
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 M10097

MPEG03

October 2003

Title: A Simpler, Efficient Binary Encoding for MPEG-4 Scenes

Source: JC Dufourd, Cyril Concolato, Jean Le Feuvre (ENST)

Status: for consideration at MPEG meeting in Brisbane

Abstract
This contribution describes a proposal to change the scene encoding to make decoders smaller and faster, while keeping a

high level of compression efficiency, very similar to the current BIFS encoding compression efficiency.

The Trondheim contribution m9790 described a low-complexity version of BIFS by changing the object set and keeping the

current BIFS encoding. The results showed good progress on the complexity part, but failed to reach the compression goals.

In order to reach our compression goals, we had to drop the current binary encoding and go even further in the direction of

the simplification.

Current Problems
Remark: No ISG study was ever made on the complexity of the BIFS decoding. Apart from the comparison of PMF with the

Samsung interpolator coding, no comparative study was ever made about having or not any of the BIFS encoding features.

Quantization

The quantization has a complex and expensive setup (in terms of bandwidth), inappropriate in many circumstances unless

you use global quantization (which is not in the used profiles) since you cannot use it on replace commands, and for smaller

devices with no floats, it is very difficult to implement the quantization decoding with suitable efficiency while keeping

enough precision (because of the floating point division).

Proposed Solution

Simplify the quantization:

- no min/max which forces the use of floats in decoding, just a number of bits

- allow the decoder to be implemented completely in fixed point by signalling the resolution for coordinates, scales

and angles.

Array compression

Arithmetic coding is even worse than quantization in terms of decoding complexity, and PMF is not efficient on small

arrays. Using a delta scheme with the signalling of the number of bits per component, we get better results than PMF on the

kind of data that is relevant to 2D applications. The decoding complexity is ridiculously small compared to PMF.

See table 1.

Proposed Solution

Use a simple scheme which gains 35% to 40% on the current encoding, and is much simpler than PMF:

- encode the number of bits for the first X and Y

- encode the first X and Y

- encode the number of bits for remaining deltaX and separately for deltaY

- encode the deltas

List Encoding vs Vector Encoding

The use of list encoding is extremely stupid from the decoder implementation point of view. At the beginning of the

decoding of the array, if the list encoding is used, then you cannot allocate one array of the right size. You have to either

allocate too much, or do multiple allocations and copies. With vector encoding, you know the length of the array from the

start.

Proposed Solution

Do not allow list encoding, and remove the flag.

Contextual Node Type Encoding, Escape Codes and Multiple Field Indexes

In BIFSLC, for each proto instance, 7 bits are wasted because of the v1 escape code. Since there are only proto instances

and two nodes in BIFSLC, those 7 bits are a pure loss.

In this respect, we have made a test with Osmo4, by compiling 3 different versions of the BIFS subsystem:

- BIFSLC: 32.7 kbytes

- BIFSv2 (no 3D): 94.2 kbytes

- BIFSv6 (incl. 3D): 253.9 kbytes

This was computed by difference between the application with MP4 support, no scene graph, no BIFS, and the configuration

described. This indicates that the node tables are unacceptably big.

Proposed Solution

By getting rid of the contextual node encoding and the multiple field indices and having only SFWorldNode with room for

future extensions, we gain more than a factor of 2 on the size of the BIFS decoder, because the huge node tables disappear.

New Proposals
These proposals are simple and well-known techniques. The fact that they are not used in BIFS is difficult to explain.

Color Palette

In order to optimize the color information transmission, we introduce a simple color palette scheme. We create the following

updates:

- reset color palette

- add color list to palette: a list of colors is added to the current palette

- remove color index list from palette: a list of indices of colors to be removed from the palette is given

When a color palette is defined, SFColor is modified: it contains only an index into the color palette. The number of bits of

the index is log2(paletteSize).

Optimized Flexible Encoding

We propose to declare a “node palette” at the beginning of the scene. This node palette is a list of node indices signalling

which nodes are going to be present in the stream. Then the node tags are indices in that node palette table instead of the

bigger node indices from the list containing all nodes. This improves the coding efficiency. It can also improve the resource

usage in the player: if the terminal sees that no sensors will be used, then it can disable the allocation of sensor contexts in

the scene tree.

Contrary to the color palette, we think the node palette should not change over time because player and decoder optimisation

could not be statically made.

Annex: Table 1

 Points only All ES (BIFS or STZ) All file SWF size
BifsLC
/SWF

BIFS

 all ES

BIFS

/SWF

Sequence BIFSLC STZ nbPoints %
BIFSLC

total
STZ
total % MP4 STZP % %

toutou 5226 3405 1742 65% 6632 4231 64% 7289 4300 59% 7115 60% 102% 5886 83%

pistache_ 8646 6193 2882 72% 27825 21735 78% 32154 24864 77% 31879 78% 101% 30677 96%

frog1 45933 31498 15311 69% 54487 37282 68% 55504 37651 68% ecs

kangaroo 52128 29555 17376 57% 68038 39702 58% 70975 41671 59% 79687 52% 89% 56930 71%

gen002 131178 89662 43726 68% 163898 111427 68% 165827 112556 68% ecs

jack_marcel 580965 387435 193655 67% 760881 512794 67% 770778 520563 68% ecs

butchcassidy 303900 148922 101300 49% 597428 359926 60% 615593 374585 61% 871868 43% 71% 461203 53%

minitoon 34434 22984 11478 67% 40942 27145 66% 42019 27564 66% 32013 86% 131% 21514 67%

tarzan 132951 83950 44317 63% 153514 97833 64% 155815 99272 64% 235638 42% 66% 87789 37%

ballon 97959 65632 32653 67% 109479 73605 67% 110664 74114 67% 132200 56% 84% 54377 41%

tuture 13215 8681 4405 66% 55427 38653 70% 58076 40382 70% 64393 63% 90% 49065 76%

chat 55431 38769 18477 70% 64065 45142 70% 66090 46351 70% 138956 33% 48% 25058 18%

dancer 20361 13191 6787 65% 23147 14999 65% 24548 15688 64% 37816 41% 65% 12340 33%

mission
impossible 31842 19065 10614 60% 70796 50243 71% 73949 52392 71% 78091 67% 95% 71411 91%

birdrats 184140 101662 61380 55% 230961 131663 57% 232494 132462 57% 175685 75% 132% 201098 114%

cats 129753 68887 43251 53% 177197 100011 56% 178550 100660 56% 102131 99% 175% 173169 170%

ptiluc 213528 136982 71176 64% 247037 165964 67% 249230 167313 67% 245760 68% 101% 165071 67%

petrole 127194 72692 42398 57% 152222 91293 60% 155063 93182 60% 154226 60% 101% 135822 88%

jm 597831 348679 199277 58% 704977 430449 61% 712966 436628 61% 627873 70% 114% 628941 100%

vecto 143478 89764 47826 63% 163939 107135 65% 166612 108884 65% 181159 60% 92% 129564 72%

waterfall 96102 55852 32034 58% 105053 63072 60% 106454 63761 60% 173410 37% 61% 151816 88%

palmtree f2 20844 16556 6948 79% 31128 19340 62% 32217 19769 61% 23241 85% 139% 30181 130%

cow 17700 13023 5900 74% 21537 15649 73% 22578 16038 71% 21265 75% 106% 21205 100%

vegetable 10788 7677 3596 71% 12809 8871 69% 13790 9210 67% 12171 76% 113% 9394 77%

 64% 65% 4119235 2619860 65% 63% 99%

80%

 BIFSLC with 12bits 64%

The sequences in table 1 have various origins:

- ecs: they were designed with the MediaPEGS cartoon design tool, and optimized for mobile viewing

- suushi (last 4): they were designed in Flash for mobile viewing

- bibo (toutou, tuture, pistache): they were designed in Flash for mobile viewing

- pegs (birdrats, cats, ptiluc, petrole, jm, vecto): they were designed in Flash for Internet viewing

- minitoon: was designed in Flash for mobile viewing

- tarzan, ballon: were designed for Internet and adapted to mobile

- butchcassidy, chat, dancer: designed in Flash for Internet viewing

STZ is a proprietary format implementing the BIFSLC object set and using all recommandations of this document for the

binary encoding.

BIFSLC encoding uses a quantization on 12 bits, same as STZ. On the encoding of coordinates only, BIFSLC is 50% bigger

than STZ. The same is true when the whole ES is compared, or the whole file. Yet BIFSLC is not bad itself, since it achieves

a size equivalent to SWF.

The BIFS column contains a version of the content with either curves or filtered polygons (whichever is smaller), v2 nodes,

protos, optimized quantization and predictive MFField on points and indexes.

