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Abstract. A classic problem arising in classification consists in summa-
rizing a collection I, called a profile, of p equivalence relations defined
on a finite set X by an equivalence relation E* at minimum remoteness
from IT. The remoteness is based on the symmetric difference distance
and measures the total number of disagreements between E* and IT, and
then E* is called a median equivalence relation of II. It is usual to sum-
marize II by its majority graph. We study the converse issue. We give a
sufficient condition for a graph to be the majority graph of a profile of
equivalence relations. We then deduce from this that the computation of
E™ is NP-hard when p is large enough.
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1 Introduction

A classic problem in classification or in clustering consists in gathering objects in
clusters in such a way that objects belonging to a same cluster look like similar
while the objects of two distinct clusters look like dissimilar. More precisely,
given a finite set X = {1,2,...,n} of n objects, we consider a collection, called
a profile, II = (E1, Es, ...., E,) of p equivalence relations (i.e. binary relations
which are reflexive, symmetric and transitive) defined on X. Each relation Fj
(1 < k < p) may be interpreted as a criterion gathering the elements of X into
clusters (the equivalence classes of Ej) such that the elements of each cluster
share the same value according to Ej. For instance, if X contains geometric
figures which are coloured, a first criterion may gather the objects with the same
geometric shape (triangles, rectangles...), while a second criterion may gather
the objects according to their sizes (big, medium, small...), a third criterion may
gather them according to their colours (red, green, blue...), and so on. With this
respect, Régnier’s problem [7] consists in looking for an equivalence relation E*
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also defined on X which summarizes IT “as well as possible” (see below for the
meaning of “as well as possible”); E* is then called a median equivalence relation
of IT (see [2]).

Section 2 shows how to associate a weighted graph to IT: the majority graph
of II. In Section 3, we study the converse problem: which weigthed graphs can
be the majority graphs of profiles of equivalence relations? When such a profile
II exists, what is the minimum number of equivalence relations required in 117
Thanks to this, we may show (see Section 4) that the computation of a median
equivalence relation of IT is an NP-hard problem.

2 From profiles to weighted graphs

To specify what “as well as possible” means, we consider the symmetric difference
distance 6. This distance is defined between two binary relations R and S defined
on X by:

(R, S) =|RAS|,

where A stands for the symmetric difference between sets. We may also state
0(R,S) as follows:

§(R,S) = |{(x,y) € X? s.t. [xRy and not xSy] or [xSy and not xRy]}|,

where xRy (respectively xSy) means that x is in relation with y with respect to
R (respectively S).

Thus the symmetric difference distance, which owns good axiomatic proper-
ties (see [1]), measures the number of disagreements between R and S. From
this distance ¢, we may define a remoteness (see [2]) p(II, E') between the profile
II = (E4, Es, ..., Ep) and any equivalence relation F defined on X:

p(II,E) = §(Ey, E).
k=1

Thus p(II, E) measures the total number of disagreements between IT and E.
Then Régnier’s problem [7] consists in computing an equivalence relation E*
which minimizes the remoteness from I7. Such an equivalence relation E* is
called a median equivalence relation of II.

In order to compute p(I1, E), it is usual to consider the characteristic matrices
of the relations Fj (1 < k < p) and of E. Given a relation R defined on X, the
characteristic matriz of R is the binary matrix M = (m4;); j)ex> defined by
m;; = 1 if ¢ and j are in relation according to R and m;; = 0 otherwise.
Then, if M* = (mf'j)(i,j)eX2 denotes the characteristic matrix of Ej and if
M = (mij)(,jyex> denotes the characteristic matrix of E, we easily obtain:

§(EpE)= Y |mk—myl

1<i<n,1<j<n
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and, after some computations:

pUILE)=C - Z (2a5 — p)mij,

1<i<n,1<j<n

where C' is a constant (equal to >} _, Yoi<i<ni<i<n mfj) and where a;; is equal
to 3i—1 m?j’
are together.

Thanks to this, we may define an undirected graph G which summarizes II:
the majority graph of II. The set of vertices of G is X and all the possible edges
belong to G: G = (X, X?); any edge {i,j} of G has a weight w(i, j) equal to
2a;; — p. Observe that any weight is between —p and p and that its parity is
the one of p; moreover, the weight of any loop {z,z} is equal to p because we
consider reflexive relations. The majority graph of II utterly summarizes the
data characterizing II. The next section is devoted to the study of the converse

problem.

i.e. to the number of equivalence relations Ej for which i and j

3 From weighted graphs to profiles

From the end of the previous section, we know that the weihgts of a majority
graph of a profile of equivalence relations have the same parity. We first consider
the case of a graph of which the weights are even, for n > 3.

Theorem 1. Let n be an integer with n > 3 and let G = (X, X?) be a weighted

undirected graph of which the weights fulfil the following properties:

1. all the weights of G are even (non-positive or non-negative) integers;

2. for i belonging to X, all the weights w(i, i) of the loops {i,i} are positive and

equal; let p denote this common value of the weights w(i,1);

3.p= Zi<j with w(i,j)>0 w(i, j) + (2n — 3) Zz’<j with w(i,j)<0 w(i, 7).

Then there exists a profile of p equivalence relations with G as its magjority graph.

Proof. We give here only the principle of the proof (see [5] for a complete proof).

This proof is based on Debord’s works on equivalence relations [3]. In order

to prove the theorem, we need extra notation. For any integers ¢ and j with

1 <i < j<mn, we define two weighted graphs G;S- and G;; with all the possible

edges as follows:

e all the weights of G;’; are equal to 0 except for the edge {i,5} of which the

weight is equal to 2, and for the loops, of which the weights are also equal to 2;

e all the weights of G; are equal to 0 except for the edge {i,7} of which the

weight is equal to —2, and for the loops, of which the weights are equal to 4n—6.
The proof is done in three steps:

e Step 1. For any pair of integers ¢ and j with ¢ < j, we build a profile H;; of

two equivalence relations such that its majority graph is G;;

e Step 2. For any pair of integers ¢ and j with ¢ < j, we build a profile II;; of

4n — 6 equivalence relations such that its majority graph is G;.

e Step 3. We decompose G thanks to the graphs G;;- and G for 1 <i<j<n

and we apply the first two steps to build a profile with G as its majority graph.
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A similar theorem deals with the case when n is odd:

Theorem 2. Let n be an integer with n > 3 and let G = (X, X?) be a weighted
undirected graph of which the weights fulfil the following properties:

1. all the weights of G are odd (positive or negative) integers;

2. for i belonging to X, all the weights w(i, i) of the loops {i,i} are positive and
equal; let p denote this common value of the weights w(i,1);

3.p= Zi<j: w(i,j)>—1 (w(i, j) + 1)+ (2n = 3) Zi<j: w(i,j)<—1 lw(i, j) + 1] — 1.
Then there exists a profile of p equivalence relations with G as its magjority graph.

4 Complexity of Régnier’s problem

From the previous theorems and a result due to M. Krivanek and J. Moravek [6],
we obtain the following result about the computation of a median equivalence
relation of IT (see [4] for its proof):

Theorem 3. Given a profile I of equivalence relations, the computation of a
median equivalence relation of IT is an NP-hard problem.

In the construction used to prove Theorem 3, the number p of equivalence
relations involved in the profile IT is rather large with respect to n. Thus we can
wonder what happens if p is a constant:

Problem 1. What is the complexity of Régnier’s problem if p is assumed to be
a constant?

More generally, we can wonder when Régnier’s problem becomes NP-hard:

Problem 2. What is the minimum number p of equivalence relations with respect
to n so that Régnier’s problem is NP-hard?
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