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CHARACTERIZATION OF THE MAJORITY MATRICES
OF PROFILES OF EQUIVALENCE RELATIONS 1

Olivier HUDRY 2

résumé – Caractérisation des matrices majoritaires des profils de relations d’équivalence
Dans le domaine de la classification, le problème de Régnier consiste à résumer une collection
(appelée un profil) Π de p relations d’équivalence définies sur un même ensemble fini X par une
relation d’équivalence E∗ à éloignement minimum de Π. L’éloignement considéré est fondé sur la
distance de la différence symétrique et mesure le nombre total de désaccords entre E∗ et Π ; la
relation E∗ est alors dite relation d’équivalence médiane de Π. Il est habituel de résumer Π par
sa matrice majoritaire. La matrice majoritaire de Π est une matrice de dimensions n × n, où n
représente le cardinal de X, dont les coefficients sont des entiers compris entre −p et p, ayant tous
la parité de p et telle que les coefficients diagonaux sont tous égaux à p. Le problème considéré
ici est le problème inverse : quelles sont les matrices qui sont matrices majoritaires de profils de
relations d’équivalence ? On montre qu’il est toujours possible de construire un profil de relations
d’équivalence à partir d’une matrice A symétrique, paire ou impaire et dont les termes diagonaux
sont tous égaux et suffisamment grands par rapport aux termes non diagonaux.

mots clés – Matrice majoritaire, distance de la différence symétrique, relation d’équivalence,
classification, problème de Régnier.

summary – In the field of classification, Régnier’s problem consists in summarizing a collec-
tion (called a profile) Π of p equivalence relations defined on a same finite set X by an equivalence
relation E∗ at minimum remoteness from Π. The considered remoteness is based on the symmetric
difference distance and measures the total number of disagreements between E∗ and the equivalence
relations of Π ; E∗ is then called a median equivalence relation of Π. It is usual to summarize Π
by its so-called majority matrix. The majority matrix of Π is a (n, n)-matrix, where n denotes the
cardinality of X, in which all the entries are integers between −p and p and have the same parity
as p, and such that all the diagonal entries are equal to p. We study the converse question : which
matrices may be the majority matrix of a profile of equivalence relations ? We show that it is always
possible to construct a profile of equivalence relations from any matrix A which is symmetric, and
even or odd, when the diagonal entries of A are equal and are large enough with respect to the
non-diagonal entries of A.

keywords – Majority matrix, symmetric difference distance, equivalence relations, classifi-
cation, clustering, Régnier’s problem.
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1. INTRODUCTION

A classic problem in classification or in clustering (for references on classification,
see for instance [Arabie et al., 1996], [Barthélemy and Leclerc, 1995], [Barthélemy
and Monjardet, 1981], [Brossier, 2003], [Brucker and Barthélemy, 2007], [Everitt
et al., 2011], [Mirkin, 1996], [Romesburg, 2004]) consists in gathering objects in
clusters in such a way that objects belonging to a same cluster look like similar
while the objects of two distinct clusters look like dissimilar. More precisely, given
a finite set X = {1, 2, ..., n} of n objects, we consider a collection, called a profile,
Π = (E1, E2, ...., Ep) of p equivalence relations (i.e. binary relations which are refle-
xive, symmetric and transitive) defined on X. Each relation Ek (1 ≤ k ≤ p) may be
interpreted as a criterion gathering the elements of X into classes (the equivalence
classes of Ek) such that the elements of each class share the same value according to
Ek. For instance, if X contains geometric figures which are coloured, a first criterion
may gather the objects with the same geometric shape (triangles, rectangles...), while
a second criterion may gather the objects according to their sizes (big, medium,
small...), a third criterion may gather them according to their colours (red, green,
blue...), and so on. With this respect, Régnier’s problem [Régnier, 1965] consists in
looking for an equivalence relation also defined on X which summarizes Π “as well
as possible”.

To specify what “as well as possible” means, we consider the symmetric difference
distance δ. This distance is defined between two binary relations R and S defined
on X by :

δ(R, S) = |R∆S|,

where ∆ stands for the symmetric difference between sets. We may also state δ(R, S)
as follows :

δ(R, S) = |{(x, y) ∈ X2 s.t. [xRy and not xSy] or [xSy and not xRy]}|,

where xRy (respectively xSy) means that x is in relation with y with respect to R
(respectively S).

Thus the symmetric difference distance, which owns good axiomatic properties
(see [Barthélemy, 1979]), measures the number of disagreements between R and
S. From this distance δ, we may define a remoteness ρ(Π, E) between the profile
Π = (E1, E2, ..., Ep) and any equivalence relation E defined on X (see [Barthélemy
and Monjardet, 1981]) :

ρ(Π, E) =

p∑
k=1

δ(Ek, E).

Thus ρ(Π, E) measures the total number of disagreements between Π and E. Then
Régnier’s problem [Régnier, 1965] consists in computing an equivalence relation
which minimizes the remoteness from Π.

In order to compute ρ(Π, E), it is usual to consider the characteristic matrices
of the relations Ek (1 ≤ k ≤ p) and of E. Given a relation R defined on X,
the characteristic matrix of R is the binary matrix M = (mij)(i,j)∈{1,2,...,n}2 defi-
ned by mij = 1 if i and j are in relation according to R and mij = 0 otherwise.
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Then, if Mk = (mk
ij)(i,j)∈{1,2,...,n}2 denotes the characteristic matrix of Ek and if

M = (mij)(i,j)∈{1,2,...,n}2 denotes the characteristic matrix of E, we easily obtain :

δ(Ek, E) =
∑

1≤i≤n,1≤j≤n

|mk
ij −mij|.

As mk
ij and mij takes binary values, |mk

ij −mij| is also equal to (mk
ij −mij)

2. Then
we obtain, since we also have (mk

ij)
2 = mk

ij and (mij)
2 = mij :

δ(Ek, E) =
∑

1≤i≤n,1≤j≤n

(mk
ij −mij)

2 =
∑

1≤i≤n,1≤j≤n

(mk
ij − 2mk

ijmij +mij).

Similarly, the remoteness ρ(Π, E) becomes :

ρ(Π, E) =

p∑
k=1

δ(Ek, E) =

p∑
k=1

∑
1≤i≤n,1≤j≤n

(mk
ij − 2mk

ijmij +mij),

i.e.
ρ(Π, E) = C −

∑
1≤i≤n,1≤j≤n

(2αij − p)mij,

where C is a constant (equal to
∑p

k=1

∑
1≤i≤n,1≤j≤nm

k
ij) and where αij is equal to∑p

k=1 m
k
ij, i.e. to the number of equivalence relations Ek for which i and j are toge-

ther. With this respect, we may consider that the matrix AΠ = (2αij−p)1≤i≤n,1≤j≤n,
that we shall call the majority matrix of Π in the following, utterly summarizes the
profile Π.

Note that, for any integers i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, 2αij − p is
an integer between −p (this happens if i and j are nether gathered by the relations
of Π) and p (this happens if i and j are always gathered by the relations of Π ; it
is the case in particular when i and j are equal, because of the reflexivity of an
equivalence relation) and fulfils the equality 2αij − p = 2αji − p (because of the
symmetry of an equivalence relation). Moreover, these coefficients have the same
parity, namely the parity of p.

We may summarize these observations as follows. To be the majority matrix of
a profile of p equivalence relations, a matrix A must fulfil the following properties :
1. A is symmetric ;
2. the entries of A are non-positive or non-negative integers with the same parity
as p ;
3. the diagonal entries of A are equal to p (and thus are not equal to 0) ;
4. all the entries of A are between −p and p.

In the next section, we study the converse question : if we consider a matrix A,
what are the conditions on the entries of A so that there exists a profile Π with
A = AΠ ? For this, the following lemma will be useful.

Lemma 1. Let Π1 and Π2 be two profiles and let Π denote the profile obtained by
concatening Π1 and Π2. Then we have AΠ = AΠ1 + AΠ2.

Proof. This equality comes from the expression of the entries of a majority matrix.
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2. MATRICES WHICH ARE THE MAJORITY MATRICES OF PROFILES OF
EQUIVALENCE RELATIONS

B. Debord claimed to provide a characterisation of the majority matrices of the
profiles of equivalence relations in his PhD thesis [Debord, 1987]. Unfortunately, the
claimed characterisation given in [Debord, 1987] and its proof are not completely
correct. We give below a sufficient condition for a matrix to be the majority matrix
of a profile of equivalence relations.

From the end of the previous section, we know that the entries of a majority
matrix of a profile of equivalence relations have the same parity. We first consider
the case of a matrix of which the entries are even, for n ≥ 3.

Theorem 1. Let n be an integer with n ≥ 3 and let A = (a(i, j))(i,j)∈X2 be a matrix
fulfilling the following properties :

1. A is a symmetric matrix ;
2. all the entries of A are even (non-positive or non-negative) integers ;
3. for x belonging to {1, 2, ..., n}, all the entries a(x, x) are positive and equal ;

let p denote this common value of the entries a(x, x) ;
4. p ≥

∑
i<j with a(i,j)>0 a(i, j) + (2n− 3)

∑
i<j with a(i,j)<0 |a(i, j)|.

Then there exists a profile Π of p equivalence relations with A as its majority
matrix (A = AΠ).

Proof. Observe that we have p > 0 since the diagonal entries of A are assumed to
be positive (and not only non-negative).

In order to prove this theorem, we need extra notation. For any integers i and
j with 1 ≤ i < j ≤ n, we define two matrices A+

ij = (a+
ij(x, y))(x,y)∈X2 and A−ij =

(a−ij(x, y))(x,y)∈X2 as follows :
• A+

ij contains only 0’s except for a+
ij(i, j) and a+

ij(j, i), of which the values are equal
to 2, and for the diagonal entries, which are also equal to 2 ;
• A−ij contains only 0’s except for a−ij(i, j) and a−ij(j, i), of which the values are equal
to −2, and for the diagonal entries, which are equal to 4n− 6.

The proof is done in three steps :
• Step 1. For any pair of integers i and j with i < j, we build a profile Π+

ij of two
equivalence relations such that its majority matrix is A+

ij.
• Step 2. For any pair of integers i and j with i < j, we build a profile Π−ij of 4n− 6
equivalence relations such that its majority matrix is A−ij.
• Step 3. We write A as a linear combination of the identity matrix I and of the
matrices A+

ij and A−ij for 1 ≤ i < j ≤ n and we apply the first two steps to build a
profile Π with AΠ = A.

For this, we consider four kinds of equivalence relations defined as follows :
• the equivalence relation X2 which contains only one class (which gathers all the
elements of X) ;
• the equivalence relation U which contains n classes (each class contains only one
element of X) ;
• for i with 1 ≤ i ≤ n, the equivalence relation Ui which contains two classes :
the first one contains only the element i of X, the other one contains all the other
elements of X ;
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• for i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j, the equivalence relation Uij

which contains n− 1 classes : the first one contains the two elements i and j of X,
each other class contains only one element of X (different from i and j).

Step 1. For any pair of integers i and j with i < j, consider the profile Π+
ij which

contains the two equivalence relations X2 and Uij. It is straightforward to check
that its majority matrix is the matrix A+

ij. Indeed, i and j are together twice, and
for the other pairs {x, y} (x and y are not simultaneously equal to i and j), x and
y are together only once, except if x and y are equal (for the diagonal entries), in
which case they are together twice.

Step 2. As n is greater than or equal to 3, consider, for any pair of integers i and j
with i < j, the profile Π−ij which contains the following 4n−6 equivalence relations :
Ui, Uj, Uik for 1 ≤ k ≤ n with k 6= i and k 6= j, Ujk for 1 ≤ k ≤ n with k 6= i and
k 6= j, Uij, 2n−5 copies of X2. It is straightforward to check that its majority matrix
is the matrix A−ij. Indeed, as there are 4n−6 equivalence relations in the profile Π−ij,
all the diagonal entries are equal to 4n− 6. Moreover, i and j are together in 2n− 4
equivalence relations (namely, Uij and the 2n − 5 copies of X2). For x /∈ {i, j}, i
and x are together in 2n− 3 equivalence relations (namely, Uj, Uix and the 2n− 5
copies of X2) ; the same for j and x (by symmetry of the roles played by i and j).
For two distinct elements x and y not simultaneously equal to i and j, x and y are
also together in 2n− 3 equivalence relations (namely, Ui, Uj and the 2n− 5 copies
of X2).

Step 3. Let A = (a(i, j))(i,j)∈{1,2,...,n}2 be a matrix with the properties of the state-
ment of Theorem 1 : all the entries of A are even. Consider the two matrices defined
from A by :

A+ =
1

2

∑
i<j: a(i,j)>0

a(i, j)A+
ij and A− =

1

2

∑
i<j: a(i,j)<0

|a(i, j)|A−ij,

with the agreement that a matrix is equal to 0 if the associated sum is empty.
Set q =

∑
i<j: a(i,j)>0 a(i, j) + (2n− 3)

∑
i<j: a(i,j)<0 |a(i, j)|. Observe that A can

be written as :

A = A+ + A− + (p− q)I,

where I denotes the identity matrix. Indeed, consider two indices i and j with i 6= j ;
if the (i, j)-entry a(i, j) of A is positive (respectively negative), then we recover this
term from the (i, j)-entry of A+ (respectively A−) since the (i, j)-entry of A+

ij (res-
pectively A−ij), i.e. a+

ij(i, j) (respectively a−ij(i, j)), is equal to 2 (respectively −2) ;
conversely, the contribution to the entry a(i, j) of the other matrices involved in
the previous sums is equal to 0 ; so the non-diagonal entries of A and of A+ + A−

are the same. For the diagonal entries of A, the contribution of A+ is equal to∑
i<j: a(i,j)>0 a(i, j) since each diagonal entry of A+

ij is equal to 2, while the contribu-

tion of A− is equal to (2n− 3)
∑

i<j: a(i,j)<0 |a(i, j)| since each diagonal entry of A−ij
is equal to 4n−6. Hence the equality A = A+ +A−+(p−q)I, in which p−q is even.
Moreover, by the assumption 4 of the statement of Theorem 1, p−q is non-negative.
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According to the previous steps, for any given integers i and j with i < j, A+
ij can

be associated to the profile Π+
ij depicted in Step 1 and which contains two equivalence

relations ; then A+ can be associated with a profile Π+ of
∑

i<j: a(i,j)>0 a(i, j) equiva-

lence relations : this profile is obtained as the concatenation of the 1
2

∑
i<j: a(i,j)>0 a(i, j)

profiles Π+
ij. Similarly A−ij can be associated to the profile Π−ij depicted in Step 2 and

with 4n − 6 equivalence relations ; then A− can be associated with a profile Π− of
(2n − 3)

∑
i<j: a(i,j)<0 |a(i, j)| equivalence relations : this profile is obtained as the

concatenation of the 1
2

∑
i<j: a(i,j)<0 |a(i, j)| profiles Π−ij. Moreover 2I can be consi-

dered as the majority matrix of the profile containing two equivalence relations : U
and X2 ; then (p−q)I can be associated to a profile ΠI of p−q equivalence relations :
this profile is obtained as (p− q)/2 replications of the profile (U,X2).

Thanks to Lemma 1, the concatenation of the previous three profiles Π+, Π− and
ΠI shows that A is the majority matrix of a profile of p equivalence relations.

We now turn to the case of an odd matrix.

Theorem 2. Let n be an integer with n ≥ 3 and let A = (a(i, j))(i,j)∈{1,2,...,n}2 be a
matrix fulfilling the following properties :

1. A is a symmetric matrix ;
2. all the entries of A are odd ;
3. for x belonging to {1, 2, ..., n}, all the entries a(x, x) are positive and equal ;

let p denote this common value of the entries a(x, x) ;
4. p ≥

∑
i<j: a(i,j)>−1 (a(i, j) + 1) + (2n− 3)

∑
i<j: a(i,j)<−1 |a(i, j) + 1| − 1.

Then there exists a profile Π of p equivalence relations with A as its majority
matrix (A = AΠ).

Proof. Let 1n,n denote the (n, n)-matrix for which all the entries are equal to 1.
Note that 1n,n is the majority matrix of the equivalence relation X2. Consider the
matrix B = (b(i, j))(i,j)∈X2 defined by B = A+ 1n,n, i.e. b(i, j) = a(i, j) + 1 for any
integers i and j. Thanks to the hypotheses of Theorem 2, B fulfils the hypotheses
of Theorem 1 : B is symmetric, all its entries are even, all its diagonal entries have
the same value, namely p+ 1, with :

p+ 1 ≥
∑

i<j: b(i,j)>0

b(i, j) + (2n− 3)
∑

i<j: b(i,j)<0

|b(i, j)|.

Thus there exists a profile ΠB of p+ 1 equivalence relations associated with B. The
proof of Theorem 1 shows that, among these p+1 equivalence relations, at least one
is equal to X2. By removing such an equivalence relation X2 from ΠB, we obtain, by
Lemma 1, a profile Π containing p equivalence relations and of which the majority
matrix is A : A = AΠ.

To finish, we may pay consideration to the special cases not considered above,
i.e. n = 1 or n = 2.

Proposition 1.
1. If n = 1, A = (a(1, 1)) is the majority matrix of a profile of a(1, 1) equivalence

relations if and only if a(1, 1) is positive.
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2. If n = 2, A = (a(i, j))(i,j)∈{1,2}2 is the majority matrix of a profile of a(1, 1)
equivalence relations if and only if we have :

* a(1, 1) and a(2, 2) are positive and equal ;
* a(1, 2) and a(2, 1) are equal and between −a(1, 1) and a(1, 1), with the same

parity as a(1, 1).

Proof. We give only the sketch of the proof.
1. Obvious.
2. We know that the conditions of the statement are necessary. Then it is suffi-

cient to show about to build a profile of a(1, 1) equivalence relations admitting A as
its majority matrix.
• If a(1, 2) is positive, we consider the profile obtained by the concatenation of the
profile containing a(1, 2) times the equivalence relation X2 and the profile containing
(a(1, 1)−a(1, 2))/2 times the equivalence relationsX2 and U (note that the difference
a(1, 1)− a(1, 2) is even).
• If a(1, 2) is negative, we consider the profile obtained by the concatenation of the
profile containing−a(1, 2) times the equivalence relation U and the profile containing
(a(1, 1) + a(1, 2))/2 times the equivalence relations X2 and U (note that the sum
a(1, 1) + a(1, 2) is even).
• If a(1, 2) is equal to 0 (then a(1, 1) is even), we consider the profile containing
a(1, 1)/2 times the equivalence relations X2 and U .

Details are left to the reader.

3. CONCLUSION

We may summarize the results of the previous sections as follows.
- Necessary condition. If A = (a(i, j))(i,j)∈X2 is the matrix of a profile of p
equivalence relations, then : A is symmetric ; all its entries have the parity of p ; all
the entries a(i, i) (1 ≤ i ≤ n) are equal to p ; for i and j between 1 and n, the entry
a(i, j) is an integer between −p and p.
- Sufficient condition. For n ≥ 3, let A = (a(i, j))(i,j)∈X2 be a matrix fulfilling
the following properties : A is symmetric ; all its entries have the same parity ; all
the entries a(i, i) (1 ≤ i ≤ n) are positive and equal ; the non-diagonal entries of
A are non-positive or non-negative integers of which the absolute value is not too
large with respect to the diagonal entries of A (see above for the exact values) ; then
there exists a profile of a(1, 1) equivalence relations with A as its majority matrix.

The only difference between this necessary condition and this sufficient condition
relies on the relationship between the value of the diagonal entries, i.e. the number of
equivalence relations of the profile, and the values of the other entries. In other words,
if we do not consider the diagonal entries of A, we obtain a full characterization of
the majority matrices of a profile of symmetric and transitive relations (it was the
characterization claimed by B. Debord [1987]) : if we do not consider the diagonal
entries, it is necessary and sufficient that a matrix A is symmetric and is even or
odd (i.e. with all its entries sharing the same parity) to be the majoriy matrix of a
profile of equivalence relations. Anyway, the diagonal entries are interesting because
they give the number of relations of the profile. In the previous constructions, this
number is rather large with respect to the entries of A.
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Then an interesting question related to this subject is the following :

Open problem 1.
Given an even or odd symmetric matrix A, what is the minimum number p∗(A)

so that there exists a profile of p∗(A) equivalence relations with A as its majority
matrix ?

Theorems 1 and 2 provide upper bounds for this minimum number p∗(A). It
would be interesting to decrease these upper bounds. The last open problem pays
attention to the same issue, but from the algorithmic point of view :

Open problem 2.
What is the complexity of the computation of p∗(A) ?

REFERENCES

ARABIE P., HUBERT L. J., DE SOETE G. (eds) “Clustering and Classification,”
World Scientific Publishers, Singapore and River Edge NJ (1996).
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