
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2003/M10375

December 2003, Hawaii, USA

Source: ENST

Status: for discussion at the 67
th

 MPEG Meeting

Title: various enhancements for MPEG-4 Systems

Author: Jean Le Feuvre, Cyril Concolato, Jean-Claude Dufourd, ENST

Abstract

 While designing content we have come across some missing features in the

current MPEG-4 systems specification. We therefore propose to amend the standard to

bring in these new functionalities.

I Valuator, SFTime and SFString
 I.1 Problematic

 The MPEG-4 standard includes very powerful tools to deal with media playback,

MediaControl and MediaSensor. MediaSensor is extremely interesting for content

authors willing to provide more details of media currently playing, such as exact timing

and duration. This functionality is usually achieved either through script or valuator

nodes. However, the media time is handled in BIFS as an SFTime field, hence expressed

in seconds. While this is important, there is a drawback: end-user display of media time is

usually (if not always) presented in the hh:mm:ss format, where ‘hh’, ‘mm’, ‘ss’

respectively are hours, minutes and seconds. In order to be able to display media time or

media duration in this format within the scene, the content designer must use

ECMAScript run-time. This therefore discards simple terminals without Script node

support, and forces using scripts for a trivial functionality, which is usually a bit heavier

(more RAM, slower processing). We therefore suggest modifying the type-casting of

SFTime to SFString in the valuator node, so as to provide a low-cost, efficient way of

displaying media time and duration.

I.2 Proposed Solution

Add to the Valuator node semantics:

“If the eventIn is of SFTime type then the conversion to string format shall be in the format
“hh:mm:ss” where ‘hh’, ‘mm’, ‘ss’ are respectively hours, minutes and seconds of the input
SFTime value.”

II Remote location in Descriptors
 II.1 Problematic

 The MPEG-4 standard allows referencing remote resources in both OD and ESD

descriptors. This is extremely useful for client/server interactivity, such as relocating an

inline scene based on client profiles (advertising) or a media stream based on user

permissions (IPMP) or transport type. However the specification only provides support

for 255 byte length URL, coded as UTF-8. This is obviously not enough, if one wants to

integrate server-side scripting indications such as CGI or embed data in the URL using

the DATA: format as specified by IETF. Cases have also been seen where transport of

the IOD in the ISMA fashion are failing due to too large configuration information in the

base64 format. We are therefore suggesting extending the URL usage in the OD

framework.

II.2 Proposed Solution

Change the URLlength in the InitialObjectDescriptor, ObjectDescriptor and

ES_Descriptor sections from:

if (URL_Flag) {

bit(8) URLlength;

bit(8) URLstring[URLlength];

} else {

 …

}

to

if (URL_Flag) {

bit(8) URLlength;

if (! URLlength) {

 bit(5) nbBits;

bit(nbBits) URLlength;

}

bit(8) URLstring[URLlength];

} else {

 …

}

“URLlength – the length of the subsequent URLstring in bytes. If URLlength is zero, the

number of bits used to code the URL length is coded, then the URL length itself. This allows
encoding any format of URL with more than 255 bytes.”

III Remote Objects synchronization
 III.1 Problematic

The MPEG-4 OD framework provides efficient tools for streams synchronization,

but lacks efficient synchronisation in case of distributed objects used in a presentation.

The stream synchronization is indeed performed through ES descriptors Identifiers, but

these identifiers are only relevant within a same network service, if not a same OD

namespace. Therefore synchronizing objects introduced in the scene through remote

object descriptors (OD with URL string) one to another is not possible, whereas this kind

of application is vital to synchronized advertisement using service redirections and many

other market area, be it for authors (movie sub-titling, dividing content in smaller,

reusable scenes) or for providers (single content distribution through several servers or

even protocols).

We therefore suggest the Object Synchronization on top of the Stream

Synchronization to cope with this deficiency of MPEG-4 Systems.

III.2 Proposed Solution

Introduce the notion of Object Clock:

“Object Clock: an object as defined by an ObjectDescriptor is composed of

several Elementary streams. Each of these streams may run on its own time base (OTB)

or use another stream as its OTB. In case all streams composing an object use the same

OTB, this OTB is called Object Clock. In all other cases, the Object Clock is undefined.”

Change the reserved field of InitialObjectDescriptor from:
const bit(4) reserved=0b1111;

to
const bit(1) no_sync_od;

if (!no_sync_od) {

const bit(10) sync_od_id;

const bit(6) reserved=0b000000;

}

const bit(3) reserved=0b111;

Change the reserved field of ObjectDescriptor from:
const bit(5) reserved=0b1111.1;

to
const bit(1) no_sync_od;

if (!no_sync_od) {

const bit(10) sync_od_id;

const bit(6) reserved=0b000000;

}

const bit(4) reserved=0b1111;

 Update the semantics of both descriptors:

“no_sync_od: specifies whether another object is used for synchronization.

sync_od_id: ID of the object descriptor whose Object Clock is used for synchronization.

This ID is only valid in the current OD namespace and shall be different from this

ObjectDescriptor ID. If the target descriptor describes a remote resource, the Object

Clock is the one of the resolved resource. If the Object Clock is undefined,

synchronization is undefined. If the Object Clock is defined, then all streams defined in

this descriptor, or in the resolved resource if this descriptor has a URL string given, shall

use the specified Object Clock as their OTB and shall ignore any clock dependencies

indicated at the stream level.”

 Note that the object synchronization could also be specified through extension

descriptors, but we strongly prefer this solution since synchronization is a core feature of

the OD framework rather than an extension.

IV Extern Proto coding
 IV.1 Problematic

As explained in w5980, the current binary coding of externProto does not allow for real

proto libraries usage. We strongly support the decision taken by the MPEG systems

group to use an externProto addressing scheme similar to the externProto scheme used in

VRML, and summarize hereafter the proposed modification.

This scheme allows to directly reference a prototype in an external resource by its

binary identifier or string identifier through the resource location field of the ExternProto.

For example, referencing proto 10 in the resource http://server/library.mp4 would result

in the following URL for the externProto: http://server/library.mp4#10. The proto could

also be referenced by name, e.g. if the proto 10 has is named “MyProtoTest” in the extern

resource, the ExternProto URL would be http://server/library.mp4#MyTestProto. The

ExternProto may then use any binary identifier or any name in the MPEG-4 scene, it is

unambiguously pointing to a unique proto in the extern resource.

IV.2 Proposed Solution

Replace in 9.3.7.4.2.2:

“
The EXTERNPROTO opens a BIFS-Command stream that contains a ReplaceScene

command with a BIFSScene containing the PROTO definitions. The EXTERNPROTO code is

found in the PROTO contained in this new scene with the same ID in both scenes. Nodes
contained in the EXTERNPROTO scene shall be ignored.
”

by

“
The EXTERNPROTO opens a BIFS-Command stream that contains a ReplaceScene

command with a BIFSScene containing the PROTO definitions. The EXTERNPROTO code is

found in the PROTO contained in this new scene. The url field allows to uniquely identify the
EXTERNPROTO code through the following url scheme : “resource_URL#ProtoID” or

“resource_URL#ProtoName”, where resource_URL is the location of the scene to open,

ProtoID the binary ID of the proto in the new scene and ProtoName the name of the proto in

http://server/library.mp4
http://server/library.mp4#10
http://server/library.mp4#MyTestProto

the new scene when this scene is encoded with USENAMES. In case “#ProtoID” or

“#ProtoName” is omitted in the location, the first proto in the new scene with the same

PROTOinterfaceDefinition shall be used.

Nodes contained in the EXTERNPROTO scene shall be ignored.
Opening of the scene description stream follows the MPEG-4 content access procedure
described in 8.7.3.8.2.
”
 We also suggest specifiying that the resource_URL may be described by an existing

ObjectDescriptor with the usual MPEG-4 scheme “OD:ODID”.

 V Conclusion

In this contribution, we have explained some problems faced by content authors

and have provided simple yet efficient solutions to these problems. We kindly invite the

MPEG Systems group to consider them.

