
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2003/M9753

Source: Input for MPEG 65th Meeting in Trondheim

Status: Draft

Title: Corrections to the BIFS ATG Extensions

Authors: Jean Le Feuvre, Cyril Concolato, Jean-Claude Dufourd

Organisation : ENST

Introduction

 During implementation phase of the ATG extensions, ENST has come across some

limitations and would like to fix some bugs, add new features, change the way some features

were added.

I. Remarks and changes on AdvancedFontStyle

I.1 Conflict with the VRML Font selection policy

I.1.1 Problem

The current spec says:
“The fontName field specifies an ordered list of desired fonts to be used, e.g. [“Times New Roman”,

“SERIF”]. A second semantic permits to link a font family name to a font data stream by identifying

the font name in the first string and the associated font data stream in the second string of the

MFString. The syntax of the second string is:

“OD:<odid>;FSID:<fsid>”, where :

- <odid> is the numeric value of the objectDescriptorID of the associated font data stream,

- <fsid> is the numeric value of the requested font subset as conveyed by fontSubsetID

within the associated font data stream.”

This is conflicting with the VRML semantics of the family field, which is to provide alternate fonts in

case the previous ones are not available. Moreover, the link to the font family name is useless since the

font can always be referred to by the syntax “OD:<odid>;FSID:<fsid>”.

Therefore, we suggest changing the above semantic into :

“The fontName has the same semantic as the family field of the FontStyle node. However, special

fonts provided in a font data stream can be accessed using the following font name syntax:

“OD:<odid>;FSID:<fsid>”, where :

- <odid> is the numeric value of the objectDescriptorID of the associated font data stream,

- <fsid> is the numeric value of the requested font subset as conveyed by fontSubsetID

within the associated font data stream.”

Consequently, the syntaxes of the FontDataDecoderConfiguration and the EnhancedFontAccessUnit

need to be changed. The fontFamily and fontFamilyLength fields needs to be removed.

class FontDataDecoderConfiguration extends DecoderSpecificInfo : bit(8)

tag=DecSpecificInfoTag {

 bit(7) fontFormat;

 if (fontFormat != 0x00) {

 bit(1) storeFont;

 bit(8) fontNameLength;

 bit(8) fontName[fontNameLength];

 bit(7) fontSubsetID;

 bit(1) reserved = 1;

 bit(8) fontSpecInfo[sizeOfInstance – fontNameLength – 4];

 }

}

class EnhancedFontAccessUnit() {

 bit(7) fontFormat;

 bit(1) storeFont;

 bit(8) fontNameLength;

 bit(8) fontName[fontNameLength];

 bit(7) fontSubsetID;

 bit(1) fontSubsetExtensionFlag;

 bit(8) fontSpecInfoLength;

 bit(8) fontSpecInfo[fontSpecInfoLength];

 bit(8) fontData[sizeOfInstance – fontNameLength - fontSpecInfoLength - 5]

}

I.2 Semantic of the size field

I.2.1 Problem
The FontStyle node specifies that its size field corresponds to the sum of ascent, descent and leading.

But all the existing advanced typographic tools associate the size of a text with the height of the EM

box.

I.2.2 Solution
We suggest to define the size field as being the height of the EM box and therefore remove the size

from the sentence that says that it has the same semantics as the size field in the FontStyle node. The

same applies for spacing. Its value is a multiplicative coefficient to apply to the spacing value given by

the font.

I.3 Semantics of stretch, weight, fontKerning, letterSpacing, wordSpacing,

baselineShift, fontVariant, featureName, featureStartOffset, featureLength and

featureValue

I.3.1 Problems

The semantics of those fields in the PDAM are very unclear. For instance, what are the

meaning of Condensed, Expansed?
Moreover, some fields semantics say ‘implemented according to the requirements’.

I.3.2 Solutions

We suggest either removing the fields whose semantics cannot be clarified or adding links to

other specifications (CSS …), or adding text to clarify the meaning of the values.

I.4 Values of the style field

I.4.1 Problem
The allowed values in the style field are “PLAIN”, “ITALIC”, “BOLD”, “BOLDITALIC”,

“UNDERLINE”, “BLINKING”, “OUTLINE”, “EMBOSS”, “ENGRAVE”,

“LEFTDROPSHADOW”, “RIGHTDROPSHADOW”. But the meaning of the new values are

unclear. In particular, what should be the blinking period, what ‘emboss’ and ‘engrave’ mean.

I.4.2 Solution

We suggest removing the styles “BLINKING”, “OUTLINE”, “EMBOSS”, “ENGRAVE”,

“LEFTDROPSHADOW”, “RIGHTDROPSHADOW”.

The blinking can be applied using color interpolation or switching, the outline using filled =

FALSE. The other values should be considered to enter the ATG spec as new allowed effect

for the MatteTexture node so that it would be possible to apply these effects to any vector

graphics object.

II. Changes to the Viewport node

II.1 The fit and alignment fields

II.1.1 Problem

The fit and alignment fields should be exposedField. They were made fields by mistake.

II.1.2 Solution

We suggest that the fit and alignment fields be changed from field to exposedField.

II.2 Bindability

II.2.1 Problem

The Viewport node is a bindable node but its semantics prevents it to appear anywhere in the

scene.

II.2.2 Solution

We suggest to add the Viewport node to the list of bindable nodes in section 9.2.2.14. And its

semantics should be change to reflect that. The spec currently says:

“ A Viewport node is placed in the viewport field of a Layer2D or CompositeTexture2D

node. It defines a new viewport and implicitly establishes a new local coordinate system. The

bounds of the new viewport are defined by the size and position field. The new local

coordinate system’s origin is at the center of the parent node in the parent’s local coordinate

system.

The orientation field specifies the rotation which is applied to the viewport in the parent

node’s local coordinate system with respect to the X-axis.

Viewport nodes are bindable nodes (see 9.2.2.14) and thus there exists a Viewport node

stack which follows the same rules than other bindable nodes (e.g. Background2D).”

We propose to change it to:

“A Viewport node can be placed in the viewport field of a Layer2D or

CompositeTexture2D node or in the scene tree as a 2D node. It defines a new viewport and

implicitly establishes a new local coordinate system. The bounds of the new viewport are

defined by the size and position field. The new local coordinate system’s origin is at the

center of the parent node in the parent’s local coordinate system.

Viewport nodes are bindable nodes (see 9.2.2.14) and thus there exists a Viewport node

stack which follows the same rules than other bindable nodes (e.g. Background2D).

The orientation field specifies the rotation which is applied to the viewport in the parent

node’s local coordinate system with respect to the X-axis.”

III. Changes to the TransformMatrix2D node

III.1 Problems

The names matrix1..6 are not explicit enough for users.

III.2 Solutions

We suggest to rename matrix1..6 to mxx,mxy,myx,myy,tx,ty.

IV. Modification of the XLineProperties node

IV.1 Problem

 The XLineProperties node currently reuses the predefined dash pattern introduced

with LineProperties node in BIFS version 1. The main issue with these predefined patterns is

that dash properties are not defined in terms of size but rather in terms of high-level aspect

(dash and dot combinations). While this may be enough for a few cases where dashing is not

primordial, it is not enough for an author wishing to specify a given aspect of the dash pattern

since the result may depend on implementations. We therefore suggest adding dash patterns to

the XLinePropeties node in a way that also allows for efficient line drawing, such as dash

offsetting and dynamic tracing of lines. This feature is already available in the competitive

SVG standard.

 Another limitation of 2D BIFS is the lack of texturing for lines, which are extremely

useful for simple things such as hatch filling of a line through a pixel texture node, or gradient

filling through a gradient node. We suggest adding texturing info to the line properties.

 Finally, we propose to change the isCenterAligned field from field to exposedField.

IV.2 Solution

We propose to modify the node as follows. Modifications are highlighted.

Replace the XLineProperties node interface by

XLineProperties {

 exposedField SFColor lineColor 0, 0, 0
 exposedField SFInt32 lineStyle 0
 exposedField SFFloat width 1.0
 exposedField SFBool isScalable TRUE
 exposedField SFInt32 lineCap 0
 exposedField SFInt32 lineJoin 0
 exposedField SFFloat miterlimit 4
 exposedField SFFloat transparency 0.0
 exposedField SFBool isCenterAligned TRUE
 exposedField SFFloat dash_offset 0.0
 exposedField MFFloat dashes []
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
}

Replace the XLineProperties semantics section by :

The XLineProperties node specifies line parameters used in 2D rendering.

The semantics of lineColor and lineStyle are the same as for the LineProperties node. But,

value 6 for the lineStyle field means that dashing uses the dash information of the

XLineProperties node. For the other values of lineStyle, the values of the dash_offset and

dashes fields are ignored.

The dash_offset field determines the position from the start of the outline, along the outline,

in the local coordinate system, where dashing begins. In case of high level primitives such as

Rectangle, Circle and Ellipse, the start of the outline is not specified and therefore the use of

dash_offset is undetermined. For a deterministic behavior, authors should use primitives that

explicitly define the start of the outline.

The dashes array specifies the dash pattern. Each element is a strictly positive number

expressed relatively to the width of the pen. Values at even positions in the array specify the

length of drawn parts of the line. Values at odd positions in the array specify the length of

non-drawn parts of the line. Dashes shall be drawn using the lineCap information.

The width field determines the width, in the local coordinate system, of rendered lines. The

width is subject to scaling only when the isScalable field is set.

The lineCap field specifies the line cap style type to apply to lines. The allowed values are:

Table - lineCap description

lineCap Description

0 flat

1 round

2 square

3 triangle

The lineJoin field specifies the line join style type to apply to lines. The allowed values are:

Table - lineJoin description

lineJoin Description

0 miter

1 round

2 bevel

The miterlimit field specifies the limit on the ratio of the miter length to the line width. The

value of miterlimit must be a number greater than or equal to 1.

The transparency field specifies the transparency of the outline of a shape when drawn. It

supersedes the value of the transparency of a material node.

The isCenterAligned field specifies the positioning of the outline a shape. If TRUE, the line

that represents the outline of the shape is drawn centered on the outline of the shape. If

FALSE, the outside edge of the line that represents the outline of the shape is aligned on the

outside edge of the shape.

The texture field, if specified, shall contain one of the various types of texture nodes. If

NULL or unspecified, the line is not textured. Texture mapping coordinates are defined by the

four corners of the bounding rectangle of the outer polygon defining the shape (that is, taking

into account the width of the line).

 The textureTransform field, if specified, shall contain a texture transformation node

(TextureTransform or TransformMatrix2D without children). If the textureTransform is

NULL or unspecified, the texture is not transformed.

V. Text input for the Clipper2D node

V.1 Problem

The ATG PDAM asked for text to reflect the accepted modification of the node into a

grouping node.

V.2 Input text

Node Interface
Clipper2D {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFNode geometry NULL
 exposedField SFBool inside TRUE
 exposedField SFNode transform NULL
 exposedField SFBool XOR FALSE
}

Node Semantics

The Clipper2D node is a 2D grouping node that defines a free-form 2D rendering area for its

children nodes. If another Clipper2D node is found in its children, children of that second

clipper shall be clipped/cut using the combination of both clipping geometries, as indicated by

the inside and XOR fields of both clippers.

The geometry field specifies a 2D graphical primitive to be used as the clipper shape. All 2D

graphical primitives are allowed except Bitmap, PointSet2D and IndexedLineSet2D. If the

geometry defines an open shape (for instance, Curve2D), the shape shall be considered as

closed to perform clipping. If the geometry is NULL, children nodes are completely drawn if

the inside field is FALSE, otherwise children are not drawn.

The inside field specifies whether the node shall perform a clipping operation or a cut

operation. If its value is TRUE, the inside of the clipping geometry is drawn. If it is FALSE,

the outside of the clipping geometry is drawn.

The transform field specifies a 2D transformation node (Transform2D or

TransformMatrix2D). This node shall have no child, and is used to assign a 2D

transformation to the geometry of the Clipper2D node.

The XOR field specifies whether union or intersection of this clipper with its parent clipper is

made using a XOR operation or not. The XOR field is used only if this clipper and its parent

clipper have the same value for the inside field, otherwise it is ignored.

Example of clipper cascade:

Let’s draw the following scene (pixel metrics, scene size 100x100):

OrderedGroup {

 children [

 Background2D {backColor 1 1 1}

 DEF Clip1 Clipper2D {

 geometry rectangle { size 75 25}

 children [

 DEF Clip2 Clipper2D {

 geometry Circle { radius 25 }

 children [

 Shape {

 appearance Appearance {

 material Material2D {

 emissiveColor 0 0 0

 filled TRUE

 }

 }

 geometry Rectangle { size 100 100 }

 }

]

 }

]

 }

]

}

Figure 1 shows the result of the preceding scene with different inside and XOR fields for both clippers.

Figure 1: Usage of the Clipper2D Node

VI. Small modification of the ColorTransform node

VI.1 Problem

The node has 20 fields whose names are not explicit enough.

VI.2 Solution

We suggest to rename them as follows:

Old name New name

matrix1 mrr

matrix2 mrg

matrix3 mrb

matrix4 mra

matrix5 tr

matrix6 mgr

matrix7 mgg

matrix8 mgb

matrix9 mga

matrix10 tg

matrix11 mbr

matrix12 mbg

matrix13 mbb

matrix14 mba

matrix15 tb

matrix16 mar

matrix17 mag

matrix18 mab

matrix19 maa

matrix20 ta

VII. Proposal of a new node : PathLayout

VII.1 Problem

 While completing the Osmo4 renderer, we have (finally) integrated the layout node

and started to look at the proposed modifications in the current ATG documentation. These

modifications aim at providing layout of objects on an arbitrary path. However trying to fit

this functionality in the layout node is not very efficient, since layout provides only alignment

notions (“BEGIN”, “FIRST”, “MIDDLE” and “END”) and is designed to place objects on

several rows or columns with respect to alignment to the layout frame, when placing objects

along a path doesn’t have this notion of frame nor rows/columns. Moreover, animating

objects along a path needs to be more efficient than just the basic scrolling support of layout.

We therefore suggest introducing a new node designed for objects-on-path positioning. The

Layout node needs to be updated to remove the ability to have a path.

VII.2 Solution

We propose to define the following node:

 Node Interface

PathLayout {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFNode geometry NULL
 exposedField MFInt32 alignment [0, 0]
 exposedField SFFloat pathOffset 0
 exposedField SFFloat spacing 1.0
 exposedField SFBool reverseLayout FALSE
 exposedField SFInt32 wrapMode 0
 exposedField SFBool splitText TRUE
}

 Node Semantics

The PathLayout node is a grouping node used to place its 2D children along a given 2D path

and possibly move them along that path. See ISO/IEC 14772-1:1998 for a description of the

children, addChildren, and removeChildren fields and eventIns.

The geometry field contains a 2D geometry node defining the path. The following nodes are

forbidden in that field: Rectangle, Circle and Ellipse. The path is oriented from the first point

to the last point. The length of the path is the sum of all the length of its sub-paths (set of

connected curves or lines).

pathOffset describes the offset along the path to place the first object. Value 0 corresponds to

the beginning of the path and value 1 to the end of the path. Negative values or values greater

than 1 are handled according to the wrapMode field.

The reverseLayout field specifies whether the children are placed following the orientation

of the path (FALSE) or the opposite orientation (TRUE).

The alignment field describes horizontal and vertical alignment in that order.

An object is placed as follows :

- The tangent to the path at the current position is computed, chosen with the same

orientation as the path;

- The object is rotated so that the X-axis of its local coordinate system is parallel to the

tangent and oriented in the same direction as the tangent;

- Alignment is applied (see below).

- The current position along the path is incremented by the current increment.

The initial position on the path is the value of the pathOffset field multiplied by the length of

the path. The current increment depends on the current object, the next object to be placed and

the alignment constraints.

Text nodes are considered as graphical objects if they are not direct children of the

PathLayout node and therefore obey to the alignment constraints as specified by the

alignment field. Otherwise, the fontStyle field of the Text node is used.

For graphical objects, alignment is applied as follows:

alignment[0] VII.3 Meaning VII.4 Increment

ReverseLayout
TRUE

ReverseLayout
FALSE

-1 left edge of the object is aligned

with the current position
spacing  wi –spacing  wi+1

0 middle of the object is aligned

with the current position
spacing  (wi+wi+1)/2 –spacing  (wi+wi+1)/2

1 right edge of the object is aligned

with the current position
spacing  wi+1 –spacing  wi

where wi is the width of the current object to place and wi+1 is the width of the next object to

place. If there is no further object, the increment is meaningless.

alignment[1] VII.5 Meaning

-1 top edge is aligned with the tangent

0 center is placed on the tangent

1 bottom edge is aligned with the tangent

For Text nodes that are direct children of the PathLayout node, their placement depends on

the value of the splitText field.

If splitText is FALSE, the text is placed according to the fontStyle field of the Text

node, with the origin of the local coordinate system being the current position on the path, and

the X-axis of that system rotated so that it is parallel to the tangent and oriented in the same

direction.

If splitText is TRUE, each character of the text is placed separately as if it was a

single Text node with the same fontStyle field.

The wrapMode field indicates action to take when the current position is less than 0 or

greater that the length of the path. The following values are defined:

wrapMode VII.6 Meaning

0 The current object is not rendered, but the current position

is updated as specified above.

1 The current position is increased or decreased by a integer

number of times the path length so that it is positive and

less than the length of the path.

2 The path is virtually extended by a tangent line at the first

and last point and the current position refers to that virtual

path.

VII.3 Modification to the Layout node

VII.3.1 scrollRate

VII.3.1.1 Problem

The scrollRate field of the Layout node currently specifies the scrolling rate in meter per

seconds. This is not very convenient for authors nor well chosen in case the scene is authored

in pixel metrics.

VII.3.1.2 Solution

We suggest changing the semantics so that scrollRate specifying the time needed in seconds

to scroll the layout in the given direction. For example, a layout of 200x100 pixels scrolling

vertically with a scrollDuration of 2 seconds will translate its objects vertically of 100/2

times the simulation frame duration in seconds (eg, 1.65 pixels at 30 fps).

VII.3.2 Scroll-Mode

VII.3.2.1 Problem

A scrollMode field was added to the layout node but no clear semantic was provided.

VII.3.2.2 Solution

We propose to add the following to the Layout node semantic:

Given that all the objects to be laid out are positioned, the bounding box (BB) of these objects

is computed.

scrollMode VII.3.3 scrollVertical =

FALSE

scrollVertical = TRUE

scrollRate < 0 scrollRate > 0 scrollRate < 0 scrollRate > 0

-1 (scroll-in)

Objects are

initially translated

so that :

left edge of BB

is aligned with

right edge of

the layout

frame (LF)

right edge of BB

is aligned with

left edge of LF

bottom edge of

BB is aligned

with top edge

top edge of BB is

aligned with

bottom edge

1 (scroll-out):

Objects are

right edge of

BB is aligned

left edge of BB is

aligned with

top edge of BB is

aligned with

bottom edge of BB

is aligned with top

scrolled until:

with left edge

of LF

right edge of LF bottom edge edge

Value 0 of the scrollMode field corresponds to the combination of both scroll-in and scroll-

out modes.

VII.3.4 the path field

VII.3.4.1 Problem

We are proposing the PathLayout node to better fulfill the functionality of this field.

VII.3.4.2 Solution

We suggest to remove this field from the Layout node.

VIII. Clarification of the Form node

VIII.1 Problem

The semantic of the Form is still unclear regarding the allowed index values and the meaning

of the value 0.

VIII.2 Solution

We propose to further improve the clarification of the Form node by replacing the following

paragraph:

“The constraints and the groupsIndex fields specify the list of constraints. One constraint

is constituted by a constraint type from the constraints field, coupled with a set of group

indices terminated by a –1 contained in the groupsIndex field. There shall be as many

strings in constraints as there are –1-terminated sets in groupsIndex. The n-th constraint

string shall be applied to the n-th set in the groupsIndex field.“

by

“The constraints and the groupsIndex fields specify the list of constraints. One constraint is

constituted by a constraint type from the constraints field, coupled with a set of group indices

terminated by a –1 contained in the groupsIndex field. There shall be as many strings in

constraints as there are –1-terminated sets in groupsIndex. The n-th constraint string shall be

applied to the n-th set in the groupsIndex field. A value of 0 in the groupsIndex field

references the form node itself, otherwise a groupsIndex field value is a 1-based index in the

group field.”

IX. Improvement of Proto and Script usage

IX.1 Problem

 Accessing node fields through ECMAScript is vital to complex scene authoring.

However script access fields through their names, not through their ALL/IN/DEF indexes as

the rest of the BISF system. While this is not an issue for nodes, it is quite problematic for

proto because it forces the scene to be encoded with useName in order to keep the proto field

name, while the rest of the coded names (DEF nodes) is not used by the script nor the rest of

the BIFS system (except when MPEG-J is present).

 In a similar topic, script allows for simple creation of nodes through the node name,

for example new_node = new SFNode(‘Material’). A proto may also be instantiated in this

way, but this means the usename encoding has to be used.

IX.2 Solution

We suggest defining a base field addressing for proto so that a script can access a proto field

without having the scene configured with useName in the following way:

 “A Script may access the field of a node by its name or by its field id, in other word

the field index coded in ALL mode. When accessing the field by ID, the syntax used is

“_fieldN”, where N is the ALL ID. This allows accessing proto fields in a script without

having to encode the scene with useName”

We suggest allowing for proto instantiation in script through the same mechanism as field

accessing:

 “A Script may create a new instance of a prototyped node (eg instantiate a proto) by

using the SFNode constructor with the proto name as an argument, if known, or with the

syntax new_node=new SFNode(‘_protoZ’) where Z is the protoID as coded in the BIFS

stream”

X. Corrigendum items

X.1 FontStyle

An error was by mistake made in the corrigendum on FontStyle. The word ‘sum’ was used

instead of ‘product’. Furthermore, that sentence is redundant with the VRML spec. Only the

‘Note, …’ should be kept.

The spec currently says:

“ The distance between adjacent text baselines is the sum of the size and the spacing. (Note,

that this makes that the text size is the sum of the ascent + descent + leading, the latter which

is the interline spacing, the logical amount of space to be reserved between the descent of one

line of text and the ascent of the next line).”

It should be changed into:

“The text size is the sum of the ascent + descent + leading, the latter which is the interline

spacing, the logical amount of space to be reserved between the descent of one line of text and

the ascent of the next line.”

X.2 InputSensor

There is a discrepancy between the spec and the reference software regarding the InputSensor

node. The url field is an SFString in the spec but an MFString in the reference software. As

all urls, it should be an MFString.

