
A Distributed Algorithm for Adaptive Traffic Lights Control in Wireless
Sensor Networks

Sébastien Faye, Claude Chaudet, Isabelle Demeure

Abstract— In this paper, we address the problem of control-
ling traffic lights at an intersection with a wireless sensor net-
work. We propose a wireless sensor network architecture that
does not depend on a centralized coordinator and we separate
logically this distributed network into 4 levels of hierarchy. On
this architecture, we define and evaluate through simulation
a phases selection algorithm that decides dynamically of the
movements composing the next phase and of the duration of this
phase. Simulation results show that this algorithm, if properly
tuned, has the capacity to reduce average waiting time at an
intersection, while avoiding starvation for multiple load levels.

I. INTRODUCTION

Traffic Lights Controllers (TLC) are devices that define
a road intersection behavior by controlling when each traf-
fic light becomes red or green and for how long. These
devices traditionally use a static plan: switching sequence
and timings are pre-determined and are independent of the
traffic conditions. Adapting the order and duration of the
green lights in function of the actual traffic could prevent
for example leaving a green light when no vehicles wants
or is able to cross the intersection. Such reactive strategies
shall improve significantly the road network performance,
reducing the traffic load as well as the users journey time.

In this article, we explore how to use a wireless sensor
network (WSN) to dynamically control traffic lights. WSN
are a kind of ad-hoc network in which elements have
limited capacities in terms of energy, memory, computa-
tion power and communication. These sensor nodes, which
communicate using wireless transmissions, represent a cheap
alternative to the classical induction loops and can therefore
be deployed at a much higher density, potentially controlling
every intersection of a city.

Classically, the literature addresses intersections that are
composed of four directions, as represented on figure 1. Each
direction is further decomposed into one left lane for vehicles
turning left and one or more right lanes for vehicles going
straight or turning right. A TLC controls, at each moment,
which movements are allowed. Each movement is usually
identified and represented by the cardinal directions of its
origin and destination. For example, on figure 1, WE denotes
the movement from West to East1.

At a given intersection, multiple movements can occur
simultaneously, provided that they do not interfere. Such a

All authors are with the Institut Mines-Telecom, Telecom ParisTech,
CNRS LTCI UMR 5141, Paris, France (e-mails: {first.last}@telecom-
paristech.fr).

1The NEMA (National Electrical Manufacturers Association) numbering
provides a more general, numerical nomenclature that allows to represent
more complex intersections.

Controller

BS

Traffic light

Sensors : arrivals and departures detection.

Base station : measures collection from sensors,
computation, traffic lights configuration decision.

BS

Possible movements

SW SN

NS NE

EW

ES

WN

WE

Fig. 1: A typical 4-lanes intersection with 2 sensors per lane.

combination of movements is called a phase. A sequence of
phases in which every movement is selected at least once is
called a cycle.

The work presented here aims at letting a WSN dy-
namically compose phases based on its perception and on
the data individual sensors exchange. Section II reviews
relevant related works in Intelligent Transport Systems (ITS)
and WSN domains. We then specify a hierarchical WSN
architecture in section III and propose a traffic lights control
algorithm at a single intersection in section IV. We evaluate
this algorithm by simulation in section V. The results we
obtain demonstrate that an adaptive control algorithm leads
to a smaller average waiting time than a fixed, predetermined
scheme. We conclude the paper in section VI and discuss the
extension of this work to multiple intersections.

II. RELATED WORKS

A. Wireless Sensor Networks for ITS

Adaptive ITS that use sensors ([1], [2], [3], [4], [5]) are
generally used to feed a queueing model, which requires
to evaluate either the number of vehicles on each lane of
an intersection, or to capture the vehicle arrival process
intensity. If radars and induction loops are typically used for
such measurement, their cost reserves them to main roads.
Magnetometers represent much cheaper alternatives to count
of the number of vehicles in an area or on a lane ([6],
[7], [8]). They work similarly as induction loop, detecting
metallic vehicles by measuring the change on the earth’s
magnetic field. According to [7], such a device is able to

detect 99% of the vehicles that pass over it. Two coupled
magnetometers can identify a vehicle type and measure its
speed and length if they are separated by a known distance.
Cameras represent an even cheaper solutions, as they do
not require roadworks for installation and can achieve a fair
accuracy with image processing techniques, even though they
have a limited angle of vision and are sensitive to obstruction.

Such sensors can be improved with an attached processing
unit to perform image processing or to filter out false
detections. They can also be given communication capa-
bilities for remote management and maintenance through a
wireless network interface that does not require cabling. With
appropriate power source (battery, solar panel or wiring on
the traffic light, e.g.), these devices are ready to form a WSN
able to monitor every intersection in a neighborhood or a city
and every lane of each intersection.

The use of such a network reporting measurements and
receiving directives from a control center has already been
evoked in the literature. Mimbela et al. [8] and Knaian [9]
both evoke a very low manufacturing cost – less than $ 30
per unit – and small size – similar to a coin – and hence
confirm that sensors can be efficient in many environments.
Corredor et al. [10] even show that such networks perform
better than induction loops, because of their responsiveness,
ease of installation and number of measurement points.

B. Network architecture

As illustrated on figure 1, a typical sensor network for
ITS is generally deployed around a traffic controller, or base
station, that provides at least access to a global network and
hence connectivity to a control center in which operators
are able to modify the lights behavior and timing. Such
an ITS generally comprises multiple sensors deployed on
the road. The question of the number and position of the
sensors is important, as it influences the measurement quality
and defines the core of the network architecture. Monitoring
every circulation lane with a sufficient accuracy requires to
deploy either one magnetometer per lane, or to have a 360o

coverage of the intersection with cameras. Zou et al. ([5])
use only one sensor per direction and assume this sensor is
able to detect vehicles up to a distance of 5 meters, and to
distinguish two lanes for each direction.

Using a second sensor on every lane allows to reach a
better accuracy ([3]). In addition, it allows to detect abnormal
behaviors that a single sensor may miss, for example frauds
or inactivity of a vehicle. Coupling both sensors also allows
to evaluate other metrics such as vehicles speed or lengths.

Concerning the sensors placement, it is possible to pre-
calculate their positions and to install them statically, or to
allow dynamic placement in function of the traffic condition.
Using a too small distance makes the system inefficient, as
the measured queues size are quickly bounded. Yousef et al.
[2] propose to separate the two sensors by a distance that
corresponds to 8 vehicles, while Tubaishat et al. [3] prefer a
shorted distance, between 5 and 8 vehicles. Zhou et al. [4]
estimate that the best distance between two sensors is equal
to the product of the average vehicle speed by the maximum

time a light is allowed to stay green and hence that this
distance should be dynamic.

C. Traffic lights control algorithms

The contributions evoked above suppose that the sensor
network is only used to report measurements to a central
server that takes decisions globally. However, a WSN dis-
poses of a certain computation power and could implement
local algorithms, solving easy problems without the help of
a central decision point. Such a local approach not only
enhances responsiveness, as communication latency is lower,
but also fault tolerance, as the failure of the base station, for
instance, does not cut sensors from all intelligence anymore.
A few authors have examined how such an autonomous
intersection could work. The core notations used in this
section and in the rest of this paper are listed in table I.

TG Duration a given light remains green.
Ts Vehicles start-up delay when a light becomes green.

Tmax

maximum time a light is allowed to stay green (lim-
ited by operators, usually to enhance users perception
of the network responsiveness).

Ni, Ny Queue length corresponding to lane i or to movement
y.

λ Average vehicles arrival frequency.

µ
Average frequency at which vehicles leave the inter-
section when the light is green (departure rate)

TABLE I: Notations used in this article

Al Nasser et al. [1] compute an average queue length for
each lane and define green time as TG = min(Ts+∆, Tmax),
where ∆ is a variable time that depends on this queue length.
Yousef et al. [2] propose a more developed solution. In
figure 1 eight possible movements exist : two per incoming
direction. The main idea of this paper is to describe each
movement y as an M/M/1 queue. The different movements
queues lengths (Ny) and the average waiting time (AWT =
Ny/λ) are determined using Little’s law. If we denote by
TG the time a light stays green and by TR the time it
stays red, the queue length for a lane i varies according to
NC

i = NC−1
i + λTG − µTG + λTR, where C represents the

current cycle number and µ the average departure frequency.
λTG and λTR vehicles arriving during the green and red light
respectively and µGTG vehicles leave during the green light.
Using this equation and a matrix that identifies conflicting
movements, the algorithm proposed by Yousef et al. selects
movements combinations in order to minimize the average
queue length and waiting time. The algorithm determines
all allowed movements combinations, sums the number of
vehicles in the corresponding queues, and select, as the
next phase, the movements set that has the largest total
number of vehicles. The green light time is then calculated
proportionally to the queues sizes.

Tubaishat et al. propose a general model in [11] and
provide a complete traffic lights control solution in [3]. They
pre-define three set of phases, composed respectively of 4,
6 and 8 phases. Cycles are then defined on one of these sets
by ordering phases in a greedy manner based on the queues

sizes. Evaluation is performed with Green Light District
simulator (GLD, [12]), which does not support variable
green light times, though. These contributions suppose a
conflict-free scheduling and are therefore too rigid in several
situations. In addition, considering only the queues length
may lead to famine situations, as in [2].

Zhou et al. ([4]) provide a traffic lights plan based on
movements combinations that can be performed simultane-
ously without any conflict. For example, on figure 1, EW
and WE movements can happen simultaneously, as well
as WN and WE, or WN and ES, which defines 8 phases
possibilities. Their algorithm then selects the sequence of
phases in a cycle, according to the following criteria, by
decreasing importance :

1) Lanes with imperatives (e.g. : emergency vehicles).
2) The number and size of blanks. A blank is defined as

an event that is raised each time no vehicle is detected
by a sensor during a time TBlank > Lveh/Vveh. The
blank is valued with a length LBlank = TBlank ∗Vveh.
If all combinations have at least one blank, the one
having the shortest first recorded blank is selected. If
this combination is selected, more cars can pass. If
one or more cases have no blank, then we pass the
next test.

3) Each lane hunger level, to prevent starvation.
4) The combination that has the largest total waiting time.
5) The largest queue.
Finally, Zou et al. [5] define green lights times using fuzzy

logic : each green time is determined based on a set of load
intervals. For example, if less than five vehicles by minute
are detected, the green time will be 10 seconds.

III. WSN ARCHITECTURE

In our work, we chose to suppose that the sensors used
to monitor the vehicles traffic are magnetometers, as they
are accurate and (relatively) cheap. This only influences the
proposed deployment and does not represent a strong con-
straint, though. Cameras could represent a better alternative,
especially when it comes to installation-related civil works,
as they can be installed on the light directly, without any
roadworks. However, they are more easily obstructed and
pose privacy issues.

Based on the results and good practices from the literature,
a sensor network that monitors and controls an intersection
should be composed of at least two magnetometer sensors
per lane. The distance between sensors should be sufficient to
have a correct sampling. Ideally the distance between the two
sensors should be dynamic, which can be achieved either by
placing a moving detector on security rails, or by multiplying
the installed sensors and selecting the best couple of active
sensors in function of the traffic condition. These sensors
shall collect, aggregate and exchange data in order allow
selecting a phases that will be communicated to the TLC
that is in charge of changing the green lights accordingly.

The TLC only plays the role of the actuator in this scenario
and computation of the light plan can be performed by any
node. Similarly, the base station role is limited to the one

of a simple communication interface, providing access to
the control center that can disseminate global policies and
directives. Such a link also provides access to other sensors
that can exchange data about other intersections, preventing
for instance, cascade effects. The TLC and base station
can be located on the same physical machine, or separate
depending on the local setup.

Direct communication from the sensor devices to the base
station prevents spatial reuse, which could lead to a wireless
channel capacity problem when the network becomes dense.
Sensors should therefore form a low-range mutlihop net-
work and auto-organize. Auto-organization has been widely
studied in the fields of wireless mutihop networks and
autonomous solutions exist for addresses allocation, election
of central points and routing. Ad-hoc and sensors routing
protocols, in particular, are mature enough so that we can
safely rely on an off-the-shelf solution to create and maintain
routes, reacting to nodes faults or wireless channel problems.

Controller

Interface

External
network

Traffic light

Intermediate computations (layer 3)

Arrivals detection (layer 1)

Departures detection (layer 2)

Final computations / decision (layer 4)

BL sensors

AL sensors

Fig. 2: Our hierarchical model

In this scenario, we chose to organize sensors in a hi-
erarchical architecture, as represented on figure 2. Sensors
are organized in two main layers : (1) Before Light (BL)
sensors continuously collect vehicle arrivals, and are placed
at a distance chosen by the designer; (2) After Light (AL)
sensors collect departures, only when the corresponding light
is green. AL sensors have less load to handle than BL sensors
and consequently, they are in charge of data aggregation
and decision-making process. We may further divide the
set of AL sensors in two, defining an additional layer : in
case a movement involves several lanes, we must elect a
sensor that aggregates collected data for each movement.
Finally, we have to elect a master sensor, that collects
each movement data and applies a decision algorithm. This
sensor only needs to inform AL sensors and to transmit the
corresponding order to the interface, that transmits to TLC
for decision application. Figure 3 represents this hierarchy
and materializes communication paths.

This architecture does not give particular roles to individ-

NE			NS		WN			WE		SW										SN										ES							EW
Layer 1

Layer 2

Layer 3

Layer 4

Fig. 3: Sensors hierarchy and communication paths

ual sensors. The sensors that belong to the highest layers
(layer 3 and 4) are elected among the set of AL sensors, and
they can be re-elected when the control center decides so,
or when the sensors themselves notice a neighbor’s failure,
radio channel overload or any other problem.

A battery-operated sensor (e.g. a mobile sensor) may
also detect when its battery level decreases under a certain
threshold and send a re-election request to its neighbors.
When a layer-1 or layer-2 sensor is faulty, the layer-3 sensors
can either fall back on a redundant sensor if available, or
use statistical or pre-defined data in place of the acquired
information.

This hierarchical architecture also eases data aggregation :
each layer naturally aggregates data from the lower layer.
Arrivals can be detected and accumulated by BL sensors over
a full phase and results can be transmitted to AL sensors only
once per phase, which saves energy and bandwidth. Finally,
AL sensors may sleep when red light triggers.

IV. TRAFFIC LIGHTS CONTROL ALGORITHM

A. Philosophy

We use the architecture described above as the supporting
infrastructure for a traffic lights control algorithm. This
algorithm is designed to be flexible and easily adaptable to
any intersection configuration. Even though it takes decisions
on its own, at the level of a single infrastructure, it can
be customized or influenced by engineers and operators
that can set variables from the control center. More specif-
ically, operators can specify the desired behavior of each
intersection by uploading the set of allowed simultaneous
movements through the conflict matrix described below, or
tune user-level parameters such as the maximum waiting
time allowed, Tmax. If the classical algorithms usually work
at the cycle granularity, we chose to have a more reactive
approach. Instead of defining cycles, we re-evaluate the
situation at every phase and select the next phase based on
the observed system parameters. The notion of cycle does
not exist anymore in our model.

B. Conflicts management

Our algorithm uses a conflict matrix, that describes all
possibles cases of conflicting movements and drives phases
creation. In practice, some intersections allow certain con-
flicts to reduce the number of possible phases. In this case,
green light is given to low priority movements simulta-
neously with higher priority movements. We consider two
possibilities, to study the algorithm behavior in two different
cases : either the conflict matrix forbids all simultaneous

movements as soon as an interaction exists (such as matrix
#1 on figure 4), or certain conflicts that do not pose safety
problems are allowed (matrix #2 on figure 4). Matrix #1 does
not only allow or forbid certain simultaneous movements, it
also keeps track of which movements are in conflict, which
allows an algorithm to treat differently the case in which
a movement is selected alone and the case in which it is
selected with a conflicting movement. It is also necessary to
represent single-lane systems, e.g. when vehicles turning left
can block vehicles going straight. The matrices here only
record allowed and disallowed conflicts, but a larger scale
can be used to represent different conflict severities.

NS NE SN SW WE WN EW ES

NS

NE

SN

SW

WE

WN

EW

ES

NS NE SN SW WE WN EW ES

NS

NE

SN

SW

WE

WN

EW

ES

Non-allowed	conflict Allowed	conflict Any	conflict

Matrix	#2Matrix	#1

Fig. 4: Conflict matrices

1) General algorithm on a single intersection: Once the
architecture is in place and configuration data such as the
conflict matrix is obtained from the control center, the dif-
ferent sensors start to communicate during phase P in order
to select dynamically the which movements will compose
phase P + 1. The algorithm then apply is composed of 7
steps described hereafter.

1) Count: For each lane i, each BL sensor sends the
number of arrivals during the phase P (NA

i) to its
corresponding AL sensor and resets its vehicle counter
to 0. Each AL sensor monitors the number of vehicles
departures during the phase (ND

i) and keeps track of
the number of vehicles that were present on the lane
at the beginning of the previous phase (NP

i). From
these values, it computes the number of vehicles at the
beginning of the phase P+1: NP+1

i = NP
i +NA

i −ND
i .

If others lanes are used for the same movement, it
transmits NP+1

i to the movement layer 3 leader sensor.
2) Movement aggregation: Each movement leader, y,

maintain the time elapsed since the last selection of
the movement, T y

F , to detect and prevent starvation.
It sums the NP+1

i values to get Ny , the total queue
length for movement y. Finally, it transmits these two
values to the network leader (layer 4) sensor.

3) Evaluation: Layer 4 leader computes the score func-
tion (S(y)) for each movement y according to the
following algorithm that takes into account famine and
queue length:

a) If no vehicle is present for movement y (i.e.
Ny = 0), S(y) = 0.

b) Otherwise, S(y) is computed by summing T y
F

and Ny . Each of these values is normalized
and weighted by user-defined weights (WN and

WTF
), in order to let operators favor one or the

other objective. For an intersection that comprises
M movements, the score of a given movement is
defined by:

S(y) = WN ·

Ny ·
100

M∑
a=1

Na

+WTF ·

T y
F ·

100
M∑
a=1

T a
F


This expression mixes starvation and queues
length-related criteria, which leads to good re-
sults in several situations. It cab however easily
be modified to include data coming from other
intersections, policies transmitted from a control
center, or to limit explicitly starvation time.

4) Candidate phases listing: depending on the conflict
matrix, layer 4 leader computes all combinations of
conflict-free movements. If some conflicting move-
ments are allowed, they are added up, possibly with
a reduced influence, or by bounding for example the
maximum number of cars allowed/expected to pass in
this case.

5) Phase selection: among the set of combinations (each
candidate phase), select the combination with max-
imum total score. At this stage, additional criteria
can be considered (e.g. : emergency vehicle detection,
combination avoiding in case of accident detection).

6) Define green light time: once the phase is selected,
the minimum time required to let all vehicles pass is
equal to TP = Ts + Nmax ∗ TH , where Nmax is the
number of vehicles for the lane having the greatest
number of vehicles among all selected phase lanes. For
simulations, we set Ts = 4 and TH = 2, complying
with [13], but these timings can be learnt or adjusted
during the network lifetime. Letting all vehicles of one
lane pass can lead to an excessive waiting time for
other lanes. We need to bound this time by a static
value, Tmax. In the case of TP < Tmax, additional
vehicles can arrive on AL sensors, and make the green
time increase by TH , until eventually reaching Tmax.

7) Application: finally, layer 4 leader sends the result to
the interface for application. Moreover, it broadcasts
a reset message to layer 3 sensors concerned by the
phase, so that F y = 0 and T y

F = 0 for the next phase.
All sensors continue logging arrivals and departures.
When the phase is finished, the light stays green and
the algorithm is re-executed. Thus, in some cases, lanes
can keep green light. In other cases, yellow light starts
for an estimated duration of 4 seconds ([13]).

C. Transmission costs evaluation

A naive communication protocol in which sensors only
report to a central decision point their measurement results
would generate total arrivals + total departures notifications
per phase. With our communication protocol, there are

between 3*total lanes - 1 and 3*total lanes - 1 + additional
vehicles transmissions per phase, without the leaders election
and self-organization protocols. Self organization protocols
usually rely on regular broadcast of control frames and
election can be performed in O(log(α)) messages, where
α is the number of nodes to elect.

D. Algorithm extensions

Here, we focus on traffic lights control; however, exten-
sions can easily be envisioned : collision risk detection,
control center influence, add pedestrian management, lanes
individualization (bus or taxi network management), etc.
Moreover, we can extend this algorithm to multiple inter-
sections. In this case, each intersection executes its own
algorithm with its own parameters, but can anticipate ve-
hicles arrivals from neighboring intersections. Consequently,
we can imagine a new S(y) influence parameter, growing
gradually as more vehicles approach. We do not explore
this approach here. Finally, insist that S(y) is central to the
phase selection selection phase : we can use extra weights
to favor other objectives, for example influence the user to
take particular directions.

V. SIMULATIONS

In this section we evaluate our algorithm with SUMO
(Simulation of Urban MObility, [14]). SUMO is an open-
source, discrete time, continuous space and microscopic
simulator entirely coded in C++ to model traffic flow. Specif-
ically, it allow to place sensors and retrieve their values by
connecting to a simulation, and allows to create TLC algo-
rithms. We evaluated the previously described algorithm in
five load repartition scenarios : 1, 2 (opposite or orthogonal),
3 or 4 directions are subdued to a low arrival rate (λ vehicles
per second) while the others suffer from a higher load (3.λ
vehicles per second). We evaluated each of these scenarios
for three different base traffic values (λ = λ0, λ = 3.λ0,
λ = 6.λ0) and each of the simulations ran during 2000
program steps, which represents 2000 s. The results presented
below are the average on 5 runs of a scenario (repartition,
load) with different random seeds.

A. Parameters choice

The choice of the scoring function weights (WN , WTF
)

and of the green time limit (Tmax) are expected to have
a strong influence on the performance result. We chose to
evaluate these parameters by testing 5 weights configurations
(WN , WTF

): (1,0), (3,1), (1,1), (1,3), (0,1) and five values
for Tmax: 15, 30, 45, 60, 75 seconds. Because of space
constraints, we only present the results for the uniform high
load scenario. However, all results exhibit the same behavior,
and all our results are available online at [15].

Figures 5(a) and 5(b) represent the average waiting time
at an intersection for the different parameters combinations,
when conflicts are forbidden and allowed respectively. The
inline figure represents, a zoom on the average waiting
times for the different weights combination for Tmax value
that gives the best performance. We can first notice that

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

220	

240	

260	

280	

300	

320	

15	
 30	
 45	
 60	
 75	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

TMAX	

(1,0)	
 (3,1)	

(1,1)	
 (1,3)	

(0,1)	

35	

40	

45	

50	

55	

60	

65	

(1,0)	
 (3,1)	
 (1,1)	
 (1,3)	
 (0,1)	
 Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

S(y)	
 coefficients	
 (WN	
 ,	
 WTF)	

TMAX	
 45	

(a) (WN ,WTF
) and Tmax influence, conflicts allowed

0	

30	

60	

90	

120	

150	

180	

210	

240	

270	

300	

330	

360	

390	

420	

450	

15	
 30	
 45	
 60	
 75	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

TMAX	

(1,0)	
 (3,1)	

(1,1)	
 (1,3)	

(0,1)	

40	

45	

50	

55	

60	

65	

70	

75	

(1,0)	
 (3,1)	
 (1,1)	
 (1,3)	
 (0,1)	
 Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

S(y)	
 coefficients	
 (WN	
 ,	
 WTF)	

TMAX	
 30	

(b) (WN ,WTF
) and Tmax influence, conflicts forbidden

Fig. 5: Average waiting time for scenario 5

allowing conflicting movements allows to reach a better
average waiting time (40 s vs. 47 s in the represented setup).
On these figures, we can notice that the best Tmax value
is different when conflicts are allowed (45 s) or forbidden
(30 s). When conflicts are forbidden, letting all movements
happen requires more phases, which leaves less time to a
single phase. Results on the different weighting configura-
tions show that the weights configuration also depends on
whether conflicts are allowed or not. In the former case,
famine reduction should be favored, while in the latter case
it is queues lengths that should receive the higher weight.

B. Performances
Finally, for both matrices, using the best values obtained,

we compare results with a SUMO predetermined light plan.
This plan was selected among 4 others, explained and
detailed at [15]. Figure 6 shows that the adaptive strategy re-
mains the most efficient, especially when the traffic increases.
Moreover, a strategy that allows movement in conflict is more
effective as long as we properly dimension Tmax.

0	

20	

40	

60	

80	

100	

120	

140	

1	
 2	
 3	
 4	
 5	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

Scenario	

Actuated	
 #1	

Actuated	
 #2	

Predetermined	

Fig. 6: Performance results

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a distributed algorithm to
control traffic lights in urban areas. We introduced a new

model that allowed us to avoid the use of a central point (BS)
for manage locally the intersection, to distribute overhead
costs and that is easy to establish. The proposed solution is
flexible in conflicts management and performs more frequent
decisions than presented works (one by phase instead of one
by cycle). Our results provide some clues on adjusting the
algorithm parameters, and show a high efficiency compared
to predetermined solutions.

In future work, our results encourage us to extend our
distributed algorithm to the multiple intersections case, to
explore how intersections can communicate between them,
in a realistic and distributed manner, and what does this can
bring. Also, introduce new elements, like public transport
lanes or pedestrian crossing, could be interesting and would
be closer to reality.

REFERENCES

[1] F. A. Al-Nasser and H. Rowaihy, “Simulation of dynamic traffic
control system based on wireless sensor network,” in IEEE Symposium
on Computers Informatics (ISCI), Kuala Lumpur, Malaysia, Mar. 2011.

[2] K. M. Yousef, J. N. Al-Karaki, and A. M. Shatnawi, “Intelligent traffic
light flow control system using wireless sensors networks,” Journal of
Information Science and Engineering, vol. 26, no. 3, May 2010.

[3] M. Tubaishat, Q. Qi, Y. Shang, and H. Shi, “Wireless sensor-based
traffic light control,” in 5th IEEE Conference on Consumer Commu-
nications and Networking (CCNC 2008), Las Vegas, USA, Feb. 2008.

[4] B. Zhou, J. Cao, X. Zeng, and H. Wu, “Adaptive traffic light control
in wireless sensor network-based intelligent transportation system,” in
72nd IEEE Vehicular Technology Conference Fall (VTC 2010-Fall),
Ottawa, Canada, Sep. 2010.

[5] F. Zou, B. Yang, and Y. Cao, “Traffic light control for a single
intersection based on wireless sensor network,” in 9th International
Conference on Electronic Measurement & Instruments (ICEMI 2009),
Beijing, China, Aug. 2009.

[6] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for moni-
toring traffic,” in In Allerton Conference on Communication, Control
and Computing, Monticello, USA, Sep. 2004.

[7] S. Cheung, S. Coleri, B. Dundar, S. Ganesh, C. Tan, and P. Varaiya,
“Traffic measurement and vehicle classification with single magnetic
sensor,” Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 1917, no. -1, pp. 173–181, Dec. 2005.

[8] L. E. Y. Mimbela and L. A. Klein, Summary of vehicle detection and
surveillance technologies used in intelligent transportation systems.
Federal Highway Administration, Intelligent Transportation Systems
Joint Program Office, 2007.

[9] A. N. Knaian, “A wireless sensor network for smart roadbeds and
intelligent transportation systems,” Master’s thesis, Massachusetts In-
stitute of Technology, Jun. 2000.

[10] I. Corredor, A. Garcı́a, J. Martı́nez, and P. López, “Wireless sensor
network-based system for measuring and monitoring road traffic,”
in 6th Collaborative Electronic Communications and eCommerce
Technology and Research (CollECTeR 2008), Madrid, Spain, Jun.
2008.

[11] M. Tubaishat, Y. Shang, and H. Shi, “Adaptive traffic light control
with wireless sensor networks,” in 4th IEEE Conference on Consumer
Communications and Networking, Las Vegas, USA, Jan. 2007.

[12] M. Wiering, J. Vreeken, J. van Veenen, and A. Koopman, “Simulation
and optimization of traffic in a city,” in Intelligent Vehicles Symposium,
2004 IEEE, Jun. 2004, pp. 453 – 458.

[13] R. Gordon, W. Tighe, U. S. F. H. A. O. of Operations, D. E. Associates,
and I. Siemens, Traffic control systems handbook. US Dept. of
Transportation, Federal Highway Administration, Office of Operations,
2005, http://ops.fhwa.dot.gov/publications/fhwahop06006/.

[14] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo -
simulation of urban mobility: An overview,” in The Third Interna-
tional Conference on Advances in System Simulation (SIMUL 2011),
Barcelona, Spain, Oct. 2011, pp. 63–68.

[15] http://perso.telecom-paristech.fr/∼faye/ITSC2012/.

