
Loading Time Optimization in Broadcast TV Applications
Jean-Claude Dufourd

Telecom ParisTech ; CNRS LTCI
37-39 rue Dareau

75014 Paris, France
+33145817733

dufourd@telecom-paristech.fr

Jean Le Feuvre
Telecom ParisTech ; CNRS LTCI

37-39 rue Dareau
75014 Paris, France

+33145817169

lefeuvre@telecom-paristech.fr

Jean-Claude Moissinac
Telecom ParisTech ; CNRS LTCI

37-39 rue Dareau
75014 Paris, France

+33145818088

moissina@telecom-paristech.fr

ABSTRACT
HbbTV, an emerging standard for interactive television, is being
deployed in various European countries, creating bandwidth
demand for interactive services in existing saturated broadcast
networks. The problem of managing often-reused resources, such
as script libraries, in broadcast interactive applications, becomes
acute when trying to find a good compromise between bandwidth
and waiting time. This paper explores the issues that TV channels
have with on-air interactive applications and their optimized
delivery. More specifically, this paper addresses the issue of data
caching between broadcast carousel sessions as a way to optimize
the bandwidth consumption of interactive applications. Proposed
extensions to the current HbbTV specification to help solve the
problem are given, and typical results include significant reduced
waiting time, up to a factor of 3. The implementation complexity
and other potential applications of the proposal are also discussed.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Commercial services, Web-based services; H.5.1
[Information Interfaces and Presentation]: Multimedia
Information Systems; H.5.4 [Information Interfaces and
Presentation]: Hypertext / Hypermedia – User issues

General Terms
Algorithms, Experimentation, Standardization.

Keywords
HbbTV, interactive TV applications, resource management in
broadcast.

1. INTRODUCTION
HbbTV (Hybrid Broadband Broadcast TV), a standard targeting
interactive TV, is getting more and more traction since its
inception in 2009 and standardization by ETSI in June 2010 [1].
HbbTV is actually a conformance, certification and promotional
effort as well as an industry standard adding interactive
functionalities to TV by aggregating and profiling existing
standards such as CEA for CE-HTML, MPEG for video, audio
and transport, DVB for signaling, OIPF (Open IPTV Forum) for
APIs to manage the link between the interactive HTML and the

various subsystems, etc. It builds on well-known and proven
technologies such as HTML, CSS and JavaScript to create
interactive applications.

This standard differs from past standardization efforts in that its
scope includes both broadcast (i.e. unidirectional link) and
broadband (i.e. bi-directional link) delivery mechanisms.
Applications can be delivered either in broadcast within a DSM-
CC carousel [2], or in broadband by HTTP over the Internet. A
carousel is a one-to-many distribution technique for the repeated
transmission of a set of resources, usually a hierarchy of files, so
that a client can start receiving data at any time and get access to
any resource after a maximum waiting time; this time is usually
referred to as the carousel period. Note that when a single carousel
carries several resources, a different carousel period can be
applied to each resource. Well-known examples of data carousel
protocols are DSM-CC and FLUTE [3].

In the process of helping with the French roll out of HbbTV for
TNT 2.0, the name of the future version of DVB-T in France,
(promoted by the HD Forum), we have designed TV applications,
tested applications designed by third parties, developed
application validators, generators and other tools in the
application production tool chain for HbbTV. During these
developments, we faced a recurring problem with HbbTV
applications in the management of resources. In a broadband
environment, the browser, as mandated by the HTTP specification
naturally caches reused resources; in other words, resource
retrieval optimization happens automatically in broadband. In
broadcast however, there is no mechanism available to enable
caching of carousel objects between sessions. As a result, when
broadcast of interactive applications is an important use case, like
in France for TNT2.0, all resources need to be resent every time
they are used, and no optimization is currently possible.

In this paper, we intend to optimize the waiting time of viewers
when tuning into an HbbTV program with an interactive
application by proposing a carousel organization and a caching
scheme for script libraries. The rest of this paper is organized as
follows: Section 2 provides an analysis of carousel mechanisms
and explains the problem of data scheduling through the analysis
of a real-world HbbTV application. A proposed solution to this
problem is given in Section 3. Section 4 gives some result
achieved with the given proposal, along with further
considerations. Section 5 concludes this paper.

2. OF CAROUSELS AND CACHES
2.1 Carousel Basics
When carouseling data over a broadcast link, the main problem to
solve is how to optimize the time taken for the data to be received
at a given bandwidth, hereafter called waiting time. As shown in
[7], usage of a carousel with multiple speeds often helps with the
compromise between waiting times and the amount of bandwidth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroITV’12, July 4–6, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1107-6/12/07...$10.00.

allocated for interactive applications. For example, the set of
resources to be transmitted in the carousel is split into three
subsets: resources that need to be present before the application
can start, resources that are important for the application, and
resources that are nice to have (see [6] and [7] for a more detailed
discussion of classes of resources to take into account for
interactive services). The first set would be repeated at a certain
period, the second set would be interleaved with the first set but
with a slower repetition period, and the third set would be
interleaved with the other two when bandwidth is available, with
an even slower repetition period.

Figure 1: Multi-period carousel

The above figure describes a simplified situation where resources
are sent in one piece, required resources are sent 4 times more
often than important resources, which are sent 4 times more often
than nice-to-have resources. In practice, resources of all types are
cut into smaller sections and some interleaving reduces the impact
of the variance on resource length.

For an HTML/CSS/JS-based application, as is the case in HbbTV
or MHP (DVB-HTML), JS libraries required to construct the page
would have to be allocated to the faster cycle to reduce the
waiting time, so their impact on the required bandwidth is
maximal.

2.2 Overheads in HbbTV Applications
In our experience, among the applications used within a certain
TV channel, most of them come from a small number of
application providers, in general specialized design studios. The
applications coming from the same studios are usually designed
the same way and share many JS libraries: jQuery, mootools, yui,
dojo are such often used libraries, on the Internet as well as on
mobiles and now on TVs. Using those libraries helps with
blurring the difference of browsing quality of experience between
TVs and PCs, which is an important need for TV channels.
However, these libraries are sent with each application, thereby
wasting precious bandwidth and potentially increasing the waiting
time of the carousel.

Another source of duplication among the applications of a
particular channel is the graphics charter of the TV channel: logo,
background, buttons, styles, etc. However, since the application
look and feel is often tuned to that of each broadcasted show, this
may in practice be a smaller source of optimizations.

There are easy strategies to alleviate the impact of waiting for
images; for example, using two images in the HTML document, a
reduced quality version sent at a higher frequency in the carousel,
which can therefore be displayed quite fast, and a full quality
version sent at a lower frequency, whose availability is monitored
through onLoad events in HTML element.

There is no simple equivalent strategy for the JS libraries or most
programmatic elements (e.g., Java Classes). Indeed, application
authors tend to rely on existing libraries, well optimized for Web
infrastructure but usually conceived as a monolithic piece of code:
these libraries cannot be easily divided into a small initialization
part for document preload, then a more advanced sub-library for

document structuring and finally the rest of the library for visual
effects, and are therefore not suitable for multi-period carousels.

Providing a caching mechanism for those resources, allowing
them to be sent once in a while rather than within each carousel at
high frequency, will greatly help in reducing the average waiting
time and the management of bandwidth allocated to interactive
applications.

2.3 A Real-Life Use Case
We base our analysis on a real-life HbbTV application from
France Télévisions, available at the time of writing on all their
channels. It includes text and images for general news, sports
news, weather forecast and ads for various future broadcasts. This
application intends to replace the older teletext system, and as
such targets all receivers, whether connected (broadband) or not;
this implies that all the application data is carried inside the
broadcast link.

Figure 2 - Live France2 HbbTV application

The total size of this application is 550kb, of which 430kb are
images and 113kb are scripts. Transmitted in a uniform carousel
with 100kbit/s, where all resources are sent once per cycle, and
counting 10 bits sent per byte to send to account for overhead, the
maximum waiting time for any resource is 57s. In a carousel with
images transmitted at a 10-1 priority, i.e. all other resources are
repeated 10 times more often than images, the maximum waiting
time would be 17s for other resources and 3mn for images. With
scripts transmitted at a 10-1 priority than required resources, the
maximum waiting time for required resources goes down to 5s.

This means that the very first time a TV uses a particular resource,
it has to wait a maximum of 50s. For following accesses to the
resources (i.e. after a tune out from the channel), the maximum
waiting time would drop from 17s to 5s if scripts were cached. In
terms of bandwidth, to achieve a similar gain of 3.4, we need to
dedicate 340kbits/s instead of 100kbits/s to the carousel. Note that
this simple caching would not change the waiting time of the first
tune-in of the clients, as they still have to fetch the required
resources with long carousel periods.

2.4 Caching in Broadcast
Caching is often mentioned in relation with DSM-CC carousels,
e.g. in [5] as well as in [1] for the minimum DSM-CC cache size,
but with a different focus. The caching starts when the carousel is
accessed, and stops when the carousel is closed. Such caching
improves the waiting time by anticipating requests for a particular
resource: as soon as a carousel is open, received resources are
stored in cache even if the application did not request them yet.
When the request comes, if the resource is already in cache, the
response is immediate. We refer to this mechanism as intra-
carousel caching. This looks very good in theory, but does not
solve our problem in practice. As shown previously, we need a

persistent cache, such that JS libraries could be stored locally after
closing the carousel and fetched back from the cache when re-
opening the application carousel. We refer to this persistent cache
as inter-carousel caching.

The DSM-CC object carousel mechanism, much like many tools
used for file delivery over unidirectional links, does not provide
for caching across sessions: when a session is no longer running,
the transmitted files are no longer required and may be deleted.
More importantly, identifiers used during the session are usually
not meaningful outside of this session. Flute, used for
unidirectional delivery of files over the Internet, provides similar
carousel tools, as shown in [4]. It has however the interesting
property of using URIs as file identifiers, and a useful possibility
is to actually use a located URI as identifier, usually an HTTP
URL. This design implies that:

• resource identifiers are independent from the carousel
session, and can be interpreted once the session is killed,

• a connected device has always the choice of waiting for the
resource to arrive over Flute, or to bypass waiting and get it
from the Internet.

The first feature will be at the heart of our proposal; the second
feature is a direct consequence of using, as an URI, an URL (e.g.
HTTP URL) that resolves to a valid resource on the Internet
network.

3. Inter-Carousel Caching
3.1 Design Principle
Inter-carousel caching is our answer to the aforementioned
limitations: it allows sending data once for several applications,
thereby avoiding duplication, and allows for sending application
data before the application is loaded, thereby reducing loading
times. Such a carousel can be sent whenever available bandwidth
allows for it, preferably before the start of the application carousel
if reducing the load time is the desired effect.

We want our solution to be as transparent as possible for the
content creator (minimal or no changes in content), while
providing an efficient cache for applications relying on broadcast
and broadband networks. As said previously, we need a way to
identify carousel resources even when the carousel is no longer
received; our proposal uses URLs as resource identifiers, which
gives us the possibility to identify network resources as well.

Finally, we would like our solution to provide a generic HTTP
cache push system for any application, HbbTV or not. We have in
mind usage of Push-VOD services relying on HTTP as transport
mechanisms, such as HTTP Streaming solutions (e.g. MPEG-
DASH).

3.2 Simple HbbTV Cache Proposal
Our first design is a very simple extension to the HbbTV
framework, achieved by using a new attribute on elements using
external resources, such as <script>, <link>, , <video>.
Let us take an example of a resource:
<script src="js/jquery.js" type="text/javascript" …/>

In our proposal, the resource would be marked as cachable as
follows:
<script src="js/jquery.js" h:cacheName=”jQuery142” .../>

The implementation would process the extended h:cacheName
first, look for a matching resource in the cache, and if there is no
such resource in the cache, request js/jquery.js from the carousel,
then store the returned resource in the cache before handing it

back to the browser. The above example assumes the definition of
the attribute h:cacheName in another namespace, following strict
XML extension rules. The value of h:cacheName is the global
identifier for the resource, valid across sessions, channels and
multiplexes. It may correspond to the official download URL of
the resource if appropriate.
This proposal is quite simple and efficient, but it has some
limitations:

• It requires some changes in the content.
• It cannot be used for sharing resources across applications

from different providers for obvious security reasons:
libraries could be overwritten with non-compatible or
malicious versions, without any possibility to prevent it apart
from keeping the caches separated between applications, or
at least service providers.

• It cannot be used to cache data not referenced in the HTML
page.

3.3 Generic HTTP Cache Proposal
To overcome these limitations, we designed a second proposal,
which consists in sending the cache instructions together with the
objects to be cached, in a regular object carousel. The carousel
root directory contains a file labeled cache.xml, which provides an
XML description of each item that needs to be cached in this
carousel:

• name of the resource in the current carousel e.g. jQuery142
in our previous example,

• for each carousel referring to this resource:
o the name of the referred resource e.g. js/jQuery.js in our

previous example,
o optionally the DVB triplet identifying the referring

service; this solves naming conflicts, when different
resources, cached or not, are used with the same name in
different channels.

• optionally, some HTTP header fields for cache directives, as
a server would have replied if the resource were queried with
an HTTP GET method.

The cache.xml file can be directly included in the application
carousel, in which case caching is restricted to the current service
provider. If caching needs to be shared across applications from
different providers, a dedicated DSM-CC carousel is declared in
one PMT, with a specific AIT type (currently a reserved one) and
the AIT autostart flag set. Similar to DVB System Software
Update, we force the device to process such a carousel as soon as
it has the possibility. The proposal is naturally backward
compatible with existing implementations, since the cache.xml
file can safely be ignored; moreover, the proposal is very light, the
cache file being quite small (potentially gzipped by DSM-CC)
compared to other files in the carousel.
This second proposal allows the description of caching
instructions of files in a carousel, possibly not tied to any
particular TV channel. While more complex, this approach has the
benefit of not touching the HTML part of the application, only
requiring modification of the HTTP stack in a standard way, using
the HTTP cache header fields given in the XML file. It can also
be used to cache files not referenced by the current HTML
application and with non-HTML applications.

4. Results and Analysis
4.1 Gains
Table 1 describes some more results of applying our proposals to
4 applications. The results are valid for any of our proposals, since

we made sure not to break existing implementations by always
including a long-period carousel for the required resources in each
application. The first application is the one described in Section 2.
The others are applications designed by different agencies for
different customers. All are already on air in France at the time of
writing. Although we studied more than 20 sequences using
external JS libraries, we only show the most relevant applications.

Name Nb
res

Total
Size Scripts Images Max

wait A
Max

wait B
Max

wait C

FTv 147 576k 113k 451k 57s 17s 5s
MS 30 391k 46k 334k 39s 9s 6.8s
CE 14 169k 40k 126k 17s 5.6s 2s
Go 30 395k 43k 346k 40s 8s 4.4s

Table 1: Waiting times for a bandwidth of 100kbits/s
The measurements were made using our HbbTV tools for
bandwidth management developed in the openHbb project
(www.openhbb.eu). All resources except images have been
gzipped, which is a feature of DSM-CC modules. The Max wait
columns describe the maximum time for the application to appear,
even if it is incomplete. Max wait A is the waiting time when all
resources are repeated once per cycle, regardless of their type: for
the first application, the maximum waiting time is around one
minute, but then the application is complete after 1mn. Max wait
B is the waiting time when images are repeated ten times less
often than other resources: it implies that the first application
appears on the screen with no images in a maximum of 17s, and
images appear gradually for the next 3mn. Max wait C is the
waiting time when images and scripts are repeated ten times less
often than other resources: if the scripts are in cache, the first
application arrives after a maximum wait of 5s, then the images
appear within the next 50s; if the scripts are not in cache (first
time) then the maximum wait is for 50s. The improvement from
using our proposal ranges from 25% to 70%, while maintaining
reasonable maximum waiting times for cache misses. Our
experiment showed that using a longer period (priority lower than
10-1) for scripts does not help the overall waiting time much: an
improvement of the waiting time of less than 10% is observed
when scripts are in the cache, with the drawback of a first time
wait increasing from 50s to 9mn for application FTv.

4.2 Discussion
The implementation requirement of our first simple HbbTV
proposal is very small, affecting the resource loader of the HTML
browser to hand over the value of the new attribute h:cacheName
to the carousel manager of the device, which handles the caching.
This caching can be done independently of the HTTP cache of the
device, as the resource will always be accessed through the
carousel transporting the application.

Our second proposal is just slightly more complex to implement,
but it requires automatic mounting of the cache carousel and some
processing for filling up the device cache. However, in order to be
able to share the resources among applications, the cache has to be
global to all carousels and therefore fits best with the HTTP cache
of the device/browser. It should be noticed that better results in
terms of bandwidth occupancy will be achieved by gathering
small resources (e.g. JS files) into a single one when possible (e.g.
a single library): although the cache description is gzipped, it still
grows linearly with the number of files to cache.

One major advantage of our second proposal is its ability to push
HTTP resources over a broadcast link, while keeping the

possibility to access the HTTP resources online if any. We see
several use cases benefiting from this feature.

Leveraging server usage: our solution can reduce the risk of
overwhelming web servers distributing JS libraries or other
resources at the beginning of a popular broadcast with an
interactive application which uses for the first time a new version
of the resource: such a situation could generate millions of quasi
synchronous requests for the same resource. We avoid this by
pushing the requested resource in the device HTTP cache.

Enabling Content Push: our solution allows pushing complete
movies or trailers to the device, without change to the HTML
content. It can also be used for more advanced HTTP streaming,
by pushing the first part of the session to the device, enabling the
playback to start without buffering, and then be switched to a
regular HTTP streaming session if the device is connected.

5. CONCLUSION
In this article, we have reviewed the basic functionalities of data
carousel, including multi-period ones; we have shown how
HbbTV, the upcoming interactive TV standard, is used together
with this mechanism and have identified some overhead in
bandwidth management, leading to longer load time and bad user
experience. We have proposed a new caching paradigm for DSM-
CC, the inter-carousel cache, based on HTTP caching rules, which
allows a better usage of the available bandwidth and a better user
experience. We have shown how this mechanism could
potentially be used for data caching at the service level (data
shared among different providers) and explained the potential
gains. Our future works include standardization related to this
topic, on-air experiments with national broadcaster and upgrade of
our HbbTV toolchain.

6. ACKNOWLEDGMENTS
This work was partly done within the French-funded openHbb
project, www.openhbb.eu.

7. REFERENCES
[1] HBBTV, ETSI Technical Specification 102 796, “Hybrid

Broadcast Broadband TV”
[2] R. J. Crinon, “The DSM-CC object carousel for broadcast

data services,” 1997, pp. 246-247.

[3] Flute - File Delivery over Unidirectional Transport, IETF
RFC 3629, http://www.rfc-archive.org/getrfc.php?rfc=3926

[4] C. Neumann, V. Roca, R. Walsh, Large scale content
distribution protocols, ACM SIGCOMM Computer Com-
munication Review 2005 35 (5) (2005) 85–92.

[5] Steven Morris & Anthony Smith-Chaigneau, Interactive TV
Standards: A Guide to MHP, OCAP, and JavaTV, Focal
Press, 2005

[6] J.-C. Moissinac and C. Concolato, “A model for the delivery
of interactive applications over broadcast channels,” in
Proceedings of the 3rd workshop on Mobile video delivery -
MoViD ’10, 2010, p. 15.

[7] C. Herrero and P. Vuorimaa, “Optimisation Techniques for
Digital Television Applications Broadcasting,” Proceedings
of the 7th IASTED International Conference on Internet and
Multimedia Systems and Applications, IMSA 2003,
Honolulu, USA, pp. 689-694, August 2003.

