Complexity of computing median linear orders and variants

Olivier Hudry
Telecom ParisTech
46, rue Barrault, 75634 Paris Cedex 13, France
hudry@enst.fr

Abstract

Given a finite set X and a collection Π of linear orders defined on X, computing a median linear order (Condorcet-Kemeny's problem) consists in determining a linear order minimizing the remoteness from Π. This remoteness is based on the symmetric distance, and measures the number of disagreements between O and Π. In the context of voting theory, X can be considered as a set of candidates and the linear orders of Π as the preferences of voters, while a linear order minimizing the remoteness from Π can be adopted as the collective ranking of the candidates with respect to the voters' opinions. This paper studies the complexity of this problem and of several variants of it: computing a median order, computing a winner according to this method, checking that a given candidate is a winner and so on. We try to locate these problems inside the polynomial hierarchy.

Keywords: Complexity, Turing transformation, NP-completeness, NP-hardness, polynomial hierarchy, linear order, Condorcet-Kemeny problem, Slater problem, voting theory, pairwise comparison method, median order, linear ordering problem, feedback arc set, majority tournament.

[^0]
1 Introduction

In an election, assume that we are given a finite set X of n candidates and a collection (or multi-set) $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$, called a profile, of the preferences O_{i} of m voters $(1 \leq i \leq m)$ who want to rank the n candidates. Assume moreover that the individual preferences $O_{i}(1 \leq i \leq m)$ of the m voters are linear orders over X. Note that the linear orders involved in the profile may be the same: two different voters may share the same preference. In order to aggregate these m linear orders into a linear order which can be considered as the collective ranking, Condorcet [8] suggested to compute, for each pair of candidates $x, y($ with $x \neq y)$, the number $m_{x y}$ of voters who prefer x to y and the number $m_{y x}$ of voters who prefer y to x. Then x is collectively preferred to y if we have $m_{x y}>m_{y x}$. Unfortunately, as pointed out by Condorcet himself, the relation thus defined does not necessarily provide a linear order. More precisely (see the example below), a majority may prefer a candidate x to another candidate y, another majority may prefer y to a third candidate z, and still another majority may prefer z to x. This is the well-known "voting paradox" or also "Condorcet effect" [12].

When such a situation occurs, one possibility to define the collective preference consists in computing a linear order which summarizes the individual preferences as well as possible, more precisely which minimizes the number of disagreements with respect to Π (see below). A linear order minimizing this number of disagreements is called a median linear order [3], or sometimes a Kemeny order (though the problem considered by Kemeny deals in fact with complete preorders, see [18]). The candidate who beats the other candidates in such a median order will be called a winner in the following.

The problem that we consider here consists in studying the complexity of computing such a median order or such a winner. The studied problems are more precisely defined in Section 3, after some definitions and notation specified in Section 2. The complexity results are summarized, without their proofs, in Section 4.

2 Definitions and notation

2.1 Symmetric difference distance, remoteness, median order

Let X be a finite set. If R is a binary relation defined on X and if x and y are two elements of X, we write $x R y$ if x is in relation with y with respect to R. Let R and S be two binary relations defined on X. The symmetric difference distance $\rho(R, S)$ between R and S is defined by, where Δ denotes the usual
symmetric difference between sets:

$$
\delta(R, S)=|R \Delta S|,
$$

i.e.

$$
\delta(R, S)=\mid\left\{(x, y) \in X^{2} \text { s.t. }[x R y \text { and not } x S y] \text { or }[\text { not } x R y \text { and } x S y]\right\} \mid .
$$

This distance, which owns good axiomatic properties (see [2]), measures the number of disagreements between R and S. From this distance, we may define a remoteness ρ between the profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ and any linear order O defined on X by:

$$
\rho(\Pi, O)=\sum_{i=1}^{m} \delta\left(O_{i}, O\right) .
$$

Thus $\rho(\Pi, O)$ measures the total number of disagreements between Π and O. A median linear order of Π is a linear order O^{*} which minimizes the remoteness from Π :

$$
\rho\left(\Pi, O^{*}\right)=\min _{O \in \Omega(X)} \rho(\Pi, O),
$$

where $\Omega(X)$ denotes the set of all the linear orders defined on $X ; \mu(\Pi)$ will denote this minimum value:

$$
\mu(\Pi)=\min _{O \in \Omega(X)} \rho(\Pi, O) .
$$

2.2 Complexity classes

As it is usual, we will distinguish between decision problems (i.e. problems for which a question is set of which the answer is "yes" or "no") and the other types of problems (as optimization problems or search problems). The usual classes P and NP are assumed to be known, as well as the concept of NP-complete or NP-hard problems (see for instance [11] for their definitions). The class $P^{N P}$ or $P(N P)$, or Δ_{2}^{P} (or simply Δ_{2}) contains the decision problems which can be solved by applying, with a polynomial (with respect to the size of the instance) number of calls, a subprogram able to solve an appropriate problem belonging to $N P$ (usually, an $N P$-complete problem). In other words, $P^{N P}$ contains the decision problems \mathcal{P} such that there exists a problem \mathcal{Q} belonging to $N P$ with $\mathcal{P}<_{T} \mathcal{Q}$, where $<_{T}$ denotes the Turing transformation. Such a problem \mathcal{P} is sometimes called $N P$-easy (though it can be $N P$-hard as well; a problem which is simultaneously $N P$-easy and
$N P$-hard is said to be $N P$-equivalent: this means that the complexity of an $N P$-equivalent problem is the same, up to some polynomials, as the complexity of $N P$-complete problems). This class is usually considered as the first step of the polynomial hierarchy above $N P$ and co- $N P$ (with this respect, the notation Δ_{2} is more usual when dealing with this polynomial hierarchy; anyway, we shall keep the notation $P^{N P}$, more informative and of which the meaning is easier to memorize). Indeed, $P^{N P}$ contains $N P$ obviously as well as the class co- $N P: N P \cup$ co- $N P \in P^{N P}$. It also contains the class $L^{N P}$, also denoted by Θ_{2}^{P}, which contains the decision problems that can be solved by applying, a logarithmic (still with respect to the size of the instance) number of times, a subprogram able to solve an appropriate problem belonging to $N P$ (usually, an $N P$-complete problem). This class contains the classes $N P$ and co- $N P$ and is contained in the class $P^{N P}$. It also contains the class $P^{N P[1]}$, that we shall note $1^{N P}$ in the sequel for the homogeneity of the notation, of the problems that can be solved by applying once a subprogram able to solve an appropriate problem belonging to $N P$ (usually, an $N P$-complete problem); note that $1^{N P}$ contains $N P$ and co- $N P$. All in all, we have the following inclusions: $N P \cup \operatorname{co}-N P \subseteq 1^{N P} \subseteq L^{N P} \subseteq P^{N P}$.

For the problems which are not decision problems (sometimes called "function problems"), we generalize these classes by adding "F" in front of their names (see [17]). For example, the class $F P^{N P}$ or $F \Delta_{2}^{P}$ (respectively the class $F L^{N P}$) contains the optimization problems and the search problems which can be solved by the application of a subprogram able to solve an appropriate problem belonging to $N P$ a polynomial (respectively logarithmic) number of times.

3 Complexity results

We may now specify the problems that we consider and the complexity results related to them.

The NP-hardness of the computation of a median linear order of a profile of linear orders has been known for a long time if m is assumed to be large enough with respect to n (see for instance [4], [14], [15]; more generally, see also [7]). More precisely, the decision problem associated with the computation of $\mu(\Pi)$ is NP-complete. More recently, C. Dwork et alii [10] have shown that the computation of a median linear order remains NP-hard if m is equal to 4 (hence we deduce easily that it is NP-hard for all given even number m with $m \geq 4$; on the other hand, the problem is polynomial for $m=2$, see [7]; the complexity for m odd and small is unknown). Moreover, E. Hemaspaandra et
alii [13] have also been interested in the complexity of the problem consisting in verifying whether a given candidate is a winner (see below).

We now pay attention to the complexity of the following seven problems, related to the aggregation of the profile of linear orders into a median linear order:

PROBLEM $\left(P_{1}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders, compute the value of $\mu(\Pi)$.

PROBLEM $\left(P_{2}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders, compute a median order $O^{*}(\Pi)$ of Π.

PROBLEM $\left(P_{3}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders, compute all the median order $O^{*}(\Pi)$ of Π.

PROBLEM $\left(P_{4}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders, compute a of Π.

PROBLEM $\left(P_{5}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders, compute all the winners of Π.

PROBLEM $\left(P_{6}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders and an element x of X, determine whether x is a winner of Π.

PROBLEM $\left(P_{7}\right)$. Given a profile $\Pi=\left(O_{1}, O_{2}, \ldots, O_{m}\right)$ of linear orders and a linear order O, determine whether O is a median linear order of Π.

To study the complexity of these problems, we use the NP-hardness of Slater's problem, which can be stated as follows [19]:

SLATER'S PROBLEM. Given a profile Π containing only one tournament defined on X, compute a median linear order of Π.

Slater's problem is known to be NP-hard (see [1], [5], [9], [16]). From this NP-hardness, we may draw the following theorems:

THEOREM 1. Problems $\left(P_{1}\right)$ to $\left(P_{6}\right)$ are NP-hard.

Note that P_{7} is not known to be NP-hard. More precisely, we may show that P_{7} belongs to co- $N P$, but is not known to be co $-N P$-complete:

THEOREM 2. Problems $\left(P_{7}\right)$ belongs to co $-N P$.
Under the usual hypothesis, i.e. $P \neq N P$, Theorem 1 shows that the exact resolution of Problems $\left(P_{1}\right)$ to $\left(P_{6}\right)$ requires an exponential time. In other words, it provides a lower bound of the complexity of Problems $\left(P_{1}\right)$ to $\left(P_{6}\right)$. Theorem 3 provides an upper bound of this complexity:

THEOREM 3. Problems $\left(P_{1}\right),\left(P_{2}\right),\left(P_{4}\right),\left(P_{5}\right)$ belong to $F P^{N P}$. Problem $\left(P_{6}\right)$ belongs to $L^{N P}$.

Note that E. Hemaspaandra et alii studied the complexity of Problem $\left(P_{6}\right)$ in [13]: they prove that $\left(P_{6}\right)$ is $L^{N P^{-} \text {-complete. In other words, }\left(P_{6}\right) \text { belongs }}$ to $L^{N P}$ and, inside this class, it belongs to the most difficult problems (in the usual meaning of complexity theory). This result incites to state the following conjectures:

CONJECTURES. Problems $\left(P_{1}\right),\left(P_{2}\right),\left(P_{4}\right),\left(P_{5}\right)$ are $F P^{N P_{-}}$-complete; $\left(P_{7}\right)$ is co $-N P$-complete.

For Problem $\left(P_{3}\right)$, note that there are some cases with m even for which the number of median linear orders is equal to $n!$: in other words, all the linear orders defined on X are median. When m is odd, the maximum number of median linear orders is not known precisely, but we know (see [6], [7], [20]) that, when n is a power of 3 , it lies between $\exp \left[\frac{\ln 3}{4}\left(3 n-2 \log _{3} n-3\right)\right]$ and $\frac{\alpha n \sqrt{(n) n!}}{2^{n}}$, where α is a constant.

References

[1] N. Alon: Ranking tournaments. SIAM Journal on Discrete Mathematics 20 (1), 137-142, 2006.
[2] J.-P. Barthélemy: Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires, Mathématiques et Sciences humaines 67,

85-113, 1979.
[3] J.-P. Barthélemy, B. Monjardet: The median procedure in cluster analysis and social choice theory, Mathematical Social Sciences 1, 235-267, 1981.
[4] J.J. Bartholdi III, C.A. Tovey, M.A. Trick: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6, 157-165, 1989.
[5] P. Charbit, S. Thomasse, A. Yeo: The minimum feedback arc set problem is NPhard for tournaments. Combinatorics, Probability and Computing 16 (1), 1-4, 2007.
[6] I. Charon, O. Hudry: Slater orders and Hamiltonian paths of tournaments. Electronic Notes in Discrete Mathematics 5, 60-63, 2000.
[7] I. Charon, O. Hudry: An updated survey on the linear ordering problem for weighted or unweighted tournaments. Annals of Operations Research 175, 2010, 107-158, 2010.
[8] M.J.A.N. Caritat, marquis de Condorcet: Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie royale, Paris, 1785.
[9] V. Conitzer: Computing Slater Rankings Using Similarities Among Candidates. Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston, MA, USA, 613-619, 2006. Early version: IBM Research Report RC23748, 2005.
[10] C. Dwork, R. Kumar, M. Naor, D. Sivakumar: Rank aggregation methods for the Web. Proceedings of the 10th International Conference on World Wide Web (WWW10), 613-622, 2001.
[11] M.R. Garey, D.S. Johnson: Computers and intractability, a guide to the theory of NP-completeness. Freeman, New York, 1979.
[12] G.Th. Guilbaud: Les théories de l'intérêt général et le problème logique de l'agrégation. Économie appliquée 5 (4), 501-584, 1952. Reprint in Éléments de la théorie des jeux, Dunod, Paris, 1968. English translation: Theories of the general interest and the logical problem of aggregation, Electronic Journal for History of Probability and Statistics 4, 2008.
[13] E. Hemaspaandra, H. Sparowski, J. Vogel: The complexity of Kemeny elections, Theoretical Computer Science 349, 382-391, 2005.
[14] O. Hudry: Recherche d'ordres médians : complexité, algorithmique et problèmes combinatoires. PhD thesis, Telecom ParisTech, Paris, 1989.
[15] O. Hudry: NP-hardness results on the aggregation of linear orders into median orders. Annals of Operations Research 163 (1), 63-88, 2008.
[16] O. Hudry: On the complexity of Slater's problems. European Journal of Operational Research 203, 216-221, 2010.
[17] D.S. Johnson: A catalog of complexity classes. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science Vol. A: Algorithms and Complexity, Elsevier, Amsterdam, 67-161, 1990.
[18] J.G. Kemeny: Mathematics without numbers, Daedalus 88, 577-591, 1959.
[19] P. Slater: Inconsistencies in a schedule of paired comparisons, Biometrika 48, 303-312, 1961.
[20] F. Woirgard: Recherche et dénombrement des ordres médians des tournois. PhD thesis, Telecom ParisTech, Paris, 1997.

[^0]: ${ }^{1}$ Research supported by the ANR project "Computational Social Choice" ANR-09-BLAN0305

