
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2003/M10015

October 2003, Brisbane, Australia

Source: ENST

Status: For discussion at the 66
th

 MPEG Meeting

Title: Issues on externProto coding

Author: Jean Le Feuvre, Cyril Concolato, Jean-Claude Dufourd

Abstract

 In this document, the externProto mechanism will be reviewed and it will be shown

that its specification in MPEG-4 is not conceptually correct. The issues raised are not

theoretical ones but have been serious bottlenecks in some of ENST’s content design and

creation works.

I Problematic

 The externProto coding in BIFS has many restrictions compared to the original intent

of the VRML externProto building block. This is mainly due to a bad binary coding of the

externProto.

 I.1 ExternProto in VRML

 In VRML, a world description may refer to prototypes defined outside the file through

the externProto element. An externProto consists in 3 major parts:

 the proto name as used in the world

 the proto interface needed to parse the proto instance.

 the location of the entity containing or implementing the proto thus defined.

The external entity providing the proto is not normative in VRML. The location of the

externProto is very flexible and allows for explicit addressing. Let’s have an example:

EXTERNPROTO MYPROTO [

 exposedField SFVec3f size 0 0 0

] “http://myserver/myprotolibs/lib1.wrl#box_proto”

This proto will be referenced as MYPROTO in the scene, while its name in the

external proto library is box_proto. This allows defining several prototypes in a single file,

using this file as a VRML library. With this construction, a scene may use several

externProtos located in different libraries without having to repackage the libraries content.

I.2 ExternProto in MPEG-4

MPEG-4 usage of externProto is identical to the VRML usage, except that the

externProto shall point to a valid MPEG-4 scene with protos (from now on, the ‘proto lib’).

Not that the scene is not relevant, only the list of protos is read. However MPEG-4 BIFS uses

binary integers to identify prototypes, whether in the scene or in the proto lib. The following

problems thus occur:

 the externProto in the scene and the proto in the proto lib shall have the same

binary identifier.

 Two externProto in the scene may not have the same binary identifier.

 If two externProtos in the scene are pointing to two distinct proto libs, these proto

libs shall not use the same proto identifiers.

We can see from the last item that packaging complex content with heavy usage of

externProto is almost impossible since it usually requires repackaging the externProto libs so

that proto IDs don’t collide, which is not desirable or even not authorized nor feasible,.

Moreover, if a proto lib uses an externProto, conflicts are very likely to happen.

Example: an author prepares a complex proto lib for media control using a simple proto lib

for graphics nodes:

 Lib2 (graphical items)

 ProtoID=1 graphical elements

 Lib1 (media controlling):

 ProtoID=1 externproto “lib2”

 ProtoID=0 (media controlling part)

If another author decides to use this library, it MUST use an externProto with

protoID=1. If he needs another building block from another proto lib (Lib3) and this proto lib

was designed with a single proto ProtoID=0, he cannot use it.

It may also happens that the author wants to use a single proto of a proto lib with many

protos, in which case it may need to use much more bits to encode proto IDs than needed.

This is a very important issue we’ve been facing while developing complex content

with high reusability, and is a serious design flaw in the proto coding scheme.

II Solutions

 Fixing the above problem can only be done by decorrelating the proto namespace used

in proto instantiation and the proto namespace used in extern proto referencing. We propose

two solutions to perform this, the first solution being a corrigendum on the existing

specification, the second being an amendment.

 II.1 Corrigendum Solution

Replace:

9.3.7.2.4.1 Syntax
class PROTOcode(isedNodeData protoData) {

bit(1) isExtern;

if (isExtern) {

MFUrl locations;

} else {

PROTOlist subProtos();

do {

SFNode node(SFWorldNodeType, protoData);

bit(1) moreNodes;

} while (moreNodes);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

}

by

9.3.7.2.4.1 Syntax
class PROTOcode(isedNodeData protoData) {

bit(1) isExtern;

if (isExtern) {

bit(5) num_bits;

bit(num_bits) externProtoID;

MFUrl locations;

} else {

PROTOlist subProtos();

do {

SFNode node(SFWorldNodeType, protoData);

bit(1) moreNodes;

} while (moreNodes);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

}

And update the semantics as follows:

num_bits: specifies the number of bits used to encode the externProtoID

externProtoID: the protoID of the externProto to use.

Replace
“The EXTERNPROTO code is found in the PROTO contained in this
new scene with the same ID in both scenes.”

By

“The EXTERNPROTO code is found in the PROTO contained in this new scene with an ID value of
externProtoID”

 Although we usually are reluctant to modifying bitstream syntax, we believe this is an
important fix and shouldn’t have any impact on existing products since the existing specification makes
usage of the externProto quite impossible in real, commercial world.

II.1 Amendment Solution

This solution is roughly the same as above, except that declaration of the

externProtoID is made explicit in the scene replace. To achieve this, one of the

reserved bit of the BIFSScene structure is used:

Replace:

9.3.7.1.1 Syntax
class BIFSScene() {

bit(6) reserved;

bit(1) USENAMES;

PROTOlist protos();

SFNode nodes(SFTopNode);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

By

9.3.7.1.1 Syntax
class BIFSScene() {

bit(5) reserved;

bit(1) useExternProtoID;

bit(1) USENAMES;

PROTOlist protos();

SFNode nodes(SFTopNode);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

The useExternProtoID is then used to signal externProtoID in the externProtoCoding:

9.3.7.2.4.1 Syntax
class PROTOcode(isedNodeData protoData) {

bit(1) isExtern;

if (isExtern) {

 if (useExternProtoID) {

bit(5) num_bits;

bit(num_bits) externProtoID;

}

MFUrl locations;

} else {

PROTOlist subProtos();

do {

SFNode node(SFWorldNodeType, protoData);

bit(1) moreNodes;

} while (moreNodes);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

}

 Although less elegant than the first solution, this keeps bitstream backward

compatibility while allowing efficient externProto usage.

III Conclusion

 We have shown in this document that externProto mechanism in MPEG-4 is too

restrictive, if not broken, compared to the original intend of the externProto in VRML and

have proposed an efficient solution to fix this. We strongly recommend updating the

specification as distribution of prototype libraries is an extremely important segment of the

MPEG-4 market.

