
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2002/M8617

July 2002, Klagenfurt

Source: ENST

Status: For consideration at the 61
th

 MPEG Meeting

Title: Response to the CfP on Advanced Text and 2D Graphics

Author: Cyril Concolato, Jean-Claude Dufourd

This document proposes some solutions to fulfill some of the requirements expressed in the Call
for Proposals issued by the MPEG-4 Systems group. The proposed solutions mainly address the
2D graphics part of the requirements.

The solutions which are described in this document are all backward compatible and do not
invalidate existing bit streams. They are based on the definition of new nodes or the extension of
existing nodes with the addition of new fields. In the latter case, care has been taken to add field
to nodes where there was space left in the node coding table. This way of extension is very
efficient in terms of compression. It is also less confusing because it groups several levels of
complexity for the same functionality in the same node. Of course, if this solution is to be chosen
by the group, it will require to clarify the existing profiles by saying that if any field is added to a
node in future version of the standard these fields will not be supported in these profiles.
Moreover, special care need to be taken that extension fields do not modify the behavior of
existing fields.

Requirement #1:
It shall be possible to allow the use of a viewport in conjunction with Layer2D, with

all appropriate options to deal with possible differences of aspect ratio between the

viewport and the enclosing Layer2D.

Proposal

To fulfill this requirement, we propose the creation of the Viewport node (previously

presented as Viewpoint2D in N7865) of type SFViewportNode. This node adds 3 new

aspects to the standard: first the ability for the content to adapt itself to the size of the

terminal it is displayed on; second, the bindability of this node allows for navigating in a

2D scene as with the Viewpoint node in a 3D scene; and finally, it allows for viewing

part of the scene with some constraints on the aspect ratio.

9.4.2.X Viewport

9.4.2.X.1 Node interface

Viewport {
 eventIn SFBool set_bind
 exposedField SFVec2F position 0 0
 exposedField SFVec2F size -1 -1
 exposedField SFFloat orientation 0
 field MFInt32 alignment [0 0]
 field SFInt32 fit 0
 field SFString description “”
 eventOut SFTime bindTime
 eventOut SFBool isBound

}
NOTE - For the binary encoding of this node see Annex H.

9.4.2.X.2 Functionality and semantics

A Viewport node is placed in the viewport field of a Layer2D or CompositeTexture2D node. It

defines a new viewport and implicitly establishes a new local coordinate system. The bounds of
the new viewport are defined by the size and position field. The new local coordinate system’s

origin is at the center of the parent node in the parent’s local coordinate system.
The orientation field specifies the rotation which is applied to the viewport in the parent node’s

local coordinate system with respect to the X-axis.

Viewport nodes are bindable nodes (see 9.2.2.14) and thus there exists a Viewport node stack
which follows the same rules than other bindable nodes (e.g. Background2D).

The description field specifies a textual description of the Viewpoint2D node.

The alignment and fit fields specify how the viewing area is mapped to the rendering area of the
parent node (i.e. Layer2D, CompositeTexture2D, or the 2D top-node).

If the fit field is set to 0, the viewing area is scaled to fit the rendering area without preserving the
aspect ratio.
If the fit field is set to 1, the viewing area is scaled preserving the aspect ratio to fit entirely inside

the rendering area. The scaling operation is performed possibly after rotation as specified by the
orientation field.
If the fit field is set the 2, the viewing area is scaled preserving the aspect ratio to cover entirely
the rendering area. The scaling operation is performed possibly after rotation as specified by the
orientation field.

The alignement field is an MFInt32 field that contains two values. The first value specifies

alignment along the X-axis and the second value specifies alignment along the Y-axis. The first
value belongs to the following set of SFInt32: -1, 0, 1. The second value belongs to the following
set of SFInt32: -1, 0, 1. An empty alignement field is equivalent to the default value. When the fit
field is set to 0, the alignment field is ignored. The meaning of the different values of the fit and
alignment fields is described in the following figure.

Figure 1: description of alignment and fit fields

Requirement #2
It shall be possible to allow the use a 2x3 matrix to specify a 2D transformation.

Proposal

To fulfill this requirement, we propose the creation of the following new node.

9.4.2.X TransformMatrix2D

9.4.2.X.1 Node interface

TransformMatrix2D {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField MFFloat matrix [1 0 0 0 1 0]

}
NOTE - For the binary encoding of this node see Annex H.

9.4.2.X.2 Functionality and semantics

The TransformMatrix2D node is a grouping node that defines a coordinate system for its

children that is relative to the coordinate systems of its ancestors. See ISO/IEC 14772-1:1998 for
a description of coordinate systems and transformations and for a description of the children,
addChildren, and removeChildren fields and eventIns.

The matrix field defines a geometric 2D transformation based on the following transformation

matrix, where matrixi is the i-th SFFloat in the matrix field:

100
654

321

matrixmatrixmatrix
matrixmatrixmatrix

T

Given a 2-dimensional point P and TransformMatrix2D node, P is transformed into point P' in its

parent's coordinate system by the transformation whose matrix is T.
P' = T × P

The behaviour of TransformMatrix2D with respect to the Sound2D node is the same as the
behaviour of the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the
children field of the node as for a Transform2D node.

Requirement #3

It shall be possible to draw circular, parabolic and elliptical arcs.

Proposal

The following types of drawing are allowed in SVG:

- The "moveto" commands

- The "closepath" command

- The "lineto" commands

- The curve commands

- The cubic Bézier curve commands

- The quadratic Bézier curve commands

- The elliptical arc curve commands

Each type of command (except the closepath one) is duplicated to allow relative and

absolute positioning of coordinates.

BIFS currently allows to perform some of the SVG commands: moveTo, lineTo and

Bézier curves (since quadratic Bézier curves can be expressed in term of cubic Bézier

curve), with absolute positioning. We propose to add to BIFS the ability to perform all

the other SVG commands.

The node which seems the most appropriate for this functionality is Curve2D.

Fortunately, it holds only three fields which gives the opportunity to introduce a new

field for the purpose of drawing circular, parabolic and elliptical arcs.

The principle of this proposal is to add a new field to the Curve2D node. This field is

called enhancedType. When not empty, it supersedes the type field, i.e. the coordinate

pairs of the point field of the Coordinate2D node are consumed following the values of

the enhancedType field.

Care has been taken that:

- a reserved value is left for future extensions of the type field (parabolic arcs,

predictive coding),

- and the added types are consistent with the previous ones. For example, elliptical

arcs could be drawn without the knowledge of focal points but with angle and

sweeping information but then it would not be consistent with the use of the

Coordinate2D node.

The Curve2D node would become as follows.

9.4.2.X Curve2D

9.4.2.X.1 Node interface

Curve2D {
 exposedField SFNode point NULL
 exposedField SFInt32 fineness 0.5
 exposedField MFInt32 type []
 exposedField MFInt32 enhancedType []

}

9.4.2.X.2 Functionality and semantics

[…]

The permitted values of enhancedType are:

 0 = MoveTo: Same as the value 0 for the type field. Moreover, the coordinate pair consumed
from the point list also defines the starting point of the new subpath P0. MoveTo shall not
occur neither as the first element in enhancedType field.

 1 = LineTo: Same as the value 1 for the enhancedType field.

 2 = CurveTo: Same as the value 2 for the enhancedType field.

 3 = NextCurveTo: Same as the value 3 for the enhancedType field.

 4 = IncreasingArcTo: Three coordinate pairs in the point list are consumed, defining F1, F2
and N. F1 and F2 are the focal points of the ellipse to which P and N belong. On this ellipse,
P and N define two arcs. Considering the polar parametric representation of the ellipse

)sin(,)cos(ryrx and assuming that F1 is the focal point with the negative coordinate on

the x-axis, the drawn arc is the one that corresponds to an increase of when sweeping the
arc from P to N.

 5 = DecreasingArcTo: Same as IncreasingArcTo except that the drawn arc is the one that

corresponds to a decrease when sweeping the arc from P to N.

 6 = ClosePath: No coordinate pair is consumed from the point list. Close the current subpath
by drawing a straight line from P to the current subpath's initial point P0. If a ClosePath is

followed immediately by any other command than a MoveTo or RelativeMoveTo, then the
next subpath starts at the same initial point as the current subpath, i.e. P0. Note: The
difference between closing the subpath and explicitly drawing a line between P and P0 is that

in the first case the line in P0 will be closed with the current value of line-join while in the
second case the line will be closed using the current value of line-cap.

 7 = Reserved

Requirement #4

It shall be possible to:

- render text on a baseline that follows any path/curve.

- easily combine individual text objects with different decorations to build a

continuous text

Proposal

We propose the definition a new SFGeometryNode node called TextSpan. The new node

definition would allow to apply transformation over the positioning of the text contained

in several Text nodes. This would make possible to position some text along a path or a

curve and also to put several text together. It would behave differently with regards to

filling and stroking than the Text node therefore allowing fill, stroking and texture as for

other SFGeometryNode nodes.

The new node to be defined is called TextSpan. It uses the notion of index that was used

for the IndexedFaceSet or IndexedLineSet nodes. For this new node, the indices are used

to reference characters or glyphs.

9.4.2.X TextSpan

9.4.2.X.1 Node interface

TextSpan {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFInt32 adjust 0
 exposedField MFVec2F bBox -1, -1
 exposedField MFNode fontStyles []
 exposedField MFFloat fontStyleIndex []
 exposedField MFFloat orientation []
 exposedField MFFloat orientationIndex []
 exposedField SFNode translation []
 exposedField MFInt32 translationIndex []
 exposedField SFNode color []
 exposedField MFInt32 colorIndex []
 exposedField SFNode path []
 exposedField SFFloat startOffset 0

}
NOTE - For the binary encoding of this node see Annex H.

9.4.2.X.2 Functionality and semantics

The addChildren and removeChildren are identical to the addChildren and removeChildren
eventIn of the Transform2D node.
The children field shall only contain Text or TextSpan nodes.

The adjust field specifies if the text content from the children field shall be adjusted to fit in a
bounding box as defined by the bBox field. Three values are allowed: 0 means no adjustment, 1

means only spaces shall be stretched and 2 means both spaces and glyphs are adjusted.

The fontStyles field shall list the FontStyle nodes to be used to render the text content of the
children field. When fontStyleIndex is empty, the FontStyle node to be used is the one specified
by each Text node (either explicitly or default). Otherwise, the fontStyleIndex fields determines
the FontStyle of each character contained in all the Text or TextSpan nodes. If there are more
FontStyle nodes than characters, the remaining nodes are ignored. If there are less nodes than
characters, the remaining characters use the last FontStyle node.

The orientation field shall list the rotations to be applied to each character of the text content of
the children field. When orientation is empty, no rotation is applied for this node. An other
TextSpan node can possibly specify the orientation field for its content. Otherwise, the
orientation fields determines the rotation of each character contained in all the Text or TextSpan
nodes. If there are more angles specified in the orientation field than characters, the remaining

angles are ignored. If there are less angles than characters, the remaining characters use the last
angle.

The translation field shall list the translation to be applied to each character of the text content of
the children field. When translation is empty, no translation is applied for this node. An other
TextSpan node can possibly specify the translation field for its content. Otherwise, the
translation fields determines the translation of each character contained in all the Text or
TextSpan nodes. If there are more SFVec2F specified in the translation field than characters,

the remaining SFVec2F are ignored. If there are less SFVec2F than characters, the remaining
characters use the last SFVec2F.

The color and colorIndex field act as for the IndexedLineSet2D node except that the vertices
are replace by the characters contained in the children field, that there is no color interpolation
and that the top most TextSpan node has precedence to set the color of the characters.

The path field contains an SFGeometry node along which the text is to be rendered. The
startOffset field determines the offset to be used along the shape before starting to render the

text.

Requirement #5

It shall be possible to:

- define the shape of each character in a font using a set of Shape nodes

Proposal

The following node allows for defining user font data such as glyphs, font data (i.e. mapping of
characters to glyphs, size of the glyphs, position of the glyphs, ascent, descent …).

9.4.2.X FontData

9.4.2.X.1 Node interface

FontData {
 Field SFString fontName “”
 Field MFNode glyphs []
 Field MFString glyphsRefs []
 Field SFNode missingGlyphs NULL
 Field SFInt32 weight 0
 Field SFInt32 cap-height 0
 Field SFInt32 x-height 0
 Field SFInt32 ascent 0
 Field SFInt32 units-per-em 0
 Field SFString style “NORMAL”
 Field MFInt32 baseline-data []

}
NOTE - For the binary encoding of this node see Annex H.

Requirement #6

It shall be possible to:

- use line properties line-cap and line-join whose properties can be respectively

butt, round, square or miter, round, bevel.

- texture the (wide) outline of shapes (including text)

Proposal

To satisfy theses requirements, we propose the definition of the following

SFLineProperties node.

9.4.2.X XLineProperties

9.4.2.X.1 Node interface

XLineProperties {

 exposedField SFColor lineColor 0, 0, 0
 exposedField SFInt32 lineStyle 0
 exposedField SFFloat width 1.0
 Field SFBool isScalable TRUE
 exposedField SFInt32 lineCap 0
 exposedField SFInt32 lineJoin 0
 exposedField SFInt32 miterlimit 4
 exposedField SFFloat transparency 0.0
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
}

NOTE — For the binary encoding of this node see Annex H.

9.4.2.X.2 Functionality and semantics

The XLineProperties node specifies line parameters used in 2D and 3D rendering.
The lineColor and the lineStyle fields are the same as for the LineProperties node.
The

The width field determines the width, in the local coordinate system, of rendered lines. The width
is subject to scaling only when the isScalable field is set.

The lineCap field shall contain the line cap style type to apply to lines. The allowed values are:

Table - lineCap description

lineCap Description

0 butt

1 round

2 square

The lineJoin field shall contain the line join style type to apply to lines. The allowed values are:

Table - lineJoin description

lineJoin Description

0 miter

1 round

2 bevel

The miterlimit field shall contain the limit on the ratio of the miter length to the line width as
specified in the width field. The value of miterlimit must be a number greater than or equal to 1.

The transparency field specifies the transparency of the of the outline of a Shape when drawn. It
supersedes the value of the transparency of a material node.

The texture and textureTransform fields are identical to those of an Appearance node except
that texture is only applied to the outline of the shape using the same bounding box as for
texturing the whole shape.

Requirement #7

It shall be possible to:

- use gradient and patterns as textures

Proposal

We propose to use the LinearGradient and RadialGradient nodes as defined in AFX [1] to
perform gradient but we would like to define them as SFTextureNode instead of SFMaterialNode.
As for Patterns, we propose to add the repeatS and repeatT fields to the compositeTexture2D
and 3D nodes. Since, compositeTexture2D already has 7 fields we suggest to add one field
holding both booleans, some sort of MFBool (repeatSandT).

Annex C: Registration form

Company: ENST

Contact name: Jean-Claude Dufourd

Address: 46, Rue Barrault 75013 PARIS, FRANCE

Phone number: +33145817807

Fax: +33145804036

Email: dufourd@enst.fr

Title of

submission:

Response to the CfP on Advanced Text and 2D

Graphics

Abstract:

This document proposes some solutions to fulfill some of the
requirements expressed in the Call for Proposals issued by the
MPEG-4 Systems group. The proposed solutions mainly
address the 2D graphics part of the requirements.

The solutions which are described in this document are all
backward compatible and do not invalidate existing bit streams.
They are based on the definition of new nodes or the extension
of existing nodes with the addition of new fields.

Time requested

for presentation

(subject to review

by organisers):

Demo intended: No

Equipment and

other support

required for

demo:

Name:

mailto:dufourd@enst.fr

Date:

Signatures :

References:
1. SVG 1.1, W3C, chapter 8, Paths: http://www.w3.org/TR/SVG11/paths.html
2. SVG 1.1, W3C, chapter 10, Text: http://www.w3.org/TR/SVG11/text.html
3. VRML 97, ISO/IEC 14772-1:1997, chapter 6, Node Reference:

http://www.web3D.org/technicalinfo/specifications/vrml97/part1/nodesRef.html
4. CSS 2, W3C, chapter 15, Fonts: http://www.w3.org/TR/REC-CSS2/fonts.html
5. XSL, W3C, chapter 7, Formatting Properties:

http://www.w3.org/TR/xsl/slice7.html#common-font-properties
6. Postscript Language Reference, Third Edition, Adobe Systems Inc.,

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

http://www.w3.org/TR/SVG11/paths.html
http://www.w3.org/TR/SVG11/text.html
http://www.web3d.org/technicalinfo/specifications/vrml97/part1/nodesRef.html
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/xsl/slice7.html#common-font-properties
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

