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Abstract—A transmitter has access to X , a relay has access to
Y , and a receiver has access to Z and wants to compute a given
function f(X,Y, Z). How many bits must be transmitted from
the transmitter to the relay and from the relay to the receiver
so that the latter can reliably recover f(X,Y, Z)?

The main result is an inner bound to the rate region of this
problem which is tight when X −Y −Z forms a Markov chain.

I. INTRODUCTION

Consider a processor with a readable/rewritable memory
which observes a finite data stream sequentially. At each step,
what it can write on the memory depends on its current
observation and what is already stored in the memory. The
problem is to find the minimum required memory such that
at the end of the stream, the processor can compute a given
function of the entire stream.

Interestingly, a general formulation of this problem is equiv-
alent to the problem of function computation in a cascade
setting as shown by Viswanathan [7]. For the case of three
nodes (which corresponds to observing a stream of size three
in the previous setup) this setting is depicted in Fig. 1. A
transmitter observes X , a relay observes Y , and a receiver
observes Z. Communication is performed into two steps.
First the transmitter sends a message to the relay given its
observation X . Based on the received message and Y , the
relay sends a message to the receiver such that the latter can
compute the function f(X,Y, Z) reliably.

This problem was first considered by Cuff, Su, El-Gamal
[1] for which they derived the rate region in the case where
Z is a constant. Later, Viswanathan [7] proposed a general
rate region outer bound based on the point-to-point result of
Orlitsky and Roche [3] and investigated the case where X −
Y −Z forms a Markov chain [6]. Finally, a similar problem has
been considered in [5] for the case where Z is a constant and
where there is an additional direct link between the transmitter
and the receiver.

In this paper, first we extend the scheme used in [7] for
arbitrary X , Y , and Z. This inner bound is always tight when
X−Y −Z forms a Markov. This inner bound is such that RY

can always be taken to be equal to the RY lower bound derived
by Viswanathan. But this need not be the case for RX . We
then propose a second inner bound where the opposite holds,
namely where RX can always be taken to be equal to the RX

lower bound, but not necessarily RY . Finally we propose a
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Fig. 1. Cascade Multi-terminal Network.

third inner bound which always includes the convex hull of
two inner bounds, and in certain cases this inclusion is strict.

Section II contains the formal problem statement and some
background material, Section III contains our results and
Section IV deals with the proof sketchs of the main results.

II. PROBLEM STATEMENT AND PRELIMINARIES

The formal problem formulation given below is tailored for
the cascade netword configuration of Fig. 1.

Let X , Y , Z , and F be finite sets, and f : X ×Y×Z → F .
Let {(xi, yi, zi)}∞i=1 be independent instances of random vari-
ables (X,Y, Z) taking values over X ×Y ×Z and distributed
according to p(x, y, z).

Definition 1 (Code). An (n,RX , RY ) code consists of two
encoding functions

ϕX : Xn → {1, 2, .., 2nRX}
ϕY : Yn × {1, 2, .., 2nRX} → {1, 2, .., 2nRY }

and a decoding function

ψ : {1, 2, .., 2nRY } × Zn → Fn .

The error probability of a code is defined as

P (ψ(ϕY (ϕX(X),Y),Z) 6= f(X,Y,Z)),

where X
def
= X1, . . . , Xn and

f(X,Y,Z)
def
= {f(X1, Y1, Z1), ..., f(Xn, Yn, Zn)} .

Definition 2 (Rate Region). A rate pair (RX , RY ) is achiev-
able if, for any ε > 0 and all n large enough, there exists an
(n,RX , RY ) code whose error probability is no larger than
ε. The rate region is the closure of the set of achievable rate
pairs (RX , RY ).

The problem we consider in this paper is to characterize the
rate region for given f and p(x, y, z).

Notation. Given two random variables X and V , where X
ranges over X and V over subsets of X ,1 we write X ∈ V
whenever P (X ∈ V ) = 1.

1I.e., a sample of V is a subset of X .



Definition 3 (Generalized Conditional Characteristic Graph,
[4]). Given (V,X, Y ) ∼ p(v, x, y) such that X ∈ V and given
f(X,Y ), the conditional characteristic graph GV |Y of V given
Y is the (undirected) graph whose vertex set is V and whose
edge set E(GV |Y ) consists of the set of all (vi, vj) for which
there exists xi ∈ vi, xj ∈ vj and y ∈ Y such that

i. p(vi, xi, y) · p(vj , xj , y) > 0,
ii. f(xi, y) 6= f(xj , y).

Recall that an independent set of a graph G is a subset
of vertices no two of which are connected. A maximal
independent set is an independent set that is not included in
any other independent set. The set of independent sets of G
and the set of maximal independent sets of G are denoted by
Γ(G) and Γ∗(G), respectively.

Definition 4 (Conditional Graph Entropy [3]). The conditional
entropy of a graph is defined as2

HGV |Y (V |Y )
def
= min

U−V−Y
V ∈U∈Γ(GV |Y )

I(U ;V |Y )

= min
U−V−Y

V ∈U∈Γ∗(GV |Y )

I(U ;V |Y ).

III. RESULTS

The following outer bound is obtained by revealing Z (for
RX bound) and X (for RY bound) to the relay. In this case,
the problem reduces to the two point-to-point sub-problems
X → (Y,Z) and (X,Y )→ Z for which [3, Theorem 1] can
be applied:

Theorem 1 (Outer bound, [3],[7]). If (RX , RY ) is achievable
then

RX ≥ HGX|Y,Z
(X|Y,Z),

RY ≥ HGX,Y |Z (X,Y |Z).

The above outer bound is not tight in general. For instance,
it can be checked that when Z = X the conditions of
Theorem 1 become

RX ≥ 0,

RY ≥ H(f(X,Y )|X).

But when RX = 0, the problem for the relay-to-receiver link
reduces to the standard point-to-point problem for which the
minimum rate is given by

RY = HGY |X (Y |X),

which can be strictly greater than H(f(X,Y )|X).
In the particular case where Z is a constant, the conditions

of Theorem 1 become

RX ≥ HGX|Y (X|Y )

RY ≥ H(f(X,Y )) ,

2We use the notation U − V −W whenever random variables (U, V,W )
form a Markov chain.

and this region is actually tight as shown by Cuff, Su, and
El-Gamal [1]. Indeed, in this case if the receiver is able
to compute the function then so is the relay. Therefore, the
problem reduces to two point-to-point problems which can
be treated independently: a computation problem between the
transmitter and the relay whose solution is given by [3], and a
classical single source coding problem between the relay and
the receiver.

More generally, when X − Y − Z forms a Markov chain
we have:

Theorem 2 (Rate Region-Markov, [6]). When X − Y − Z
forms a Markov chain, the rate region is given by

RX ≥ HGX|Y,Z
(X|Y, Z) = min

U−X−(Y,Z)
X∈U∈Γ∗(GX|Y,Z)

I(U ;X|Y ),

RY ≥ HGX,Y |Z (X,Y |Z).

Theorem 2 may be referred to as [6, Theorem 3]. However,
the claim of [6, Theorem 3] is not correct and its proof contains
a few glitches. The proof of Theorem 4 to come provides an
alternative derivation of this theorem.

In the achievable scheme that yields Theorem 2, the trans-
mitter first constructs the characteristic graph GX|Y,Z . By
definition, the knowledge of an independent set that includes
X together with (Y, Z) uniquely determines f(X,Y, Z).
Given X, the transmitter first selects U(X), where for all
1 ≤ i ≤ n, Ui(X) is a maximal independent set in GX|Y,Z
that includes Xi. Then it reliably sends U(X) to the relay by
considering Y as side information. The relay, having access
to (U(X),Y) selects W(U(X),Y), where for all 1 ≤ i ≤ n,
Wi(U(X),Y) is a maximal independent set in GX,Y |Z that
includes (Xi, Yi)—this step uses the property that X−Y −Z
forms a Markov chain. The knowledge of W(U(X),Y) and
Z uniquely determines f(X,Y,Z). The relay then reliably
sends W(U(X),Y) to the receiver by considering Z as side
information.

Theorem 2 has been generalized to the case where there
are M relay nodes [6]. Here we state the correct rate region
expression for this problem. Assume that the transmitter has
access to X0, relay i, 1 ≤ i ≤ M has access to Xi and
the receiver has access to XM+1. The communication is per-
formed in M+1 steps. At step 1, the transmitter communicates
with relay 1 at rate R0, at step i, 2 ≤ i ≤ M , relay i − 1
communicates with relay i at rate Ri−1, and finally at step
M + 1, relay M communicates with the receiver at rate RM .

Theorem 3 (Rate Region-Markov with M relays, [6]). When
X0 −X1 − · · ·XM −XM+1 forms a Markov chain, the rate
region is

Ri ≥ HG
Xi|XM+1

i+1

(Xi|XM+1
i+1 )

= HG
Xi|XM+1

i+1

(Xi|Xi+1), 0 ≤ i ≤M.

The first inner bound that we propose is an immediate
extension of the inner bound that yields Theorem 2 which
is valid for arbitrary sources (X,Y, Z). When X − Y − Z



forms a Markov chain, this inner bound is tight and we recover
Theorem 2.

Theorem 4 (Inner Bound I). (RX , RY ) is achievable when-
ever

RX ≥ I(U ;X|Y ),

RY ≥ HGU,Y |Z (U, Y |Z) ,

where
X ∈ U ∈ Γ(GX|Y,Z)

U −X − (Y,Z) .

Moreover, when X−Y −Z forms a Markov chain, the above
inner bound is tight and becomes the same as Theorem 2.

By choosing U = X in Theorem 4, the constraint for RY

becomes the same as the constraint for RY in the outer bound
given by Theorem 1. By contrast, there need not be a specific
choice of U in Theorem 4 such that the RX constraint becomes
the RX outerbound constraint.

An alternative achievable scheme for which the opposite is
true, i.e., it is always possible to “minimize” RX while not
necessarily RY is the following. Similarly as for the achievable
schemes that yield Theorems 2 and 4, the transmitter first
selects an independent set U(X) given the observation of X.
However, the information that the transmitter now sends to
the relay allows the relay to decode U(X) only if, in addition
to Y, it were to know Z. This modification of the previous
scheme allows to reduce RX at the expense of RY and the
resulting inner bound is given by the following theorem:

Theorem 5 (Inner Bound II). (RX , RY ) is achievable when-
ever

RX ≥ HGX|Y,Z
(X|Y,Z),

RY ≥ HGX|Y,Z
(X|Y,Z) +H(Y |Z).

By time sharing, the convex hull of the rate regions of
Theorems 4 and 5 is achievable. The following theorem,
based on a non-trivial combination of the schemes that yield
Theorems 4 and 5, provides an inner bound that always
includes this convex hull and, in certain cases, this inclusion
is strict.

Theorem 6 (Inner bound III). (RX , RY ) is achievable when-
ever

RX ≥ I(X;U |Y ) + I(V ;X|W,Z)

RY ≥ I(V ;X|W,Z) + I(U, Y ;W |Z),

for some U , V , and W that satisfy

U −X − (Y, Z)

V −X − (U, Y, Z)

(V,Z)− (U, Y )−W,

and
X ∈ V ∈ Γ(GX|U,Y,Z)

(U, Y ) ∈W ∈ Γ(GU,Y |V,Z).

When f(X,Y, Z) = X , by letting V = X in Theorem 6
we recover [2, Theorem 1].

We now first show how Theorems 4 and 5 can be derived
from Theorem 6, from which the inclusion of the convex hull
of them follows.

In Theorem 6, let V be the constant set-valued variable
equal to X , let U be a random variable such that

U −X − (Y, Z),

X ∈ U ∈ Γ(GX|Y,Z),

and let W be a random variable that minimizes I(U, Y ;W |Z)
among all W ’s such that

(U, Y ) ∈W ∈ Γ∗(GU,Y |Z),

Z − (U, Y )−W.

Theorem 6 then gives the achievable rate region of Theorem 4.

In Theorem 6, let U be a constant, W = (U, Y ), and V
be a random variable that minimizes I(V ;X|Y, Z) among all
V ’s such that

V −X − (Y, Z)

X ∈ V ∈ Γ∗(GX|Y,Z).

Theorem 6 then gives the achievable rate region of Theorem 5.

We now show, via an example, that Theorem 6 may yield
rate pairs (RX , RY ) strictly outside the convex hull of Theo-
rems 4 and 5.

Example. Let

(X,Y, Z) = ((X1, X2), (Y1, Y2), (Z1, Z2))

with Z1 = X1. Let X1 = Bern(α), 0 < α < 1
2 and let

Y1 be a random variable that takes values uniformly over
{1, 2, 3, 4}. The random variables X2, Y2, and Z2 can take
values in arbitrary sets. The joint probability distribution of
(X1, X2, Y1, Y2, Z2) is

p(x1, x2, y1, y2, z2) = p(x1)p(y1)p(x2, y2, z2),

and the function to be computed is

f(X,Y, Z) = (f1(X1, Y1), f2(X2, Y2)),

where

f1(x1, y1)
def
=

{
0 if (x1, y1) ∈ {(0, 0), (0, 1), (1, 0), (1, 2)}
1 otherwise

f2(x2, y2)
def
= (x2, y2) .

We consider the minimum sum rate RX +RY . It can be shown
that the minimum sum rate that can be obtained in Theorem 4
is

RX +RY = 1 +Hb(α) +H(X2, Y2|Z) +H(X2|Y2)

and this is achieved by letting U = (X1, X2).



The (minimum) sum rate given in Theorem 5 is

RX +RY = 2 +H(X2, Y2|Z) +H(X2|Y2, Z2) .

Hence, the minimum sum rate of the convex hull of the regions
given by Theorems 4 and 5 is

RX +RY = min(1 +Hb(α) +H(X2, Y2|Z) +H(X2|Y2),

2 +H(X2, Y2|Z) +H(X2|Y2, Z2)) . (1)

On the other hand, in Theorem 6, by letting U = X1, V =
(X1, X2), W = (W1,W2) where W1 ∈ {A0, A1} with

Ai
def
= {(x1, y1) ∈ X1 × Y1 : f(x1, y1) = i}, i ∈ {0, 1},

and W2 = (X2, Y2), we achieve the sum rate

RX +RY = 1 +Hb(α) +H(X2, Y2|Z) +H(X2|Y2, Z2)

which is smaller than both terms of (1) whenever the strict
inequality H(X2|Y2, Z2) < H(X2|Y2, Z2) holds. In this case
Theorem 6 strictly includes the convex hull of Theorems 4
and 5.

IV. ANALYSIS

Proof of the second part of Theorem 4: We show that
when X − Y − Z forms a Markov chain, Theorem 4 gives
the rate region. In Theorem 4, let U∗ be the random variable
that achieves HGX|Y,Z

(X|Y,Z), i.e., the one that minimizes
I(U ;X|Y,Z) = I(U ;X|Y ) among all U ’s such that

X ∈ U ∈ Γ∗(GX|Y,Z),

U−X − Y − Z. (2)

The conditional probability of u∗ given x is denoted by
p1(u∗|x).

Theorem 4 then gives the achievable rate region

RX ≥ HGX|Y,Z
(X|Y, Z),

RY ≥ HGU∗,Y |Z (U∗, Y |Z) . (3)

We now show that HGX,Y |Z (X,Y |Z) ≥ HGU∗,Y |Z (U∗, Y |Z).
This, by Theorem 1, shows that (3) characterizes the rate
region.

Let W ∗ be the random variable that achieves
HGX,Y |Z (X,Y |Z), i.e., the one that minimizes I(W ;X,Y |Z)
among all W ’s such that

(X,Y ) ∈W ∈ Γ∗(GX,Y |Z),

W − (X,Y )− Z. (4)

The conditional probability of w∗ given (x, y) is denoted by
p2(w∗|x, y).

Define the joint probability distribution of
(U∗, X, Y,W ∗, Z) as

p3(u∗, x, y, w∗, z)
def
= p(x, y, z)p1(u∗|x)p2(w∗|x, y).

Note that, by definition

p3(x, y, z) = p(x, y, z)

p3(u∗|x, y) = p3(u∗|x) = p1(u∗|x)

p3(w∗|x, y, z) = p3(w∗|x, y) = p2(w∗|x, y) ,

which means that the joint probability distribution
p3(u∗, x, y, w∗, z) is consistent with (2) and (4).

From p3(u∗, x, y, w∗, z) we have

W ∗ − (X,Y )− Z,

W ∗ − (X,Y )− (U∗, Y ),

W ∗ − (U∗, Y )− Z,

from which it follows that

I(W ∗;U∗, Y |Z) ≤ I(W ∗;X,Y |Z). (5)

To conclude, we need the following result:

Proposition 1. The following relations holds

I. (U∗, Y ) ∈W ∗ ∈ Γ(GU∗,Y |Z).
II. W ∗ − (U∗, Y )− Z .

By Proposition 1 and the definition of conditional charac-
teristic graph (Definition 4) we have

HGU∗,Y |Z (U∗, Y |Z) ≤ I(W ∗;U∗, Y |Z) . (6)

Hence, since by definition of W ∗

I(W ∗;X,Y |Z) = HGX,Y |Z (X,Y |Z), (7)

from (5), (6) and (7) we conlude that

HGU∗,Y |Z (U∗, Y |Z) ≤ HGX,Y |Z (X,Y |Z)

which yields the desired result.
Proof of Proposition 1:

I. For any y ∈ Y and any x1, x2 ∈ u∗ ∈ U∗, (x1, y) and
(x2, y) are not connected in GX,Y |Z due to the fact that
u∗ ∈ Γ(GX|Y,Z). Now using Lemma 1 (stated hereafter),
any maximal independent set w∗ ∈ W ∗ ∈ Γ∗(GX,Y |Z)
that includes (x1, y) should include (x2, y) too, so should
also include (u∗, y).

II.

p3(w∗|u∗, y, z) =
∑
x

p3(w∗|u∗, x, y, z)p3(x|u∗, y, z)

(a)
=
∑
x

p3(w∗|u∗, x, y)p3(x|u∗, y, z)

(b)
=
∑
x

p3(w∗|u∗, x, y)p3(x|u∗, y)

= p3(w∗|u∗, y)

where (a) holds since W ∗ − (U∗, X, Y ) − (U∗, Z)
under p3(u∗, x, y, w∗, z). Equality (b) holds since X −
(U∗, Y ) − Z under p3(u∗, x, y, w∗, z). To see this, note
that

p3(x|u∗, y, z) =
p3(x, u∗|y, z)
p3(u∗|y, z)

=
p3(x|y)p(u∗|x)

p3(u∗|y, z)
,



and note that p3(u∗|y, z) is equal to

p3(u∗|y, z) =
∑
x

p3(u∗|x, y, z)p3(x|y, z)

=
∑
x

p3(u∗|x, y)p3(x|y)

= p3(u∗|y).

Lemma 1. Suppose that (x1, y), (x2, y), (x′, y′) ∈ X×Y , that
(x1, y) and (x2, y) are not connected in GX,Y |Z , and that

p(x1, y)p(x2, y)p(x′, y′) > 0.

Then, in the graph GX,Y |Z , (x′, y′) and (x1, y) are connected
if and only if (x′, y′) and (x2, y) are connected.

Proof: Assume that (x′, y) and (x1, y) are connected in
GX,Y |Z . This means that for some z ∈ Z

p(x1, y, z)p(x
′, y, z) = p(x1, y)p(z|y)p(x′, y, z) > 0, (8)

f(x1, y, z) 6= f(x′, y, z). (9)

Now, since p(x2, y, z) = p(x2, y)p(z|y) and p(z|y) is
positive according to (8), we have p(x2, y, z) > 0. Now, by
hypothesis, (x1, y) and (x2, y) are not connected in GX,Y |Z ,
hence f(x1, y, z) = f(x2, y, z). Hence, from (9) we have
f(x2, y, z) 6= f(x′, y, z), which means that (x′, y) and (x2, y)
are connected in GX,Y |Z .

Proof Sketch of Theorem 6 : Assume U , V and W
satisfy the hypothesis of the theorem. These random variables
together with X,Y, Z are distributed according to some joint
distribution p(v, x, u, y, w, z).

For v ∈ Γ(GX|U,Y,Z) and w ∈ Γ(GU,Y |V,Z), define
f̃(v, w, z) to be equal to f(x, y, z) for x ∈ v and (u, y) ∈ w
whenever p(x, u, y, z) > 0 (Notice that all such (x, y) gives
the same f(x, y, z).). Further, for v = (v1, . . . , vn) and
w = (w1, . . . , wn) define

f̃(v,w, z)
def
= {f̃(v1, w1, z1), . . . , f̃(vn, wn, zn)} .

Randomly generate 2nI(X;U), 2nI(V ;X), and 2nI(U,Y ;W )

independent sequences

u(i) = (u
(i)
1 , u

(i)
2 , . . . , u(i)

n ), i ∈ {1, 2, . . . , 2nI(X;U)},

v(j) = (v
(j)
1 , v

(j)
2 , . . . , v(j)

n ), j ∈ {1, 2, . . . , 2nI(V ;X)},

w(k) = (w
(k)
1 , w

(k)
2 , . . . , w(k)

n ), k ∈ {1, 2, . . . , 2nI(U,Y ;W )},

in an i.i.d. manner according to the marginal distributions p(u),
p(v), and p(w) , respectively, and randomly and uniformly
bin these sequences into 2nRX,1 , 2nRX,2 , and 2nRY,1 bins,
respectively. Reveal the bin assignments φX,1, φX,2, and φY,1
to the transmitter, relay, and receiver.
Encoding: The transmitter finds the sequences u and v
such that (x,u) and (v,x) are jointly robust typical and
sends the indices of the bins that contain u and v, i.e.,
(φX,1(u), φX,2(v)).

The relay, upon receiving (φX,1(u), φX,2(v)), finds a
unique ǔ in the bin φX,1(u) that is jointly robust typical with

y. Then it finds a sequence w that is jointly robust typical
with (ǔ,y) and finds the index of the bin that contains w i.e.,
φY,1(w), and sends (φY,1(w), φX,2(v)).

If the transmitter or the relay doesn’t find such indices, they
declare an error, and if there is more than one possible index,
one of them is randomly and uniformly selected.
Decoding: Given z and the index pair (φY,1(w), φX,2(v)),
declare f̃(v̂, ŵ, z) if there exists a unique jointly robust typical
(v̂, ŵ, z) such that φX,2(v̂) = φX,2(v) and φY,1(ŵ) =
φY,1(w), and such that f̃(v̂, ŵ, z) is defined. Otherwise
declare an error.
Probability of Error: There are two types of error. The first
type of error occurs when no u’s or v’s, respectively w’s,
is jointly robust typical with x, respectively with (ǔ,y).
The probability of each of these two errors is shown to be
negligible in [3] for n large enough. Hence, the probability of
the first type of error can be made arbitrary small by taking
n large enough.

The second type of error refers to the case when the relay
cannot recover u or when the receiver cannot recover (v,w).
It can shown that the probability of these events vanishes for
n large enough whenever

RX,1 > I(X;U |Y ) (10)
RY,1 > I(U, Y ;W |Z) (11)
RX,2 > I(V ;X|W,Z). (12)

Note that whenever (ǔ, v̂, ŵ) = (u,v,w), where (u,v)
and w are the chosen sequences at the transmitter and at the re-
lay, respectively, there is no error, i.e., f(x,y, z) = f̃(v,w, z)
by definition of robust typicality and by the definitions of U ,
V , and W . From (10), (11), and (12) the error probability goes
to zero as n→∞ whenever

RX > I(X;U |Y ) + I(V ;X|W,Z),

RY > I(V ;X|W,Z) + I(U, Y ;W |Z) ,

which concludes the proof.
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