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Abstract. A classic problem arising in classification consists in summa-
rizing a collection Π, called a profile, of p equivalence relations defined
on a finite set X by an equivalence relation E∗ at minimum remoteness
from Π. The remoteness is based on the symmetric difference distance
and measures the total number of disagreements between E∗ and Π, and
then E∗ is called a median equivalence relation of Π. It is usual to sum-
marize Π by its majority graph. We study the converse issue. We give a
sufficient condition for a graph to be the majority graph of a profile of
equivalence relations. We then deduce from this that the computation of
E∗ is NP-hard when p is large enough.
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1 Introduction

A classic problem in classification or in clustering consists in gathering objects in
clusters in such a way that objects belonging to a same cluster look like similar
while the objects of two distinct clusters look like dissimilar. More precisely,
given a finite set X = {1, 2, ..., n} of n objects, we consider a collection, called
a profile, Π = (E1, E2, ...., Ep) of p equivalence relations (i.e. binary relations
which are reflexive, symmetric and transitive) defined on X. Each relation Ek

(1 ≤ k ≤ p) may be interpreted as a criterion gathering the elements of X into
clusters (the equivalence classes of Ek) such that the elements of each cluster
share the same value according to Ek. For instance, if X contains geometric
figures which are coloured, a first criterion may gather the objects with the same
geometric shape (triangles, rectangles...), while a second criterion may gather
the objects according to their sizes (big, medium, small...), a third criterion may
gather them according to their colours (red, green, blue...), and so on. With this
respect, Régnier’s problem [7] consists in looking for an equivalence relation E∗
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also defined on X which summarizes Π “as well as possible” (see below for the
meaning of “as well as possible”); E∗ is then called a median equivalence relation
of Π (see [2]).

Section 2 shows how to associate a weighted graph to Π: the majority graph
of Π. In Section 3, we study the converse problem: which weigthed graphs can
be the majority graphs of profiles of equivalence relations? When such a profile
Π exists, what is the minimum number of equivalence relations required in Π?
Thanks to this, we may show (see Section 4) that the computation of a median
equivalence relation of Π is an NP-hard problem.

2 From profiles to weighted graphs

To specify what “as well as possible” means, we consider the symmetric difference
distance δ. This distance is defined between two binary relations R and S defined
on X by:

δ(R,S) = |R∆S|,

where ∆ stands for the symmetric difference between sets. We may also state
δ(R,S) as follows:

δ(R,S) = |{(x, y) ∈ X2 s.t. [xRy and not xSy] or [xSy and not xRy]}|,

where xRy (respectively xSy) means that x is in relation with y with respect to
R (respectively S).

Thus the symmetric difference distance, which owns good axiomatic proper-
ties (see [1]), measures the number of disagreements between R and S. From
this distance δ, we may define a remoteness (see [2]) ρ(Π,E) between the profile
Π = (E1, E2, ..., Ep) and any equivalence relation E defined on X:

ρ(Π,E) =
p∑

k=1

δ(Ek, E).

Thus ρ(Π,E) measures the total number of disagreements between Π and E.
Then Régnier’s problem [7] consists in computing an equivalence relation E∗

which minimizes the remoteness from Π. Such an equivalence relation E∗ is
called a median equivalence relation of Π.

In order to compute ρ(Π,E), it is usual to consider the characteristic matrices
of the relations Ek (1 ≤ k ≤ p) and of E. Given a relation R defined on X, the
characteristic matrix of R is the binary matrix M = (mij)(i,j)∈X2 defined by
mij = 1 if i and j are in relation according to R and mij = 0 otherwise.
Then, if Mk = (mk

ij)(i,j)∈X2 denotes the characteristic matrix of Ek and if
M = (mij)(i,j)∈X2 denotes the characteristic matrix of E, we easily obtain:

δ(Ek, E) =
∑

1≤i≤n,1≤j≤n

|mk
ij −mij |
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and, after some computations:

ρ(Π,E) = C −
∑

1≤i≤n,1≤j≤n

(2αij − p)mij ,

where C is a constant (equal to
∑p

k=1

∑
1≤i≤n,1≤j≤nm

k
ij) and where αij is equal

to
∑p

k=1m
k
ij , i.e. to the number of equivalence relations Ek for which i and j

are together.
Thanks to this, we may define an undirected graph G which summarizes Π:

the majority graph of Π. The set of vertices of G is X and all the possible edges
belong to G: G = (X,X2); any edge {i, j} of G has a weight w(i, j) equal to
2αij − p. Observe that any weight is between −p and p and that its parity is
the one of p; moreover, the weight of any loop {x, x} is equal to p because we
consider reflexive relations. The majority graph of Π utterly summarizes the
data characterizing Π. The next section is devoted to the study of the converse
problem.

3 From weighted graphs to profiles

From the end of the previous section, we know that the weihgts of a majority
graph of a profile of equivalence relations have the same parity. We first consider
the case of a graph of which the weights are even, for n ≥ 3.

Theorem 1. Let n be an integer with n ≥ 3 and let G = (X,X2) be a weighted
undirected graph of which the weights fulfil the following properties:
1. all the weights of G are even (non-positive or non-negative) integers;
2. for i belonging to X, all the weights w(i, i) of the loops {i, i} are positive and
equal; let p denote this common value of the weights w(i, i);
3. p ≥

∑
i<j with w(i,j)>0 w(i, j) + (2n− 3)

∑
i<j with w(i,j)<0 |w(i, j)|.

Then there exists a profile of p equivalence relations with G as its majority graph.

Proof. We give here only the principle of the proof (see [5] for a complete proof).
This proof is based on Debord’s works on equivalence relations [3]. In order
to prove the theorem, we need extra notation. For any integers i and j with
1 ≤ i < j ≤ n, we define two weighted graphs G+

ij and G−ij with all the possible
edges as follows:
• all the weights of G+

ij are equal to 0 except for the edge {i, j} of which the
weight is equal to 2, and for the loops, of which the weights are also equal to 2;
• all the weights of G−ij are equal to 0 except for the edge {i, j} of which the
weight is equal to −2, and for the loops, of which the weights are equal to 4n−6.

The proof is done in three steps:
• Step 1. For any pair of integers i and j with i < j, we build a profile Π+

ij of
two equivalence relations such that its majority graph is G+

ij .
• Step 2. For any pair of integers i and j with i < j, we build a profile Π−ij of
4n− 6 equivalence relations such that its majority graph is G−ij .
• Step 3. We decompose G thanks to the graphs G+

ij and G−ij for 1 ≤ i < j ≤ n
and we apply the first two steps to build a profile with G as its majority graph.
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A similar theorem deals with the case when n is odd:

Theorem 2. Let n be an integer with n ≥ 3 and let G = (X,X2) be a weighted
undirected graph of which the weights fulfil the following properties:
1. all the weights of G are odd (positive or negative) integers;
2. for i belonging to X, all the weights w(i, i) of the loops {i, i} are positive and
equal; let p denote this common value of the weights w(i, i);
3. p ≥

∑
i<j: w(i,j)>−1 (w(i, j) + 1) + (2n− 3)

∑
i<j: w(i,j)<−1 |w(i, j) + 1| − 1.

Then there exists a profile of p equivalence relations with G as its majority graph.

4 Complexity of Régnier’s problem

From the previous theorems and a result due to M. Krivanek and J. Moravek [6],
we obtain the following result about the computation of a median equivalence
relation of Π (see [4] for its proof):

Theorem 3. Given a profile Π of equivalence relations, the computation of a
median equivalence relation of Π is an NP-hard problem.

In the construction used to prove Theorem 3, the number p of equivalence
relations involved in the profile Π is rather large with respect to n. Thus we can
wonder what happens if p is a constant:

Problem 1. What is the complexity of Régnier’s problem if p is assumed to be
a constant?

More generally, we can wonder when Régnier’s problem becomes NP-hard:

Problem 2. What is the minimum number p of equivalence relations with respect
to n so that Régnier’s problem is NP-hard?
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