2-\eta}.$$
(2)

Figure: Integration limits for interference computation.

Interference Analysis

Interference Analysis: Fluid Model

Figure: Interference factor vs. distance to the BS; comparison of the fluid model with simulations on an hexagonal network with $\eta = 2.7$, 3, 3.5, and 4.

M. Coupechoux (TPT)

Interference Analysis: Without Shadowing

• OCIF is obtained from the fluid model:

$$f_0 = rac{2\pi
ho_{BS}r^{\eta}}{\eta-2}(2R_c-r)^{2-\eta}.$$

• We integrate over the cell area:

$$\mu_{f_0} = \frac{2^{4-\eta}\pi\rho_{BS}R_c^2}{\eta^2-4} \left(\frac{R_e}{R_c}\right)^{\eta} {}_2F_1(\eta-2,\eta+2,\eta+3,R_e/2R_c).$$

where ${}_{2}F_{1}(a, b, c, z)$ is the hypergeometric function, whose integral form is given by:

$$_{2}F_{1}(a,b,c,z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-tz)^{a}} dt,$$

• The same for σ_{f_0} (can be expressed in closed-form using $_2F_1$).

Interference Analysis: With Shadowing

- At a distance r_u , f_u can be approx. by a log-normal RV with Fenton-Wilkinson $\rightarrow m_f$ and σ_f .
- We then integrate RV f_u over the cell area:

$$M_{f} = \int_{0}^{R_{e}} \mathbb{E}[f_{u}|r]p_{r}(r)dr = \int_{0}^{R_{e}} f_{0}(r)J(r,\sigma)e^{a^{2}s_{f}^{2}/2}\frac{2r}{R_{e}^{2}}dr,$$
$$\mathbb{E}\left[f_{u}^{2}\right] = \int_{0}^{R_{e}} \mathbb{E}\left[f_{u}^{2}|r\right]p_{r}(r)dr = \int_{0}^{R_{e}} (f_{0}(r)J(r,\sigma))^{2}e^{2a^{2}s_{f}^{2}}\frac{2r}{R_{e}^{2}}dr.$$

• where
$$J(r_u, \sigma) = e^{a^2 \sigma^2/2} \left(L(r_u, \eta) (e^{a^2 \sigma^2} - 1) + 1 \right)^{-\frac{1}{2}}$$
 and $L(r_u, \eta) = \frac{f_0(r_u, 2\eta)}{f_0(r_u, \eta)^2}$

M. Coupechoux (TPT)

Noise and Power Analysis: Without Shadowing

- This is a simple case since: $h_u = h_0 = \frac{N_{th}}{P_{max}Kr_u^{-\eta}}$
- Mean and standard deviation over MS locations:

$$\mu_{h_0} = \frac{2N_{th}R_e^{\eta}}{P_{max}K(\eta+2)}$$

$$\sigma_{h_0} = \frac{R_e^{2\eta}}{\eta+1} \left(\frac{N_{th}}{P_{max}K}\right)^2$$

• $\mathbb{E}[f_0 h_0]$ involves an hypergeometric function but can be computed with:

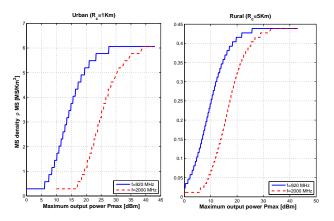
$$\mathbb{E}[f_0 h_0] = \frac{2N_{th}\pi\rho_{BS}}{P_{max}K(\eta-2)} \int_0^{R_e} r^{2\eta} (2R_c-r)^{2-\eta} p_r(r) dr.$$

Noise and Power Analysis: With Shadowing

- Thermal noise factor is now: $h_u = h_0/A_b = h_0 10^{-\xi_b/10}$.
- And so: $M_h = \mu_{h_0} \mathbb{E} \left[10^{-\xi_b/10} \right] = \mu_{h_0} e^{a^2 \sigma^2/2}$ (the same for S_h).
- f_uh_u (both terms are not ind.) can be approx. at a given distance r by a log-normal RV using Fenton-Wilkinson.
- We then integrate over the cell area:

$$\mathbb{E}[f_{u}h_{u}] = \int_{0}^{R_{e}} \mathbb{E}[f_{u}h_{u}|r]p_{r}(r)dr = \frac{4\pi\rho_{BS}N_{th}e^{3a^{2}\sigma^{2}/2}}{P_{max}KR_{e}^{2}(\eta-2)}\int_{0}^{R_{e}}r^{2\eta+1}(2R_{c}-r)^{2-\eta}dr.$$

• Again, this can be expressed in closed-form using $_2F_1$.


Applications: Scenarios

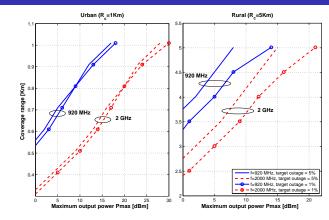
- Common parameters: CDMA network, $\gamma^* = -19$ dB, W = 5 MHz, $\alpha = 0.6$, $\varphi = 0.2$, $N_0 = -174$ dBm/Hz.
- Urban and rural scenarios:

Table: Propagation parameters

	K (2 GHz)	K (920 MHz)	σ (dB)	t	η	R _c
Urban	$4.95 \ 10^{-4}$	6.24 10 ⁻³	6	0.5	3.41	1 Km
Rural	0.88	4.51	4	0.5	3.41	5 Km

Applications: Capacity

- We set $P_{out}^* = 5\%$
- For a given P_{max} , n_{MS} is the max nb. of MS such that $P_{out} < P_{out}^*$

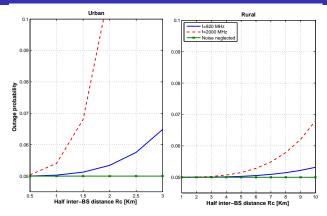

•
$$\rho_{MS} = n_{MS}/\pi R_e^2$$

• Effect of Freq. \uparrow : $K \downarrow$, f_u is unchanged, $h_u \uparrow$

 Effect of Rural deployment: R_c ↑ so more power is needed per MS but K ↑ and σ ↓. Cell range increase has a dominant influence.

Applications: Coverage

- $P_{out}^* = 1$ or 5%
- ρ_{MS} is fixed for rural and urban
- Cov. range *R_e* is variable
- For given P_{max} , we look for R_e such that $P_{out} < P_{out}^*$

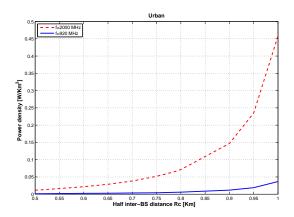

- When P_{max} ↓, R_e ↓ because less MS can be served and average power per MS should decrease.
- A small degradation of QoS allows an important power reduction in rural

M. Coupechoux (TPT)

4 April 2012 17 / 20

Applications

Applications: Should we neglect noise ?



- $P_{out}^* = 5\%$
- $P_{max} = 43 \text{ dBm}$
- n_{MS} is fixed such that $P_{out} = P_{out}^*$ when noise is neglected.
- We then compute *P_{out}* while considering noise.
- Noise neglected $\Rightarrow P_{out}$ doesn't depend on K, frequency, R_c (homothetic networks).
- Noise cannot be neglected for $R_c > 1$ Km in urban and $R_c > 7$ Km in rural at 2 GHz (if we accept 0.5% error).

Applications

Applications: Power Density and Densification

- $P_{out}^* = 5\%$
- MS density constant
- Full coverage is assumed
- For a given R_c , P_{max} is such that $P_{out} < P_{out}^*$
- Power density is $P_{max}/\pi R_e^2$

- At 2 GHz, 11% more BS means half power density.
- Deploying small and femto cells are good means of reducing electromagnetic pollution provided that transmission power is optimized.

M. Coupechoux (TPT)

4 April 2012 19 / 20

- This work analyzes interference, noise and outpout power in cellular networks and their impact on outage.
- Fluid model provides a simple formula for the OCIF.
- Integrations are done both over shadowing variations and MS locations.
- Slight QoS degradation implies much lower output powers (rural).
- Slight increase of BS nbr implies much lower power densities (2GHz).