
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2002/M8931

October 2002, Shanghai, China

Source: ENST

Status: For consideration at the 62
nd

 MPEG meeting

Title: Analysis of the streaming text requirements

Author: Cyril Concolato, Jean-Claude Dufourd, Jean Le Feuvre

Introduction
The goal of this document is to provide an analysis of the requirements of the Core

Experiment on Streaming Text. It focuses on those coming from the 3GPP specification

because they include those coming from the ITU-T J.123 specification. We will expose

among all these requirements, those that are already fulfilled by BIFS and those that are

not. In the latter case, we will explain what needs to be done to fulfill the remaining

requirements using BIFS structures. Along with this document, some BIFS translations of

the 3GPP test sequences are provided. Finally, we will explain how the Streaming Text

activity could benefit from the definition of new nodes and/or new stream in terms of

authoring and reusability of the content.

1. Analysis of the requirements
This contribution does not deal with the requirements concerning Unicode encoding,

character support, font support and metrics. It does not either deal with language issues.

a. Text rendering position and composition

In the solution for Timed Text proposed by the 3GPP consortium, the text rendering,

position and composition properties are not specified with the scene description (SMIL).

Instead, there are set at the file format level. Theses properties are:

 definition of a text region: width, height, translation vector from the video region

 definition of the rendering order (layer) for the text region with respect to the

video region

 definition of a text box within the text region: width, height, translation vector

from the text region

This positioning mechanism can be easily emulated in BIFS using an OrderedGroup

node to enable the layer property and the region can be emulated using Layer2D nodes.

This is summarized in the BIFS text below:

OrderedGroup {

order [VideoLayer TextLayer]

children [

DEF VideoRegion Shape {

geometry Rectangle { size VideoWidth VideoHeight }

appearance Appearance { texture MovieTexture { url "20" } }

}

Transform2D {

translation -VideoWidth/2+TextTX+TextWidth/2 VideoHeight/2-TextTY–TextHeight/2

children [

DEF TextRegion Layer2D {

size TextWidth TextHeight

children [

DEF TextBoxTransform Transform2D {

translation -TextWidth/2+TextBoxTX+TextBoxWidth/2 TextHeight/2-TextBoxTY–

TextBoxHeight/2

children [

DEF TextBoxLayer2D Layer2D {

size TextBoxWidth TextBoxHeight

children [

…

]

}

]

}

]

}

]

}

]

}

b. Sample and Sample Description Format

The Timed Text proposal of the 3GPP consortium extensively uses the file format notion

of Samples and Sample Descriptions. A sample contains the text to be displayed plus the

timing information and its display properties. A sample description contains the static

information needed to display the text contained in each sample. It is similar to an ESD in

the MPEG-4 Framework. But in the ISO Media File Format, the sample description may

change over time. Therefore, some display properties that one can consider as static

information can actually change over time (e.g. background-color). Let’s look into further

details.

The TextSampleEntry sample description sets the following general properties of the text,

which can be overridden by a TextSample sample:

 Scrolling (in, out, in/out)

 Scrolling directions (right-left, left-right, top-bottom, bottom-top)

 Karaoke continuous

 Horizontal and Vertical text justification

 Text direction (vertical or horizontal)

 Text box and background color

 Default text style (font-face, font-size, font-style, color)

 Font table

The TextSample sample contains the text to be displayed. The text is displayed using the

default properties of the sample description corresponding to this sample. Some rendering

properties can be overridden by some text modifiers. These modifiers have the possibility

to alter the properties on a character-per-character basis. For instance, a TextStyle

modifier can change the color of the characters 10 to 20 of the sample text string.

When implementing the TextSample/TextSampleEntry concepts in BIFS, the main

problems are the fact that: the sample description associated to a sample can change over

time or be overridden, and the TextModifier can split the text string in several chunks of

text that have different rendering properties. For these reason one way to implement it in

BIFS is to merge the information of the TextSampleEntry and the one contained in the

sample. Therefore all the text properties are included explicitly in the sample.

The algorithm to convert a couple TextSample/TextSampleEntry into BIFS could be the

following:

 Determine the default properties for the TextSample text string from the associated

TextSampleEntry

 Apply the TextModifiers and determine the largest chunks of characters that have

the same rendering and animation properties (color, highlighting, karaoke

properties …)

 Create a Text node for each chunk of characters and create the BIFS structure

needed for the karaoke, blinking or scrolling animations (TimeSensors,

Interpolators, ROUTEs), or for the linking property (Anchor).

 Use a Form node to handle the positioning of all the Text nodes.

A BIFS access unit corresponding to a text sample may be described by the following

BIFS text:
AT CTS {

REPLACE TextRegion.children[0] BY Transform2D {

translation 0.0 0.0 #TextBox translation

children [

Shape { #TextBox Background

geometry Rectangle {

size 176 30 #TextBox size

}

appearance Appearance {

material Material2D {

emissiveColor 1.0 1.0 1.0 #TextBox background-color

transparency 0.0 #TextBox background-transparency

filled TRUE

}

}

}

DEF ScrollTransform Transform2D { #Scroll

children [

Form { #TextBox

size 176 30 #TextBox size

groups [1 -1]

constraints ["AT" "AL"]

groupsIndex [0 1 -1 0 1 -1]

children [

Shape {

geometry Text {

string ["This is demonstration No1"]

fontStyle FontStyle {

family "Serif"

size 12

style "PLAIN "

}

}

appearance Appearance {

material Material2D {

emissiveColor 0.0 0.0 1.0

transparency 0.0

filled TRUE

}

}

}

]

}

]

}

]

}

}

c. Text Modifiers

In this section we will analyze the text modifiers one-by-one and see how they can be

mapped onto some BIFS structures. We will not go into much details but rather focus on

the points which are not easily translatable.

 Style modifier

The 3GPP consortium’s proposal contains a TextStyle modifier that can alter the style of

the text in the following manner:

 Change the font

 Change the text color including transparency

 Change the font-size

 Change the font-face to one of the following value: plain, bold, italic, underlined

All these properties can be easily mapped onto the fields of a FontStyle node except for

the underlined value of the font-face which does not exist neither in BIFS, nor in VRML.

 Highlight and highlight color modifiers

Two 3GPP text style modifiers consist in highlighting pieces of text by changing the text

color and the background color surrounding the text. This is not yet feasible in BIFS for

two reasons. First, the functionality per se is not available. Second, to simulate it in BIFS,

one would have to put a rectangle, behind the text, filled with the highlight color. But, as

mentioned many times during the discussions on Advanced Text and Graphics, it is

currently impossible in BIFS to determine the exact position and size of a rendered text.

 Karaoke modifier

The concept of karaoke can be mapped onto BIFS structure using discrete interpolators to

determine at each instant in time the color of each chunk of text and therefore of each

Text node. Both continuous and discontinuous karaoke mechanism can be implemented

in BIFS. But, since this modifier uses the functionality of text highlighting as described

above, it suffers the same limitation.

 Scrolling and Scroll delay modifier

The scrolling property as per 3GPP differs a little bit from the scrolling property as per

the Layout node. Indeed, the 3GPP spec envisages the scrolling in three modes: scroll in,

where the text is at first not visible and scrolls to its default position; scroll out, where the

text is at first positioned at its default position and then scrolls until completely out of

sight; and scroll in-out, where the latter modes are merged. The Layout node as currently

defined does not allow this kind of behavior. If the children of the node are scrolling, they

can scroll only following an in-out mode.

To map the scrolling mechanism of the 3GPP spec, one needs to implement in BIFS the

whole mechanism using ROUTEs, TimeSensor and Interpolator. Therefore the scroll

delay introduced by a ScrollDelayModifier could be easily implemented by setting the

startTime of the TimeSensor controlling the animation to this delay. But, this is not that

simple, one would indeed face the problem of determining when to stop the scrolling

animation. This instant can be computed from the scrolling speed, the text position and

the text length. As previously stated, the latter element is unknown with the current BIFS

specification. So, the 3GPP scrolling mechanism cannot be efficiently done in BIFS.

 HyperText modifier

The hypertext modifier is quite simple to implement in BIFS. Once, a chunk of characters

with the same linking property has been built, one has to generate an Anchor node that

will contain the Text node. The URLString from the 3GGP spec exactly matches the url

field of the Anchor node and the altString matches the description field.

 TextBox modifier

The 3GPP TextBox modifier allows to change the positioning of the text box within the

text region. In BIFS, the result of a TextBox modifier would consist in a change of the

translation field of the TextBoxTransform node as defined above.

 Blinking text

Blinking text is not a built-in feature of the current BIFS specification. However, it is

possible to implement this feature using ROUTEs, ColorInterpolator and TimeSensors.

2. Synthesis on the existing BIFS structures
In the previous section we have seen that apart from the problems on text positioning,

already raised in the Advanced Text and Graphics activity, the complete 3GPP

specification on Timed Text could be implemented in a pure BIFS manner. Nevertheless,

the current specification need to be improved in order to efficiently answer the Streaming

Text requirements. Therefore, we propose to add the following items to the working draft

on Advance Text and Graphics.

a. Add features to the FontStyle node

There are three features that could improve the efficiency of the proposed BIFS solution

for streaming text. We will expose each of these features and propose some modification

to the current BIFS specification.

 Highlighting

The requirements for the highlighting features could be restated in the following way:

 Being able to highlight a text, i.e. fill the bounding box of the text with a different

color than the text color

 Support two modes of highlighting:

- inverse video mode, i.e. the text color becomes the bounding box color and the

background color becomes the text color

- using a specified highlight color to fill the bounding box

To fulfill this requirement, we suggest to create a new node, called Highlight, as follows:
Highlight {

exposedField SFBool useInversedVideoMode
exposedField SFColor highlightColor

}
This node would be of type HighlightNodeType and be put in a new field of the

FontStyle node, called highlight.

 Blinking and Underlining

The proposed requirement is the following:

It should be possible to have underlined text and blinking text.

We suggest to add two more values for the style attributes of the FontStyle node:

“BLINK” and “UNDERLINE”. We do not propose to set a blinking rate.

b. Selecting the scrolling mode

As previously stated, BIFS misses the ability to perform scrolling in or out of Text

elements. The current specification, quoted below, shows what is currently possible with

the Layout node:

“ The scrollRate field specifies the scroll rate in meters per second. When scrollRate
is zero, then there is no scrolling and the remaining scroll-related fields are ignored.

The smoothScroll field selects between smooth and line-by-line/character-by-character

scrolling of children. When TRUE, smooth scroll is applied.”

We suggest to add a new SFInt32 field to the Layout node, called scrollMode, which

could take the value –1 for scroll-in mode, +1 for scroll-out and 0 for the scroll in-out and

the default behaviour would be scroll in-out as it is currently the case. Finally, we suggest

to add the scrollDelay field even if the delay can be done using routes to set the

scrollRate field after some time.

3. Notes on complexity
In this document, we have shown that provided some small changes, all the rendering

features of the 3GG specification for Timed Text can be mapped to BIFS structures. The

proposed solution does not claim to be the only BIFS solution to fulfill the requirements.

However, some remarks can be made on the complexity of any BIFS solution by

analyzing the proposed one.

a. Compression

The sizes of the text streams which are dealt with currently in 3GPP Timed Text are

around 1kb. Therefore compression seems to be irrelevant.

b. Decoding and rendering complexity

Whatever BIFS solution is proposed, the positioning and the rendering of the text is

rather complicated task. It needs to be done using the Layout or the Form node. Indeed,

since there is no way to determine the size and the positioning of the characters

irrespectively of the terminal, a BIFS solution has to rely on implicit positioning of text

elements. But, the only two nodes to do that in BIFS are Form and Layout. These nodes

are quite complex to implement and require high profiles (Complete2D) and levels.

Moreover, such simple content is targeted for simple devices like mobile devices and/or

PDAs which have limited capabilities.

c. Content creation and reusability

The drawback of a 100% BIFS solution is in term of content creation and/or reusability.

Indeed, contrary to the 3GPP solution, the proposed solution merges the general scene

description (video, audio, graphics …) with the text rendering description. Therefore, to

add, replace or remove the text content from some existing scenes, one would have to

analyze the BIFS content, determine if possible the part of the scene related to an existing

text content and remove or replace it. This is quite painful and may sometimes be

impossible because of the complexity of the scene. On the opposite, the file format

solution proposed by the 3GPP consortium offers an easiness of authoring and

reusability. Indeed, adding, removing or replacing the text content is just an operation on

file tracks.

d. Recommendations

Based on the previous analysis of a 100% BIFS solution and on the above notes on

complexity, we recommend that a solution that uses a separate stream/track be preferred.

We suggest that this stream be interfaced with the scene via a new node, which would do

all the positioning and rendering of text. This latter text should be in the stream along

with its display properties. In particular, it should be possible to specify, as per the 3GPP

spec, some text rendering properties valid for runs of characters.

One way to explore could be to have an AnimationStream node pointing to a new stream

type where the DecoderConfigDescriptor would do the static positioning of the text as

well as the handling of default properties (color, font …) and the stream itself would

contain dynamic text and text properties. These latter information could be encoded in

BIFS or in some other format. The advantage of using the AnimationStream node would

be the ability to seek in the text stream from the scene using MediaControl.

