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Abstract

The Ordinal Lexicographic Model, based on the lexicographic sum of relations, pro-
vides an explanation to intransitivities in preferences as shifts in choice criteria.
The lexicographic sum R ⊕ R′ between two preferences R and R′ on a same finite
set X is defined as follows: x is preferred to y with respect to R ⊕ R′ when x is
preferred to y with respect to R, or there is a tie between x and y with respect to
R but x is preferred to y with respect to R′. If a preference R can be written as
R = R1 ⊕ R2 ⊕ ... ⊕ Rk, (R1, R2, ..., Rk) is said to be a lexicographic decomposition
(LD) of R. It means that a first criterion, expressed by R1, explains a part of R, a
second criterion, expressed by R2, explains a part of R which is not explained by
R1, and so on. Each relation Ri of the LD can be interpreted as a point of view,
and the number k is the number of shifts in point of view in the decomposition. It
is usually required from the relations of the LD to fulfil some structural properties,
for instance to be partial orders. When a LD is possible, the usual question consists
in computing, for any preference R, the minimum number d(R), called the lexico-
graphic dimension of R, of relations involves in the LD in order to explain R. The
aim of this paper is to provide some properties of the lexicographic sum ⊕.
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1 Introduction

In the field of preferences analysis, when we pairwise compare alternatives in
order to rank them, it often happens to observe intransitivities: if x, y and
z denote three of these alternatives, x may be considered as better than y
and y as better than z by a decider, while z is considered as better than x
by the same decider. Different rules have been suggested and studied in order
to explain these intransitivities. For instance, maximin and maximax rules
[7], conjunctive and disjunctive rules [6], [8], the majority rule [11], [13], the
weighted set of differences rule [10], the choice by greatest attractiveness rule
[12], the lexicographic rule [9], the minimum difference lexicographic rule [12],
the lexicographic semiorder rule [14], the sequential accumulation of differ-
ences rule [1], the moving basis heuristics [3], [4]. In the lexicographic rules,
alternatives are assumed to be characterized by several attributes, each at-
tribute allowing to rank the alternative in terms of importance. Then the
alternative ranked first is the one with the largest value for the most impor-
tant attribute. If these is a tie with respect to this attribute, then the decision
is based on the second most important attribute, and so on.

The Ordinal Lexicographic Model (OLM) studied in [2] is based on the
lexicographic sum defined as follows. Let R and R′ be two binary relations
defined on a given finite set X of n alternatives. The lexicographic sum of R
and R′ is the relation R ⊕ R′ defined, for (x, y) ∈ X2, by:

(x, y) ∈ (R ⊕ R′) ⇐⇒ {(x, y) ∈ R or [(y, x) /∈ R and (x, y) ∈ R′]}.

In other words, for a context in which R and R′ denote preferences, x is
preferred to y with respect to R⊕R′ when x is preferred to y with respect to
the first relation, R, or there is a tie between x and y with respect to R but
x is preferred to y with respect to the second relation, R′. With set theoretic
notation, if Rr denotes the reversed relation of R defined by: (x, y) ∈ Rr ⇐⇒
(y, x) ∈ R, then R ⊕ R′ is equal to R ∪ (R′ \ Rr).

Of course, we may consider the lexicographic sum of several relations in
OLM. If a relation R can be written as R = R1 ⊕ R2 ⊕ ... ⊕ Rk (we shall
see in Section 2 that the operation ⊕ is associative; so parentheses are not
necessary) for some appropriate integer k and some appropriate relations Ri

(1 ≤ i ≤ k), we say that (R1, R2, ..., Rk) is a lexicographic decomposition
of R. Then it means that a first criterion, expressed by R1, explains a part
of R, a second criterion, expressed by R2, explains a part of R which is not
explained by R1, a third criterion, expressed by R3, explains a part of R
which is neither explained by R1 nor by R2, and so on. Each relation Ri of
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the lexicographic decomposition is interpreted in [2] as a point of view, and
the number k is the number of shifts in point of view. It is usually required
from the relations of the lexicographic decomposition to fulfil some structural
properties, for instance to be antisymmetric relations or partial orders (see
below for the definitions of these structures); when the relations Ri (1 ≤ i ≤ k)
are assumed to be partial orders, then the decomposition is called an Ordinal
Lexicographic Decomposition (OLD) of R in [2]. Similarly, the relation R that
we want to decompose can also be assumed to fulfil properties, for instance to
be a tournament. Then two questions arise in this context:

• Given some structural properties assumed to be fulfilled by the relation R to
be decomposed and given some (other) structural properties required from
the relations of the decomposition, is it possible to find such a lexicographic
decomposition of R?

• If such a decomposition does exist, what is the minimum number of relations
fulfilling the required properties involved in the lexicographic decomposition
of R? In other words, what is the minimum number of shifts in point of view
that we must involve to explain R with respect to the required properties?
If the relations of the decomposition must belong to a set S, this number
is called the lexicographic dimension of R and will be noted dS(R) in the
following.

This paper provides some results dealing with these two issues. Section 2
specifies some basic algebraic properties. Section provides some possibility
results dealing with the decomposition of antisymmetric relations into linear
orders, partials orders or acyclic relations, and states some open problems.

2 Algebraic properties of lexicographic decomposition

A very basic property comes obviously from the definition of ⊕:

Lemma 2.1 For any relations R and R′, we have R ⊆ R ⊕ R′ ⊆ R ∪ R′.

In the following, we assume that the considered relations R are antisym-
metric: (x, y) ∈ R and (y, x) ∈ R involve x = y. Let A(X) be the set of
antisymmetric relations defined on X. Then we may easily characterize when
R⊕R′ is equal to R or to R∪R′ (Proposition 2.6 will provide other characteri-
zations, related to the communitativity of ⊕, of the equality R⊕R′ = R∪R′):

Proposition 2.2

1. R = R ⊕ R′ ⇐⇒ R′ ⊆ R ∪ Rr.

2. R ⊕ R′ = R ∪ R′ ⇐⇒ Rr ∩ R′ = ∅.
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Proof. 1. If R = R ⊕ R′, then R′ does not bring any new ordered pair. So
it means that, if we have (x, y) ∈ R′, (x, y) already belongs to R or (y, x)
prevents (x, y) from being in R ⊕ R′ because (y, x) itself belongs to R or,
equivalently, because (x, y) belongs to Rr. In both cases, it involves that R′

is a subset of R ∪ Rr. Conversely, if R′ is a subset of R ∪ Rr, then obviously
R′ cannot bring any new ordered pair to the ones of R and so R is equal to
R ⊕ R′.
2. As R ⊕ R′ is equal to R ∪ (R′ \ Rr), R′ ∩ Rr = ∅ obviously involves that
R ⊕ R′ is equal to R ∪ R′. Conversely, assume that Rr ∩ R′ is not the empty
set. Let (x, y) belong to Rr ∩ R′. As (x, y) belongs to Rr, then (y, x) belongs
to R and (x, y) does not belong to R. Then (x, y) cannot belong to R ⊕ R′

(since we have neither (x, y) ∈ R nor [(y, x) /∈ R and (x, y) ∈ R′]) while it
belongs to Rr ∩ R′. So, in this case R ⊕ R′ and R ∪ R′ are distinct. �

The operation ⊕ defines a monoid on A(X) (in other words, ⊕ is associa-
tive and admits a neutral element) of which the neutral element is the empty
relation ∅. This is specified by Theorem 2.3:

Theorem 2.3 The operation ⊕ defines a monoid on A(X).

Proof.

First, note that, if R and R′ belong to A(X), then R⊕R′ belongs to A(X)
too. Indeed, let (x, y) belong to R ⊕ R′. If (x, y) belongs to R, then (y, x)
does not belong to R because R is antisymmetric; then the belonging of (y, x)
to R ⊕ R′ could only come from R′; but, even if (y, x) does belong to R′, the
belonging of (x, y) to R prevents (y, x) from belonging to R ⊕ R′. If (x, y)
does not belong to R, the belonging of (x, y) to R⊕R′ requires simultaneously
that (x, y) belongs to R′ and that (y, x) does not belong to R; in this case,
the belonging of (y, x) to R ⊕ R′ would require the belonging of (y, x) to R′,
what is impossible because of the antisymmetry of R′. In both cases, if (x, y)
belongs to R ⊕ R′, then (y, x) does not belong to R ⊕ R′: R ⊕ R′ is thus
antisymmetric.

Let us show now that ⊕ is associative. Let x and y be elements of X and
let R, R′ and R′′ be three antisymmetric relations defined on X. Then we
have the following equivalences:

(x, y) ∈ (R⊕R′)⊕R′′ ⇐⇒ (x, y) ∈ R⊕R′ or {(y, x) /∈ R⊕R′ and (x, y) ∈ R′′}

⇐⇒ (x, y) ∈ R or [(y, x) /∈ R and (x, y) ∈ R′)]

or {(y, x) /∈ R and [(x, y) ∈ R or (y, x) /∈ R′] and (x, y) ∈ R′′}
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⇐⇒ (x, y) ∈ R or [(y, x) /∈ R and (x, y) ∈ R′)]

or {(y, x) /∈ R and (y, x) /∈ R′ and (x, y) ∈ R′′},

because of the antisymmetry of R.

Similar computations for (x, y) ∈ R ⊕ (R′ ⊕ R′′) give the same result. Hence
the associativity.

To conclude, observe that ∅ is the neutral element. Indeed, we obviously
have the following: R ⊕ ∅ = R ∪ (∅ \Rr) = R and ∅ ⊕R = ∅ ∪ (R \ ∅) = R.�

A consequence of the next proposition will be that the only relation R
admitting an inverse for ⊕ (i.e. a relation Ri with R⊕Ri = Ri ⊕R = ∅) is ∅.
Proposition 2.4 The only solution of the equation R⊕R′ = ∅ is R = R′ = ∅.
Proof. By Lemma 2.1, we know that R is a subset of R ⊕ R′; hence R = ∅.
Then, as ∅ is the neutral element of ⊕, R ⊕ R′ = R′ = ∅. �

It is easy to characterize the cases for which we have R ⊕ R′ = R or
R ⊕ R′ = R′. Such a characterization is provided by Proposition 2.5.

Proposition 2.5 Let R and R′ be two relations belonging to A(X). Then we
have:

1. R ⊕ R′ = R ⇐⇒ R′ ⊆ R ∪ Rr;

2. R ⊕ R′ = R′ ⇐⇒ R ⊆ R′.

Proof. 1. Assume that R′ is not a subset of R ∪ Rr and let (x, y) belong to
R′\(R∪Rr). Because (y, x) does not belong to R (since (x, y) does not belong
to Rr), we have (x, y) ∈ R ⊕ R′ while (x, y) is assumed not to be in R. So if
R′ is not a subset of R ∪ Rr, then R ⊕ R′ is not equal to R. Conversely, it is
easy to check that, if R′ is a subset of R ∪ Rr, then we have R ⊕ R′ = R.

2. By Lemma 2.1, we know that R is a subset of R⊕R′. Thus R⊕R′ = R′

yields R ⊆ R′. Conversely, assume that R is a subset of R′. By Lemma 2.1,
we know that R ⊕ R′ is a subset of R ∪ R′, i.e. of R′: R ⊕ R′ ⊆ R′. Let
(x, y) be in R′; because of the antisymmetry of R′, (y, x) does not belong to
R′ and thus does not belong to R. So we have (y, x) /∈ R and (x, y) ∈ R′,
what involves (x, y) ∈ R ⊕ R′: R′ ⊆ R ⊕ R′. Hence the equality between the
two sets. �

In general, the operation ⊕ is not commutative. For instance, for X = {1, 2},
let R be {(1, 2)} and R′ be {(2, 1)}, then R⊕R′ = R and R′⊕R = R′. Propo-
sition 2.6 characterizes the cases for which we have R ⊕ R′ = R′ ⊕ R.
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Proposition 2.6 We have the following equivalencies:

R ⊕ R′ = R′ ⊕ R ⇐⇒ Rr ∩ R′ = ∅ ⇐⇒ R ∩ R′r = ∅ ⇐⇒ R ⊕ R′ =
R ∪ R′ ⇐⇒ R′ ⊕ R = R ∪ R′.

Proof. First, observe the equality R ∩R′r = (Rr ∩R′)r. So R ∩R′r is empty
if and only if Rr ∩R′ is also empty. This and the second statement of Propo-
sition 2.2 involve the equivalencies between statements 2 to 5.

Statements 4 and 5 obviously involve statement 1. So statement 2, which
is equivalent to statement 4 and to statement 5, involves statement 1. Assume
now that Rr ∩ R′ �= ∅ and let (x, y) be in Rr ∩ R′. Then, as (x, y) belongs to
R′, (x, y) belongs to R′ ⊕ R. But as (x, y) belongs to Rr, (y, x) belongs to R
and (x, y) does not belong to R; then (x, y) cannot belong to R⊕Rr (we have
neither (x, y) ∈ R nor [(y, x) /∈ R and (x, y) ∈ R′]). So, in this case, R ⊕ R′

and R′ ⊕ R are not equal. So statements 1 and 2 are equivalent and, finally,
all these statements are equivalent. �

3 Possibility results and open problems

Rationality often requires transitivity, like in linear orders (i.e. antisymmetric,
complete and transitive relations; for references on ordered structures, see for
instance [5]). Anyway linear orders are usually too restrictive, as shown by
the next proposition.

Proposition 3.1 The only antisymmetric relations which admit a lexicographic
decomposition into linear orders are the linear orders. In this case, the lexi-
cographic dimension of any linear order is 1.

Proof. Indeed, let R be an asymmetric relation admitting a lexicographic
decomposition R = O1 ⊕ O2 ⊕ ... ⊕ Ok. By Lemma 2.1, O1 is a subset of R.
As R is antisymmetric and O1 is complete, R must be equal to O1. Hence the
statement of the proposition. �

Two less restrictive structures are the partial orders (i.e. antisymmetric
and transitive relations) or the acyclic relations (relations A such that, for any
k ≥ 2 and any k-tuple (i1, i2, ..., ik), (i1, i2) ∈ A, (i2, i3) ∈ A, ..., (ik−1, ik) ∈ A
involve (ik, i1) /∈ A; note that an acyclic relation is not necessarily transitive).
Let P(X) and AC(X) denote the sets of partial orders defined on X and of
acyclic relations defines on X respectively. Note the inclusion P(X) ⊂ AC(X).

Let i and j be integers between 1 and n. Define the partial order Oij by
(i, j) ∈ Oij and, for (x, y) �= (i, j), (x, y) /∈ Oij. Note the equality Or

ij = Oji;
thus, for (i, j) �= (j′, i′), we have Or

ij ∩Oi′j′ = ∅. A consequence of this and of
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Proposition 2.6 is that the lexicographic sum of partial orders of type Oij is
commutative and the order in which we sum these orders has no importance.
These partial orders show that it is always possible to lexicographically de-
compose any antisymmetric relation (in fact, any binary relation) into partial
orders or acyclic relations, as specified by the next theorem:

Theorem 3.2 Any nonempty antisymmetric relation R can be lexicographi-
cally decomposed into at most |R| partial orders.

Proof. Indeed, R may be written as R = ⊕{Oij for (i, j) ∈ R} (as noticed
above, the order in way the sum is performed has no importance since R is
antisymmetric). �

A consequence of Theorem 3.2 is that the lexicographic dimension of R
into partial orders is at most |R|: dP(X)(R) ≤ |R|. Thus the maximum value
of dP(X) over A is upper-bounded by n(n−1)/2. Another consequence is that
the lexicographic dimension of R into acyclic relations is also always possible
with at most |R| acyclic relations. In fact, it is possible to be more specific,
as shown by Theorem 3.3:

Theorem 3.3 Any nonempty antisymmetric relation R can be lexicographi-
cally decomposed into acyclic relations. Moreover, if R is a linear order, then
dAC(X)(R) = 1; otherwise, dAC(X)(R) = 2.

Proof. We just must prove that, if R is not a linear order, then dAC(X)(R) =
2 (the other results are consequences of Proposition 3.1 and Theorem 3.2).
Indeed, consider any linear order O defined on X. Consider the two relations
A1 and A2 defined by A1 = R∩O and A2 = R∩Or. Then A1 and A2 obviously
belong to AC(X) (since O is acyclic) and moreover R is equal to A1 ∪A2. As
A1 ∩ Ar

2 = ∅, we obtain, by Proposition 2.6, R = A1 ∪ A2. Hence the result
about the lexicographic dimension of R. �

Theorem 3.3 utterly characterizes the lexicographic decomposition of any
antisymmetric relation into acyclic relations. But what about the decomposi-
tion into partial orders? We finish this section with two open problems.

Problem 3.4 Given any antisymmetric relation R, what is the complexity of
the computation of dP(X)(R)?

Problem 3.5 Given a finite set X, what is the maximum value of dP(X)(R)
for R ∈ A(X)?
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