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Abstract Let G be a simple, undirected graph with vertex set V . For v ∈ V and r ≥ 1,
we denote by BG,r(v) the ball of radius r and centre v. A set C ⊆ V is said to be an r-
identifying code in G if the sets BG,r(v) ∩ C, v ∈ V , are all nonempty and distinct. A
graph G admitting an r-identifying code is called r-twin-free, and in this case the size of
a smallest r-identifying code in G is denoted by γr(G). We study the following structural
problem: let G be an r-twin-free graph, and G∗ be a graph obtained from G by adding or
deleting an edge. If G∗ is still r-twin-free, we compare the behaviours of γr(G) and γr(G

∗),
establishing results on their possible differences and ratios.

Keywords Graph theory · Twin-free graphs · Identifiable graphs · Identifying codes

1 Introduction

We introduce basic definitions and notation for graphs, for which we refer to, e.g., [1]
and [11], and for identifying codes (see [18] and the bibliography at [21]).

We shall denote by G = (V ,E) a simple, undirected graph with vertex set V and edge
set E, where an edge between x ∈ V and y ∈ V is denoted by xy or yx.
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We denote by Pn the path with n vertices and by Cn the cycle with n vertices; the length
of Pn is n − 1.

In a connected graph G, we can define the distance between any two vertices x and y,
denoted by dG(x, y), as the length of any shortest path between x and y, since such a path
exists. This definition can be extended to disconnected graphs, using the convention that
dG(x, y) = ∞ if there is no path between x and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v, denoted by
BG,r(v), is the set of vertices within distance r from v:

BG,r(v) = {x ∈ V : dG(v, x) ≤ r}.
Two vertices x and y such that BG,r(x) = BG,r(y) are called (G, r)-twins; if G has no
(G, r)-twins, that is, if

∀x, y ∈ V with x 
= y, BG,r (x) 
= BG,r(y),

then we say that G is r-twin-free.
Whenever two vertices x and y are within distance r from each other in G, we say that

x and y r-cover each other. When three vertices x, y, z are such that x ∈ BG,r(z) and
y /∈ BG,r(z), we say that z r-separates x and y in G. A set is said to r-separate x and y in G

if it contains at least one vertex which does.
A code C is simply a subset of V , and its elements are called codewords. For each vertex

v ∈ V , the r-identifying set of v, with respect to C, is the set of codewords r-covering v,
and is denoted by IG,C,r (v):

IG,C,r (v) = BG,r(v) ∩ C.

We say that C is an r-identifying code [18] if all the sets IG,C,r (v), v ∈ V , are nonempty
and distinct: in other words, every vertex is r-covered by at least one codeword, and every
pair of vertices is r-separated by at least one codeword.

It is quite easy to observe that a graph G admits an r-identifying code if and only if G is
r-twin-free; this is why r-twin-free graphs are also sometimes called r-identifiable.

When G is r-twin-free, we denote by γr(G) the cardinality of a smallest r-identifying
code in G. The search for the smallest r-identifying code in given graphs or families of
graphs is an important part of the studies devoted to identifying codes.

In this paper and in [5], we are interested in the following issue: let G be an r-twin-free
graph, and G∗ be a graph obtained from G by adding or deleting one vertex, or by adding or
deleting one edge. Now, if G∗ is still r-twin-free, what can be said about γr(G) compared
to γr(G

∗)? More specifically, we shall study their difference and, when appropriate, their
ratio,

γr(G) − γr(G
∗) and

γr(G)

γr(G∗)
,

as functions of the order of the graph G, and r .
Note that a partial answer to the issue of knowing the conditions for which an r-twin-

free graph remains so when one vertex is removed was given in [4] and [7]: any 1-twin-free
graph with at least four vertices always possesses at least one vertex whose deletion leaves
the graph 1-twin-free; for any r ≥ 1, any r-twin-free tree with at least 2r+2 vertices always
possesses at least one vertex whose deletion leaves the graph r-twin-free; on the other hand,
for any r ≥ 3, there exist r-twin-free graphs such that the deletion of any vertex makes the
graph not r-twin-free. The case r = 2 remains open.

Of what interest this study is, can be illustrated by the watching of a museum: we place
ourselves in the case r = 1 and assume that we have to protect a museum, or any other
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type of premises, using smoke detectors. The museum can be viewed as a graph, where
the vertices represent the rooms, and the edges, the doors or corridors between rooms. The
detectors are located in some of the rooms and give the alarm whenever there is smoke in
their room or in one of the adjacent rooms. If there is smoke in one room and if the detectors
are located in rooms corresponding to a 1-identifying code, then, only by knowing which
detectors gave the alarm, we can identify the room where someone is smoking.

Of course we want to use as few detectors as possible. Now, what are the consequences,
beneficial or not, of closing or opening one room or one door? This is exactly the object of
our investigation, in the more general case when r can take values other than 1. As we shall
see, examples of large variations may exist for the minimum size of an identifying code,
which means that there are configurations for which opening or closing a door can save a
significant number of detectors.

In the conclusion of [22], it is already observed, somewhat paradoxically, that there exist
cycles Cn−1 which require more codewords/detectors than Cn. See also [13] for the concept
of criticality with respect to vertex or edge deletion and addition.

A related issue is that of t-edge-robust identifying codes, which remain identifying when
at most t edges are added or deleted, in any possible way; see, e.g., [15–17, 19, 20].

In this paper, we mainly focus on the addition or deletion of one edge, whereas in [5]
we study the consequences of adding or removing one vertex. For our purpose, when we
construct two graphs G and G∗ differing by one edge, only the following two cases should
be considered:

(i) both graphs G and G∗ are connected,
(ii) the graph with one edge less may be disconnected;

however, we shall always be able to give constructions such that (i) holds.
Before we proceed, we still need some additional definitions and notation, and we also

give three lemmas which, although very easy, will prove useful in the sequel, even implicitly.
When we delete the edge e ∈ E in a graph G = (V ,E), we denote the resulting subgraph

by Ge = G \ e = (V ,Ee). For a vertex v ∈ V , we denote by Gv or G \ v the graph with
vertex set V ′ and edge set E′, where

V ′ = V \ {v}, E′ = {xy ∈ E : x ∈ V ′, y ∈ V ′}.
If G = (V ,E) is a graph and S is a subset of V , we say that two vertices x ∈ V and y ∈ V

are (G,S, r)-twins if

IG,S,r (x) = IG,S,r (y).

In other words, x and y are not r-separated by S in G. By definition, if C is r-identifying in
G, then no (G, C, r)-twins exist.

Lemma 1 [(G,S, r)-twin transitivity] In a graph G = (V ,E), if x, y, z are three distinct
vertices, if S is a subset of V , if x and y are (G,S, r)-twins and if y and z are (G,S, r)-
twins, then x and z are (G,S, r)-twins.

Lemma 2 If C is an r-identifying code in a graph G = (V ,E), then so is any set S such
that

C ⊆ S ⊆ V.

Lemma 3 If a graph G = (V ,E) is 1-twin-free and contains a vertex v which is linked to
all the other vertices, then there is an optimal 1-identifying code C not containing v.
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Proof Assume that an optimal 1-identifying code C contains v. Since v cannot 1-separate
any pair of vertices in G, its only purpose as a codeword is to 1-cover some vertices not
1-covered by any other codeword; because these vertices are 1-separated by C, only one of
them, which we denote by x, can be such that IG,C,1(x) = {v}. Then C \ {v} ∪ {x} is also
optimal and 1-identifying.

This article is organized as follows. Section 2 is devoted to the case r = 1; here, the
difference γ1(Ge)−γ1(G) must lie between −2 and +2. Then in the beginning of Section 3,
we study how small γr(Ge) − γr(G) and γr(Ge)/γr(G) can be for any r ≥ 2, and it so
happens that the graphs we use are connected (Corollary 11 for r ≥ 5 and Proposition 12
for r ∈ {2, 3, 4}); finally, we study how large these difference and ratio can be, for r ≥ 3
in Corollary 13 and for r = 2 in Proposition 14 (in both cases, the graphs can be made
connected).

A conclusion recapitulates our results in a Table.

2 The case r = 1

The difference γ1(Ge) − γ1(G) can vary only inside the set {−2,−1, 0, 1, 2} (Theorem 8),
and these five values can be reached (Examples 5, 7 and 9).

We first study how small γ1(Ge)−γ1(G) can be. Putting the cart before the horse, in the
next theorem we first define Ge, and only then, G.

Theorem 4 Let Ge = (V ,Ee) be a 1-twin-free graph with at least four vertices, let x

and y be two distinct vertices in V such that e = xy /∈ Ee, and let G = (V ,E) with
E = Ee ∪ {xy}. Assume that G is also 1-twin-free.

If Ce is a 1-identifying code in Ge, then there exists a 1-identifying code C in G with

|C| ≤ |Ce| + 2.

As a consequence, we have:

γ1(Ge) − γ1(G) ≥ −2. (1)

Proof Since we add an edge when going from Ge to G, all vertices remain 1-covered, in G,
by at least one codeword in Ce.

Since we only add the edge xy, only the balls of x and y are modified in G. As a
consequence, only the following pairs are possible (G, Ce, 1)-twins:

• x and y,
• x and u with u /∈ {x, y},
• y and v with v /∈ {x, y}.
(Note that this argument would not work for r > 1.) Moreover, x and u′, with u′ /∈ {u, x, y},
cannot be (G, Ce, 1)-twins since this would imply, by Lemma 1, that u and u′ are (G, Ce, 1)-
twins, hence (Ge, Ce, 1)-twins, which would contradict the fact that Ce is 1-identifying
in Ge. The same is true for y and v′, with v′ /∈ {v, x, y}. So at most three pairs of
(G, Ce, 1)-twins can appear.

Similarly, if these three pairs of (G,Ce, 1)-twins all do appear, then u and v are
(G, Ce, 1)-twins, which leads to the same contradiction, unless u = v. In this case, because
G is 1-twin-free, we can pick an additional codeword c1 1-separating x and u by, say,
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1-covering x and not u. If c1 1-covers y, then c1 also 1-separates y and u; if c1 does not 1-
cover y, then c1 also 1-separates y and x. In both cases, we are left with one pair of vertices
not yet 1-separated by a codeword, which we can do with a second additional codeword c2.
Now C = Ce ∪ {c1, c2} is 1-identifying in G, and it has |Ce| + 2 elements.

When at most two pairs of (G,Ce, 1)-twins appear, then obviously with at most two more
codewords added to Ce we can 1-separate them.

Note that we made no assumption on the connectivity of Ge. The following example
shows that graphs Ge and G with γ1(G) = γ1(Ge) + 2 do exist.

Example 5 Let Ge = (V ,Ee) be the graph represented in Fig. 1, and G the graph obtained
by adding the edge e = xy. We claim that: (a) γ1(Ge) ≤ 10 and (b) γ1(G) ≥ 12, which
by (1) implies that γ1(G) = 12 = γ1(Ge) + 2.

Proof of (a) It is quite straightforward to check that Ce = {1, 3, x, 6, 8, 8′, 6′, y, 3′, 1′} is
1-identifying in Ge. Hence γ1(Ge) ≤ 10.

Proof of (b) Let C be a 1-identifying code in G. Because 1 and 2 must be 1-separated by C,
we have 3 ∈ C; and because 1 must be 1-covered by at least one codeword, we have 1 ∈ C
or 2 ∈ C. Similarly, C contains 6, 6′, 3′ and at least one element in each of the 2-sets {7, 8},
{8′, 7′} and {2′, 1′}, which amounts to eight codewords.

With simple arguments, one obtains the following fact:

• there are at least three codewords in {1, 2, 3, 4, x}.
The same is true for {x, 5, 6, 7, 8}, {y, 5′, 6′, 7′, 8′} and {y, 4′, 3′, 2′, 1′}. So, if neither x

nor y belongs to C, there are at least 3 × 4 = 12 codewords, and we are done.
If, on the other hand, both x and y belong to C, then we have already ten codewords,

and still x, y and z are not 1-separated by any codeword; this will require two additional
codewords, and again, |C| ≥ 12.

If we assume finally, without loss of generality, that x ∈ C and y /∈ C, then we have
already chosen (3 × 2) + 5 = 11 codewords: three in each of the sets {4′, 3′, 2′, 1′} and
{5′, 6′, 7′, 8′}, one in each of the sets {1, 2} and {7, 8}, plus 3, 6 and x; still, x and z are not
1-separated by any codeword, so again we need at least twelve codewords, which proves
Claim (b).

Next, we establish how large γ1(Ge) − γ1(G) can be.

x z y 4’ 3’21 3 2’ 1’

5

6

7

8

5’

6’

7’

8’

eG
4

Fig. 1 Graph Ge in Example 5
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Theorem 6 Let G = (V ,E) be a 1-twin-free graph with at least four vertices, let x and y

be two vertices in V such that e = xy ∈ E, and let Ge = (V ,Ee) with Ee = E \ {xy}.
Assume that Ge is also 1-twin-free.

If C is a 1-identifying code in G, then there exists a 1-identifying code Ce in Ge with

|Ce| ≤ |C| + 2.

As a consequence, we have:
γ1(Ge) − γ1(G) ≤ 2. (2)

Proof We assume that C is not 1-identifying in Ge anymore, otherwise we are done. There
can be two reasons why C is not 1-identifying:

1) all vertices remain 1-separated by C in Ge, but at least one of the two vertices x and y,
say x, is not 1-covered by any codeword anymore:

BGe,1(x) ∩ C = ∅ = (BG,1(x) \ {y}) ∩ C,

which implies that BG,1(x) ∩ C = {y}, y ∈ C and x /∈ C; we see that in this case y is
still 1-covered by a codeword, namely itself.

Since our assumption is that all vertices are 1-separated by C in Ge, the code C ∪{x}
is 1-identifying in Ge.

2) (Ge, C, 1)-twins appear (with no assumption on whether x or y are still 1-covered by C
in Ge); because only the edge xy is deleted when going from G to Ge, and similarly to
the proof of Theorem 4, only the following pairs can be (Ge, C, 1)-twins:

• x and y,
• x and u with u /∈ {x, y},
• y and v with v /∈ {x, y}.

(Again, note that this would not be true for r > 1.) If x and y are (Ge, C, 1)-twins, this
means that

BGe,1(x) ∩ C = BGe,1(y) ∩ C,

which implies that x /∈ C, y /∈ C, and so

BG,1(x) ∩ C = BG,1(y) ∩ C,

contradicting the fact that C is 1-identifying in G. Assume next that x and u are
(Ge, C, 1)-twins. Then

BGe,1(x) ∩ C = BGe,1(u) ∩ C = BG,1(u) ∩ C 
= BG,1(x) ∩ C,

and so
y ∈ C and BGe,1(x) ∩ C = (BG,1(x) ∩ C) \ {y}.

If x and u are the only (Ge, C, 1)-twins, then with two more codewords we can both
1-cover x if necessary and 1-separate x and u in Ge. The same argument would work
if y and v were the only (Ge, C, 1)-twins. So we assume that x and u, and y and v

are (Ge, C, 1)-twins. This implies that both x and y are codewords, each 1-covered by
itself. All there is left to do is to 1-separate two pairs of (Ge, C, 1)-twins in Ge, which
can be done using two more codewords.

Note that we made no assumption on the connectivity of G and Ge. The following
example shows that (connected) graphs G and Ge with γ1(Ge) = γ1(G) + 2 exist.
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Fig. 2 Graph G in Example 7

Example 7 Let G = (V ,E) be the graph represented in Fig. 2, and Ge the graph obtained
by deleting the edge xy. We claim that: (a) γ1(G) ≤ 12 and (b) γ1(Ge) ≥ 14, which by (2)
will imply that γ1(Ge) = 14 = γ1(G) + 2.

Proof of (a) It is quite straightforward to check that C = {1, 3, x, 6, 8, 9, 9′, 8′, 6′, y, 3′, 1′}
is 1-identifying in G. Hence γ1(G) ≤ 12.

Proof of (b) Let Ce be an optimal 1-identifying code in Ge, not containing v: thanks to
Lemma 3, we know that this is possible. We are going to show that the left part of the
graph Ge, consisting of the vertices 1 to 10 and x, requires at least seven codewords.

As in Example 5, we have 3 ∈ Ce, 6 ∈ Ce, and, because v /∈ Ce, Ce also contains at least
one element in each of the 2-sets {1, 2} and {7, 8}, which amounts to four codewords.

As in Example 5, we also have that:

• there are at least three codewords in {1, 2, 3, 4, x},
and three codewords in {x, 5, 6, 7, 8}. So, if x /∈ Ce, there are, because of 9 and 10, at least
3 + 3 + 2 = 8 codewords, and we are done. We now assume that x ∈ Ce, so that we have
already taken five codewords. One more codeword is not sufficient to 1-separate both 9
and 10, 9 and x, and 10 and x. This proves Claim (b), by symmetry.

By Theorems 4 and 6, we have the following result.

Theorem 8 Let G1 and G2 be two 1-twin-free graphs, with same vertex set and differing
by one edge. Then

γ1(G1) − 2 ≤ γ1(G2) ≤ γ1(G1) + 2.

As a consequence, if for instance γ1(G1) ≤ a and γ1(G2) ≥ a + 2, then γ1(G1) = a and
γ1(G2) = a + 2.

We conclude the case r = 1 by showing that pairs of connected graphs G and Ge such
that γ1(Ge) − γ1(G) = 0 or γ1(Ge) − γ1(G) = ±1 do exist.
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Example 9
(a) Let Ge = P9 = x1x2 . . . x9, and add the edge x3x5 in order to obtain G. It is known

([3, Th. 3]) that γ1(P9) = 5, and it is easy to see that γ1(G) = 6, so γ1(Ge)−γ1(G) =
−1.

(b) Let Ge be the graph consisting of P1 and P4 plus an additional vertex which is linked
to the five vertices of P1 and P4, and G be the graph obtained by adding an edge
between one extremity of P4 and the vertex of P1, so that G consists of P5 plus one
vertex linked to all the vertices of P5. It is easy to see that γ1(Ge) = 4 and γ1(G) = 3,
which shows that γ1(Ge) − γ1(G) = 1.

(c) γ1(C4) = γ1(P4) = 3.

3 The case r ≥ 2

We now give our central result, Theorem 10. It describes graphs for which we delete edges
and/or vertices, because we think that it is interesting to have such a ”mixed construction”,
cf. Introduction and [5], where we focus on additon/deletion of one vertex. It also presents
the remarkable feature that, starting from the graph G and performing two consecutive
deletions, we first decrease the function γr , then increase it. The consequences of this result
for edge deletion are detailed in Corollaries 11 and 13, and are extended in Propositions 12
and 14. For simplicity, we give constructions where two of the graphs, namely

(G \ e) \ f and (G \ u) \ f,

are disconnected, but the remarks after the proofs of Corollary 13 and of Proposition 14
show an easy way to have connected graphs, with a slightly different result, when needed.
Since we estimate the value of γr for all these graphs, this means that all are r-twin-free, a
fact not stated explicitly in the theorem.

Theorem 10 Let k ≥ 2 be arbitrary and r ≥ 5. There exists a graph G with (2r − 2)k +
r�log2(k + 2)� + r + 3 vertices with the following properties:

(i) γr(G) ≥ k.
(ii) There is an edge e of G such that γr(G \ e) ≤ 1 + r + r�log2(k + 2)�.

(iii) There is a vertex u of G such that γr(G \ u) ≤ 1 + r + r�log2(k + 2)�.
(iv) There is a vertex v of G \ e such that γr((G \ e) \ v) ≥ k.
(v) There is an edge f of G \ e such that γr((G \ e) \ f ) ≥ k.

(vi) There is an edge f of G \ u such that γr((G \ u) \ f ) ≥ k.
(vii) There is a vertex v of G \ u such that γr((G \ u) \ v) ≥ k.

Proof We first construct the graph G for the given k ≥ 2 and r ≥ 5, see Fig. 3. Denote
s = 1 + �log2(k + 2)�.

For each j = 1, 2, . . . , s we form the paths aj (1)aj (2) . . . aj (r) (i.e., aj (h) and aj (h+1)

are connected by an edge for all h = 1, 2, . . . , r − 1). Each vertex aj (h) is said to be on
level h (cf. Fig. 3).

For each i = 1, 2, . . . , k we form the paths yi(0)yi(1) . . . yi(r − 1). Each vertex yi(h) is
said to be on level −h.

Also, for each i = 1, 2, . . . , k, we form the paths xi(0)xi(1) . . . xi(r − 3)x(r − 2)

x(r − 1)x(r), where now the same three vertices x(r − 2), x(r − 1) and x(r) appear on all
these paths. Again, each vertex xi(h) is said to be on level −h.
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Fig. 3 A partial representation of the graph G in Theorem 10: more edges exist between the vertices xi(0)

and yi(0) on the one hand, and the vertices aj (1) on the other hand

Now for each i we choose a unique nonempty proper subset Ai of the set A =
{2, 3, . . . , s}, and connect every xi(0) and every yi(0) to every vertex aj (1) for which
j ∈ Ai . Moreover, we connect every xi(0) and every yi(0) to a1(1). The sets Ai can indeed
be chosen in this way, because there are 2s−1 − 2 proper nonempty subsets of A, and
s − 1 = �log2(k + 2)�. Without loss of generality, we can choose the sets Ai in such a
way that each aj (1) has degree at least two, and so already the graph constructed so far is
connected.

The construction of G is now almost complete. As the final step, we connect the vertex
x(r) by an edge to every xi(r − 5) (which is fine as we have assumed that r ≥ 5).

In the statement of the theorem u = x(r), v = x(r − 1), e is the edge connecting these
two, and finally f is the edge connecting x(r − 1) and x(r − 2).

The first step of the proof consists of working out that if we take

C = {aj (h) : j = 1, 2, . . . , s, h = 1, 2, . . . , r},
that is, all the vertices aj (h), then C is not r-identifying, but it does a lot, for all the graphs
in the theorem: as we shall see, the only thing we need to worry about is to make sure that
for each i, xi(h) and yi(h) can be r-separated for all h = 0, 1, . . . , r − 3 and that x(r − 2),
x(r − 1) and x(r) can be identified.

In what follows, for a vertex w we always denote

I (w) = Br(w) ∩ C
for this particular choice of C, whatever the graph is. To begin with, we observe that

• I (w) contains exactly one vertex from the r-th level, if w = aj (h) for some j and h

(and then of course this one vertex is aj (r));
• I (w) contains at least two vertices from the r-th level, if w = xi(0) or yi(0) for some i

(and one of them is a1(r));
• I (w) does not contain any vertices from the r-th level, if w is any other vertex.

All the vertices aj (h) can now be identified. A vertex w is one of the vertices aj (h) if and
only if I (w) contains exactly one vertex on level r , and this unique vertex already tells us
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j . Moreover, for any j ′ 
= j , in I (w) the vertex aj ′(h′) with the largest level is aj ′(r − h)

if h < r and there are no vertices aj ′(h′) at all in I (w) if h = r . Either way, we can
determine h.

In all the graphs mentioned in the statement of the theorem the following facts are clearly
valid:

• Fact 1: If i 
= i′, then the distance between yi(h) and yi′(0) is h + 2 (as we can always
go via a1(1)) and the distance between yi(h) and xi′(0) is h + 2; the latter holds also
for i = i′.

• Fact 2: If w /∈ {x(r − 2), x(r − 1), x(r)} is on level h ≤ 0, then the highest level
containing at least one vertex in I (w) is h + r , and moreover, if w = xi(h) or yi(h),
then the set {j ≥ 2 : aj (h + r) ∈ I (w)}, which we call the signature of w, equals Ai ,
and since Ai is unique for each i, this tells us i.

By Fact 2, the only two remaining things are that we always have to be able to decide
whether w belongs to the x-path or the corresponding y-path, and we have to make sure
that the three vertices x(r − 2), x(r − 1) and x(r) (when they exist in the graph) are
identified.

Let us first consider the graph G itself. If w = x(r), then the highest level h for which at
least one aj (h) is in I (w) is h = 4 (as we can take a shortcut and jump directly from x(r)

to every xi(r − 5)) and {j ≥ 2 : aj (4) ∈ I (w)} = A. In the same way, if w = x(r − 1),
then the highest level points in I (w) are on level 3 and {j ≥ 2 : aj (3) ∈ I (w)} = A; and
if w = x(r − 2), then the highest level points in I (w) are on level 2 and again {j ≥ 2 :
aj (2) ∈ I (w)} = A. As all the signatures referred to in Fact 2 were proper subsets of A, the
vertices x(r), x(r − 1) and x(r − 2) are identified by C.

The vertex yi(r − 1) is within distance r from all the vertices yi(h) and by Fact 1, its
distance to all the x-vertices is larger than r . Therefore G is r-twin-free as the addition of
all the vertices yi(r − 1) to C would yield an r-identifying code.

Exactly the same argument shows that in fact all the graphs mentioned in the theorem are
r-twin-free (but notice that the highest level points in I (x(r − 1)) move two levels down,
from 3 to 1, if e (or x(r)) has been removed, and that x(r − 1) is an isolated vertex if also
f has been removed).

Let us now prove the lower bound on γr(G) given in (i). Look at the vertices xi(0) and
yi(0) for any fixed i. By Fact 1, no yi′(h) with i′ 
= i can r-separate them; neither can any
aj (h). By the construction, every x-vertex is within distance r − 2 from at least one xi′(0).
As xi′(0) is connected by an edge to a1(1), which in turn is connected by an edge to every
vertex on level 0, we see that no x-vertex can r-separate xi(0) and yi(0). Therefore at least
one yi(h) has to do the job, and therefore any r-identifying code must contain at least k

codewords.
Exactly the same argument gives us the lower bounds (iv)–(vii).
To prove the upper bound (iii), it suffices to observe that in this graph x(r − 1) is within

distance r − 1 from all the x-vertices, but at distance greater than r from all the y-vertices,
so the vertex x(r − 1) together with the codewords in C form an r-identifying code.

It remains to prove (ii). Now the vertex x(r − 1) is within distance r from all the x-
vertices including x(r), and at distance greater than r from all the y-vertices, and again the
codewords in C together with x(r − 1) will do.

The next corollary studies how small γr(Ge) − γr(G) and γr (Ge)
γr (G)

can be for a graph G,
when r ≥ 5.
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Corollary 11 Let k ≥ 2 be arbitrary and r ≥ 5. There exist two (connected) r-twin-free
graphs G and Ge with (2r − 2)k + r�log2(k + 2)� + r + 3 vertices, such that

γr(G) − γr(Ge) ≥ k − r�log2(k + 2)� − r − 1, (3)

γr(G)

γr(Ge)
≥ k

r�log2(k + 2)� + r + 1
. (4)

Proof Use (i) and (ii) in the previous theorem.

The following proposition gives a very similar result for r ∈ {2, 3, 4} (and also for r ≥ 5).

Proposition 12 Let k ≥ 2 be arbitrary and r ≥ 2. There exist two (connected) r-twin-free
graphs G and Ge with (r + 1)k + r�log2(k + 2)� + 2r vertices, such that

γr(G) − γr(Ge) ≥ k − r�log2(k + 2)� − r − 3, (5)

γr(G)

γr(Ge)
≥ k

r�log2(k + 2)� + r + 3
. (6)

Proof We slightly modify the construction of G in Theorem 10, so that the x-paths are
xi(0)x(1) . . . x(r−1), the vertices x(r−1) and a1(1) are connected by the edge e, and there
is one additional vertex a1(r + 1) which is only connected to a1(r), see Fig. 4.

The same argument as in the proof of the theorem shows that in G, which is r-twin-free
(in particular because a1(r + 1) can r-separate x(r − 1) and a1(2)), any r-identifying code
has at least k elements, in order to have each pair of vertices xi(0), yi(0) r-separated by the
code. On the other hand, it is straightforward to check that

C = {aj (h) : j = 1, 2, . . . , s, h = 1, 2, . . . , r} ∪ {a1(r + 1), x(r − 1), y1(0)}
is r-identifying in Ge: in particular, x(r − 1) r-separates xi(0) and yi(0) for every i, and
y1(0) r-separates a1(r) and a1(r + 1) (this job could have been done by any yi(0) or xi(0)).
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Fig. 4 A partial representation of the graph G in Proposition 12, for r = 2, and for r = 4
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The next corollary studies how large γr(Ge) − γr(G) and γr (Ge)
γr (G)

can be for a graph G,
when r ≥ 3.

Corollary 13 Let k ≥ 2 be arbitrary and r ≥ 3. There exist two r-twin-free graphs H and
Hf with (2r − 2)k + r�log2(k + 2)� + r + 2 vertices, such that

γr(Hf ) − γr(H) ≥ k − r�log2(k + 2)� − r − 1, (7)

γr(Hf )

γr (H)
≥ k

r�log2(k + 2)� + r + 1
. (8)

Proof Consider Theorem 10 and let H = Gu = Gx(r). The condition r ≥ 5 can be relaxed
and changed into r ≥ 3 because the vertex u = x(r), connected to every xi(r − 5), does not
exist here. We can then mimic the proof of the theorem for the cases (iii) and (vi), see that
it works also for r = 3 and r = 4, and retrieve (7) and (8).

Remark 1 If we want connected graphs, we can slightly modify the construction for
Corollary 13, e.g., by introducing 2r + 1 new vertices to form a path from x(r − 1) to a1(r)

and by taking them all as codewords. Then, an arbitrary vertex is one of the new vertices
if and only if it contains the middle one of the new vertices in its r-identifying set. The
slightly different resulting numbers of vertices and of codewords do not fundamentally alter
the meaning of Corollary 13.

The following proposition gives a very similar result for r = 2.

Proposition 14 Let k ≥ 2 be arbitrary. There exist two 2-twin-free graphs G and Ge with
3k + 2�log2(k + 2)� + 5 vertices, such that

γ2(Ge) − γ2(G) ≥ k − 2�log2(k + 2)� − 5, (9)

γ2(Ge)

γ2(G)
≥ k

2�log2(k + 2)� + 5
. (10)

Proof We bring only a very small modification to the graph described in the proof of
Proposition 12: see Fig. 5, where, compared to the left part of Fig. 4, we have added the
vertex x(2) and connected it to x(1), renaming this edge x(1)x(2) by e. Now G is 2-twin-
free, and

C = {aj (h) : j = 1, 2, . . . , s, h = 1, 2} ∪ {a1(3), x(2), y1(0)}
is 2-identifying in G. In particular, x(2) 2-separates xi(0) and yi(0) for every i, and y1(0)

2-separates a1(2) and a1(3). But in Ge, which is 2-twin-free, by the standard argument we
need at least k codewords.

Remark 2 Similarly to Corollary 13, the addition of a chain of 2r + 1 = 5 vertices linking
x(2) to a1(3) would give a slightly different result, this time with Ge connected.
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Fig. 5 A partial representation of the graph G in Proposition 14

4 Conclusion

Table 1 recapitulates the results obtained in the previous sections, for γr(Ge) − γr(G) and,
when appropriate, γr(Ge)/γr(G). In the lower part of the table, the inequalities mean that
there exist pairs of graphs G,Ge such that these inequalities hold.

Whether these inequalities can be substantially improved is left as an open problem.
In the previous two corollaries and two propositions, the integer k ≥ 2 can be taken

arbitrarily, and is linked to n, the order of G and Ge, by the relation

n = (c1r + c2)k + r�log2(k + 2)� + (c3r + c4),

where the quadruple (c1, c2, c3, c4) takes the values (2,−2, 1, 3) in Corollary 11,
(1, 1, 2, 0) in Proposition 12, (2,−2, 1, 2) in Corollary 13, and (1, 1, 2, 1) in Proposition 14,
where r = 2; this means, roughly speaking, that k is a fraction, depending on r , of n; there-
fore, given r ≥ 2, what we have shown is that there is an infinite sequence of graphs G and

Table 1 γr (Ge) − γr (G) and γr (Ge)
γr (G)

, as a function of r and k

r γr (Ge) − γr (G)

= 1 must be inside {−2,−1, 0, 1, 2} (1), (2), Th. 8

= 1 graphs with = −2,= −1,= 0,= 1,= 2 Ex. 5, 7, 9

r γr (Ge) − γr (G) γr (Ge)/γr (G)

= 2, 3, 4 ≤ −(k − r�log2(k + 2)� − r − 3) (5) ≤ r�log2(k+2)�+r+3
k

(6)

≥ 5 ≤ −(k − r�log2(k + 2)� − r − 1) (3) ≤ r�log2(k+2)�+r+1
k

(4)

= 2 ≥ k − 2�log2(k + 2)� − 5 (9) ≥ k
2�log2(k+2)�+5 (10)

≥ 3 ≥ k − r�log2(k + 2)� − r − 1 (7) ≥ k
r�log2(k+2)�+r+1 (8)
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two positive constants α and β such that γr(G) ≥ αn, but, after deleting a suitable edge e,
we have γr(Ge) ≤ β log2 n (or the other way round).
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