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ABSTRACT
In this article we propose to illustrate the ability of consensual
clustering to provide mining tools in the context of land cover
unsupervised classification. The proposed algorithm is based
on individual co-association matrices related to several input
clusterings that are combined using a Mean Shift optimization
procedure. This provides valuable clusters in terms of inter-
pretation and also information about the data to be clustered,
which could be useful to discriminate between easily classi-
fied pixels and the other ones, requiring human expertise. The
interest of our approach is demonstrated using the Boumerdes
dataset provided by SERTIT and CNES, in the context of the
2003 earthquake.

Index Terms— land cover classification, consensual clus-
tering, mining tool

1. INTRODUCTION

Our first motivation is to provide interpreters with mature and
scientifically evaluated tools. This evaluation takes place in
realistic applicative context like rapid mapping and needs rich
and interpreted datasets. Thanks to collaboration with SER-
TIT and CNES, valuable datasets can be used to demonstrate
the ability of tools in case of major disasters like earthquake,
flooding or fires.

In this article we propose to evaluate the consensual
clustering proposed by Kyrgyzov [1] in 2008 (but never
published) for land cover classification, using Boumerdes
(Algeria) dataset [2]. Consensual clustering is an intuitive
and unsupervised way to combine different clusterings on the
considered data: this can be useful when nothing is known
about the best classifiers to be used, the parameters to be
tuned or even the features to be considered. In other words
it is a way to mimic the human behavior when discovering
a new scene. Consensual clustering is, at first, a mining tool
helping interpreters to tune their automatic algorithms. The
produced consensual classification is not only an extra data
clustering, it is also a way to compare all input clusterings
and to provide information about the considered data in terms
of ability to be classified. The idea is to discriminate be-
tween data that can automatically be classified and data that
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need more attention from the interpreter. Hence consensual
clustering can also be used as an evaluation tool.

In this article we propose three main ideas. In the fol-
lowing section we first theoretically describe the Mean Shift-
based consensual clustering, and propose three stability mea-
sures at cluster and pixels levels. We then define an experi-
mental protocol involving a new dataset provided by CNES
and SERTIT. We finally discuss the mining and evaluation
abilities of our algorithm in the context of Boumerdes earth-
quake land cover mapping.

2. THEORETICAL BASIS

2.1. State of the art

Classification combination algorithms are not new in the lit-
erature: Condorcet popularized voting strategies in the 18th
century. But it can be noticed that if the literature is rich when
dealing with known target classes [3], it regained interest in
the mid 2000 concerning clusterings.

The idea of clustering is to group data according to a given
similarity measure for further data exploration or retrieval. In
our case, data are geographical locations or pixels, often char-
acterized by spectral or/and textural features in images. There
are many ways to extract these features, to compare them and
then to cluster them. Different clusterings provide different
information that can be redundant or complementary and the
combination of all these results can produce a valuable clus-
tering as well as interesting clues about the induced choices.
The problem is then to define a valuable combination criterion
while avoiding a too high complexity.

Lots of studies have been proposed in the literature. Our
approach is directly related to the definition of co-association
matrices and to their combination, as proposed in [4, 5]. This
matrix, denoted Ap can be defined for any clustering p and
the general term for two clustered data u and v is:

Apuv =

{
1, if u and v are in the same cluster,
0, otherwise. (1)

For P considered clusterings, the average co-association ma-



trix A is computed as:

A =
1

P

P∑
p=1

Ap (2)

For large P , Auv estimates the probability for two data u and
v to belong to the same cluster, according to the input clus-
terings. The classical question is now to find the consensual
(binary) co-association matrix D that will best approximate
the average co-association matrix A.

2.2. Proposed algorithm

The criterion proposed in [6] consists in minimizing the
square error between D and A, with N the number of clus-
tered data:

E(D) = ‖D −A‖2F =

N∑
u=1

N∑
v=1

(Duv −Auv)2 (3)

Equation (3) can be rewritten as:

E(D) =

N∑
u=1

N∑
v=1

Duv(1− 2Auv) +

N∑
u=1

N∑
v=1

A2
uv (4)

The first term in Eq.(4) has no square degree because D is a
binary matrix. In addition, the last term in Eq.(4) is a con-
stant and does not influence the minimization of error E. The
quadratic objective function Eq.(4) may be solved exactly for
small data sets using efficient methods, in contrast to the opti-
mization of NMI criterion in [4]. We propose an original way
to perform this optimization, based on Mean Shift estimation.

The P input clusterings with Jp clusters are now consid-
ered as P binary allocation matrices Bp Eq.(5), where p ∈
1, ..., P .

Bpuj =

{
1, if sample u ∈ cluster j,
0, otherwise. (5)

The matrices are concatenated into a single matrix B and the
new feature space is {0, 1}d, where d =

∑P
p=1 J

p. Each line
bu of this concatenated matrix describes the allocation of each
data in all input clusters (presented in columns).

The samples {bu} are located on a hyper circle, since they
simultaneously satisfy a hyper plane equation

∑d
j=1 buj =

P and a hyper sphere equation
∑d
j=1 b

2
uj = P . Therefore

vectors {bu} may be normalized by a constant
√
P such that

their square norm is 1. Hence we get the relationship between
the average co-association A and bu:

Auv = bub
′
v (6)

Moreover let µj be the centroid of the consensual cluster Cj ,
µj =

∑
v∈Cj

bv/nj , v ∈ Cj . The square norm of µj is:

‖µj‖2 =
1

n2j

∥∥∥∥∥∥
∑
v∈Cj

bv

∥∥∥∥∥∥
2

=
∑
u∈Cj

∑
v∈Cj

Auv/n
2
j (7)

Initialize j = 1, ci = 0 for i = 1, ..., N
Step1 Choose u unlabeled, i.e. cu = 0,

Else stop and return c (consensual labels)
Step2 Initialize the local mean estimation

k = 1, µk = bu, rk = 1, with nk the number
of data inside the window W (µk, rk) centered
on µk with radius rk,

Step3 Shift the local mean:
µk+1 = 1

nk

∑
bi∈W (µk,rk)

bi,

rk+1 = ‖µk+1‖
Iterate Step2 and 3 until convergence (denoted
as conv): µj = µconv , rj = rconv

Step4 Assign u to the estimated mean µj
Assign ci = j,∀i : ‖bi−µj‖2 < r2j , j = j+1,
Goto Step1.

Table 1. Proposed algorithm, called MSCC (Mean Shift Con-
sensual Clustering)

The square error E proposed in Eq. (4) is then reduced to its
left term:

E2(J, {Cj}Jj=1 ) =

J∑
j=1

∑
u∈Cj

∑
v∈Cj

(1− 2Auv)

=
∑J
j=1 n

2
j (1− 2

n2
j

∑
u∈Cj

∑
v∈Cj

Auv)

=
∑J
j=1 n

2
j (1− 2 ‖µj‖2)

(8)

with {Cj}Jj=1 the consensual clusters and nj the number of
elements in Cj . A global minimum of the error E2 in Eq. (8)
is reached when maximizing the norms of local mean vectors
‖µj‖2 > 0.5 while jointly maximizing the number of sam-
ples nj in consensual clusters. This problem can be seen as a
well known non parametric density estimation by mean shift
vectors [7], whose modes are the consensual clusters means
µj . We propose in [1] to use the multivariate Epanechnikov
kernel [8], well adapted to our binary vectors bu since global
convergence is proven is this case [9].

The final algorithm is proposed in Table 1. The process
begins with each data bu being a cluster and the idea is to ag-
glomerate data in order to minimize the proposed energy. Lets
consider one state of our algorithm: J clusters are already
formed and NJ data are still considered as unitary clusters
(corresponding to an energy -1). To merge one of these data
bu into an existing cluster µj , this data has to be in the neigh-
borhood of µj and the energy must decrease i.e. E2

after <

E2
before, with E2

before = E2
0 + E2

Cj
+ E2

bu
, E2

after = E2
0 +

E2
CjUbu

andE2
0 the common energy corresponding to the data

untouched at the current step. When developing these ener-
gies, it comes

µjb
′
u > 0.5 <=> ‖bu − µj‖2 ≤ ‖µj‖2 = r2j (9)



2.3. Related stability scores

The presented algorithm, called MSCC (Mean Shift Consen-
sual Clustering) provides a new clustering of the data, based
on the non-parametric estimation of all local means µj . We
propose to derive 3 measures to help the data mining task,
based on Eq. (7). The data-based stability measure is:

Sku =
1

nk

∑
i∈Ck

Aui,with u ∈ Ck (10)

When taking the mean over a cluster:

Sk =
1

nk

∑
u∈Ck

Sku = ‖µk‖2 (11)

We also derive a criterion between two clusters:

Skl =
1

nk

1

nl

∑
u∈Ck

∑
v∈Cl

Auv (12)

These criteria are used to exploit both the consensual cluster-
ing and the input clusterings in order to derive information on
the produced clusters (how much consensual they are), their
relationships to other clusters as well as clues about the easi-
ness to classify specific data. This is illustrated in the follow-
ing experiments.

2.4. Complexity

The complexity of the presented algorithm isO(N2) and can-
not directly be applied to a whole scene. However efficient
implementations can be obtained at scene level: we do not
detail this point in this paper and present only local result ex-
actly corresponding to the presented algorithm.

3. EXPERIMENTS

3.1. Boumerdes Dataset

As already mentioned, we benefit from a very interesting
dataset including QuickBird images (60cm, multispectral)
before and after the earthquake at Boumerdes, as well as
several vector data describing the scene. We are interested
in land cover classes like water areas (sea, lake, river), veg-
etation (high and low), beach, as well as structural classes
like railway and different types of roads. Information about
buildings and refugees camps are also provided but we do not
use it here.

3.2. Experimental conditions

In the illustrative example we use one sample (cf Fig. 1(a))
of the image immediately after the earthquake, with size
150 × 150, resulting in N = 22500 pixels. We performed 3
K-Means clustering of the whole image (2301× 3334 pixels)

using Monteverdi tool 1 directly on the pixel values in the 4
spectral bands, with K = 10, 15, 20. We focus our example
on one small portion of the scene, illustrated on Fig. 1(b),
containing 5 different classes of interest: 2 vegetation classes
(high and low) appearing in green, river in blue, 2 road
classes in red. Note that the two road classes and the river are
represented as linear objects, since we do not have thickness
values. Black pixels are classified as bare soil in the dataset
but this is not clearly true since they also correspond to parts
of roads, river as well as buildings, we call them unclassified
in the following.

(a) (b)

Fig. 1. (a) Studied sample (2003-05-23, 3 colors composi-
tion) and (b) Projected ground truth: the linear objects do not
completely reflect reality, since we do not have thickness val-
ues.

(a) Classified image (b) Pixel instability (1− Sku)

Fig. 2. Results provided by the consensual clustering.

3.3. Clusters validity

In this example, 12 clusters have been identified by the con-
sensual clustering. The stability of each cluster is very high
(over 0.9 and several times equal to 1) except for one cluster
(cluster 8). This means that the 3 input K-Means group data
similarly in this sample, except for data in cluster 8. We pro-
vide the consensually clustered image (cf Fig. 2(a)): the col-
ors associated to the 12 clusters are derived from the ground
truth colors, using the saturation and value of the mostly rep-
resented class in the cluster and the weighted hue according to
class effectives. We roughly observe that we can detect the 3
main classes river, vegetation and road but the discrimination

1Orfeo Toolbox - Monteverdi - http://orfeo-toolbox.org



Fig. 3. Cluster relationships (Skl).

between the two types of vegetation or the two types of roads
cannot be performed. We also observe shadows pixels in the
cluster containing mainly river pixels. However, on the pre-
viously unclassified pixels we can get relevant extension of
the vegetation areas as well as roads that were not indicated
in the ground truth. Note that the high stability scores indi-
cate that the input clustering were behaving the same. We can
conclude that these input clusterings are relevant to make the
main classes emerge from the scene but not sufficient to dis-
criminate between more specific classes. More work should
be done to say if it is because of the K values or because of
the input features.
It is interesting to note that 4 of the 12 consensual clusters are
purely black, containing only unclassified pixels, with high
stability scores. Using our inter-cluster stability scores Skl (cf
Eq. (12)) we can produce a connected graph, whose connec-
tion thickness is proportional to the obtained scores. We only
show connections higher than 0.05 (this means that at least
5% of pixels are shared by the related clusters, according to
the input clusterings), in Fig. 3. It appears that these black
clusters (1, 4, 8 and 12) have connections. The less stable
cluster is the one logically having the higher number of con-
nections (cluster 8). In the spatial domain, this corresponds to
neighbouring pixels between different objects.

3.4. Data stability

In Figure 2(b), we propose to show the estimated instability
at each pixel (1−Sku). This can be considered as a way to es-
timate the easiness of each pixel to be classified by different
algorithms. If the score is close to 0 (appearing in black),
this means that the consensus between input clusterings is
very high; it appears in white for unstable data, i.e. data that
are classified with different neighbors according to the input
clusterings. We observe, consistently with the preceding ob-
servations on clusters, that most pixels are very stable. The
unstable ones seem to be located at the frontier of objects, in
the dark areas of the consensually classified image. Again,
it would indicate to the interpreters that these pixels (corre-
sponding to the previously mentioned black clusters) deserve

specific attention since they reflect the differences between
the input clusterings in delimitating objects.

4. CONCLUSION

In this article we proposed a new algorithm to compute con-
sensual clustering, based on Mean Shift density estimation
and co-association matrices. We also derived 3 stability mea-
sures to help the mining and interpretation process. We finally
proposed an illustrative example on the Boumerdes dataset to
explain the interest of our proposal. It demonstrated the abil-
ity of the consensual clustering to identify classes of interest
and also to focus attention on less stable data, that are not clas-
sified the same way by the input clusterings. This methodol-
ogy can also be applied to the whole scene, using the three
images in the dataset; the resulting clusters are then different,
putting in evidence areas evolving in time.
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