
LotusX: A Position-Aware XML Graphical Search
System with Auto-Completion
Chunbin Lin 1, Jiaheng Lu 1, Tok Wang Ling 2, Bogdan Cautis 3

1Renmin University of China
{chunbinlin, jiahenglu}@ruc.edu.cn

2National University of Singapore
lingtw@comp.nus.edu.sg

3Télécom ParisTech
cautis@telecom-paristech.fr

Abstract— The existing query languages for XML (e.g.,
XQuery) require professional programming skills to be for-
mulated, however, learning such complex query languages is
a tedious and a time consuming process that can be very
challenging especially to novice users. In addition, when issuing
an XML query, users are required to be familiar with the
content (including the structural and textual information) of
the hierarchical XML, which is difficult for common users. The
need for designing user-friendly interfaces to reduce the burden
of query formulation is fundamental to the spreading of XML
community.

We present a twig-based XML graphical search system, called
LotusX, that provides a graphical interface to simplify the query
processing without the need of learning query languages and
data schemas and the knowledge of the content of the XML
document. The basic idea is that LotusX proposes “position-
aware” and “auto-completion” features to help users to create
tree-modeled queries (twig pattern queries) by providing the rea-
sonable candidates on-the-fly. In addition, complex twig queries
(including order-sensitive queries) are supported in LotusX.
Furthermore, a new ranking strategy and a query rewriting
solution are implemented to rank the results and automatically
rewrite queries, respectively.

I. I

XML plays an important role in information exchange
nowadays. As a result, a wide spectrum of users, including
those with minimal or no computer programming skill at all,
have the need to query hierarchical XML. Therefore, designing
effective and efficient systems to simplify the query processing
over XML documents attracts lots of research interests. The
well known XML query languages (e.g., XQuery) are provided
to process XML queries. However, these languages are far too
complicated for unskilled users, who might only be aware of
the basics of the XML data model or even lack the knowledge
of the content (i.e., structural and textual information) of the
XML documents.
<bib>

{ for $b in doc (‘‘bib.xml’’)/bib/book

where $b//publisher=‘‘Thomas S. Huang’’

 and ($b/year>1999 or $b/year <2010)

 and ($b/price>30 and $b/price<50)

return <book> { $b/title } </book> }

</bib>

book

“>1999 or <2010”“<50 and >30”“Thomas S. Huang’’

(a) Xquery expression (b) Twig Pattern Query

price yearpublishertitle

Fig. 1. The XQuery and twig pattern expression of the query.

For example, assume that a user wants to issue the query
on XML database “List the title of books written by Thomas
S. Huang and published before 1999 or later than 2010,
and the price should be distributed in 30 ∼ 50 dollars”.
This query can be formulated as the XQuery expression
in Figure 1(a). Unfortunately, formulating such query often
demands considerable cognitive effort from the end users and
requires “programming” skills that is at least comparable to
SQL, which can be both time-consuming and error-prone. In
order to deal with the problem, XML graphical languages are
developed (e.g., XQBE[4], GLASS [7], XQE[3]) to allow the
users, who do not know the professional query languages, to
express queries. They allow users to create queries through
simple graphical languages and then map the queries directly
to XQuery in the background. However, (i) users are required
to learn the syntax of the graphical languages, furthermore,
(ii) users need to have the knowledge of the structural (i.e.,
the parent-child (P-C) and ancestor-descendant (A-D) relation)
and textual (i.e., node names and values) information of the
XML documents, since the content of each node in the query
should be input by users instead of the systems. E.g., when
issuing the query in Figure 1, the user needs to know the
name of the publisher is “Thomas” rather than “Thomason”
(i.e., textual information) and the price is a child of the book
(i.e., structural information).

In order to simplify the query processing, (i) XML keyword
search systems are proposed (e.g., XReal [2]), which return the
subtrees containing all the keywords. However, keywords can
only express simple textual information but cannot describe
the structural information and complex content. For example,
these systems cannot answer the query in Figure 1, since
keywords cannot describe the structures (e.g., year is a child
of book) and the content conditions (e.g., “year>1999 or year
<2010”). (ii) Visual search systems are implemented (e.g.,
Xing[5]). They present the structural and textual information
of the document in visual interfaces, which allows the users to
exploit the relationships of the elements and update the values
directly. However, they need to load the whole document into
memory and cannot answer the complex queries.

Reviewing the existing XML search systems, we can now

derive some design goals for a user-friendly XML query
system. First of all, we should not define another textual query
language. Second, concrete XML syntax should be avoided.
Third, since twig pattern query is a powerful concept that
greatly supports the examination of structured data, pattern
matching should be employed in the query system. Forth,
twig pattern needs to be extended to support complex queries.
Finally, all the users including the novice users should be
able to issue queries in the system without learning the query
languages and the content of the XML documents.

In this demo, we propose a position-aware XML graphical
search system with auto-completion (called LotusX) that
enables users to define accurate XML twig pattern queries
without the need of learning professional query languages and
the content of highly heterogeneous documents. To our best
knowledge, LotusX is the first system that applies position-
aware and auto-completion features on XML query processing.
LotusX has the following novel features compared to the
existing XML search systems.

• It designs a position-aware graphical interactive interface
to guide users to create twig pattern queries (Section II-B).
• It develops auto-completion feature based on two kinds

of trie indexes to support search-as-you-type for both element
tags and values (Section II-C).
• It applies a holistic twig pattern algorithm to answer twig

pattern queries efficiently. In addition, it supports complex
queries, including order-sensitive queries[6] and queries with
complex content predicates (Section II-D).
• It provides a novel ranking model to rank answers and a

relaxation similarity to rewrite queries, which have no answer
results.(Section II-E).

II. O O LX

In this section we will give an overview of the architecture
of LotusX, followed by multiple unique features in LotusX.

A. Architecture

The system architecture of LotusX is presented in Figure
2. The Data Parser parses the input XML data and schemas,
and labels the inherent elements, attributes and values. Here
we use region labeling, i.e., (start: end, level), to present the
position of a tree node in the data tree. The Index Builder
constructs inverted index for efficiently answering the queries
and two kinds of tries for providing auto-completion feature.
The Twig Pattern Generator provides an interface for users to
generate XML twig patterns graphically. During the generation
of twig queries, the client issues AJAX requests on-the-fly
to the server. Then the Position-Aware Manager searches
the candidates which satisfy the position information, and
the Auto-Completion Manager supports search-as-you-type by
searching in the trie indexes to return the instant feedback.
When users submit queries (including complex queries), the
Twig Search Operator employs a twig pattern algorithm to
get the answers. Then Result Generator ranks the results
according to their relevance and popularity, then demonstrates
the results graphically as a form of trees. Finally, if there is no

answer to match user’s query, the Query Rewriter rewrites the
original twig to generate new query-candidates to help users
easily reformulate queries.

Server

User

Data

Parser

Index

Builder

Indexes

Twig Pattern

Generator Twig pattern Twig Search

Operator

No

Results Have Results

Rewrite

Operator

Result

Generator

XML

DHTML

JavaScript

Type/Focus/Drag
Candidate values/

tag-names

SAX

Buffer

T
ag

-n
am

es

V
alu

es

rewritten

queries

Search Results

Auto-

Completion

Manager

Internet

Ajax Requests/

Response

Rewritten queries

Results Search Results

Client

Twig

pattern

Position-

Aware

Manager

Fig. 2. Architecture of LotusX

B. Position-Aware Interactive Interface

A query is modeled as a small tree (i.e., twig pattern) in Lo-
tusX, since tree-structure can well express both the structural
and textual information. The twig pattern node labels include
element tags, attribute-values and string-values, and the query
twig pattern edges are either parent-child edges (depicted using
a single red line) or ancestor-descendant edges (depicted using
a double green line). See an example twig pattern in Figure
1(b), which is equal to the XQuery expression in Figure 1(a).
LotusX allows novice users to generate a meaningful twig
pattern through a graphically interactive interface, which can
provide reasonable candidate tag-names for the new created
node in different positions. See the query in Figure 1(b),
when a new node is presented below the node “book”, then
the system automatically shows the candidate tag-names, e.g.,
“publisher”, “year”. Note that the candidates must be children

author

(a) ‘X1’ in the scope of book

book

A new node “X2”

Node:

Value:

title 242

A new node “Y”

(c) order-sensitive query

year

Node:

Value:

day 14241

author

book

A new node “X1”

year

Node:

Value:

address 127

111609

message 716488

school

title

215949

day 14241

242

paper
111609school

book

yearauthor

(b) ‘X2’ in the scopes of book,

author and year

Fig. 3. Position-aware feature. In (a), the number of the candidate tag-names
for the new node X1 is greater than that of X2 in (b), since node X2 is affected
by three nodes while X1 is only affected by one node. In (c) the candidate
tag-name is “title”, since author � title � year.

or descendants of “book” in the XML data. Otherwise, the
query is meaningless. In order to specify such “position-
relationship”, we define the sector of α degree below each
node as its scope (see the doted lines in Figure 3(a)). If a
node A is in the scope of node B ∈ q, then we say A is
affected by B, i.e., the candidates of A should be all the
potential descendant tag-names of node B. In practice, a new
node would be affected by multiple nodes in the query, and
the nodes distribute in different levels, since the query is a
twig. Therefore, we carefully design the strategy to generate
reasonable candidates satisfying the above conditions. Assume
a new node X is in the scope of node ni j ∈ q, which is the

j’th node from left to right in the i’th level of q, then the
candidates of X can be computed as follows:⋂

i
{⋃

j
Desc(ni j)}

where Desc(n) is a set containing all the children and
descendant tag-names of node n. To better understand this,
let us see examples in Figure 3(a) and (b). In Figure 3 (a), the
candidate tag-names of X1 are listed nearby the input-box and
each tuple in the list composed of a tag-name and the total
number of the occurrences of the tag-name in XML data set.
The candidates are the children or descendants of book, since
X1 is in the scope of book. However, in Figure 3(b), X2 is in the
scope of three nodes (i.e., book, author and year) and book has
higher level than author and year. Thus the candidates of X2 is
a set calculated by Desc(book)∩ (Desc(author)∪Desc(year)).

C. Search-as-you-type with Auto-completion

In information retrieval, query auto-completion is proposed
to support search-as-you-type. As we discussed above, LotusX
suggests the reasonable candidates to users, however, the
number of candidates might be large and it is not elegant to
list all the candidates to users. So we provide auto-completion
to support search-as-you-type for both tag-names and values
from the candidates, which returns candidates on-the-fly as a
user types letter by letter and gives the user instant feedback.
Note the fact that tag-names and values have different data
characteristics, i.e., the number of tag-names is limited, while
the values are usually too large to be completely loaded into
the memory. Therefore, we design two trie indexes for them
respectively, they are Static Tag-trie for small tag data and
Dynamic Value-trie for large value data. (i) We build a static

Node:

Value:

P

phdthesis 812

pages 318010

publisher 18214

proceedings 5292

Node:

Value:

author

Anastasia Analyti

Anastasia Pagnoni

Ana R. Cavalli

Ana M. Breda

ana

(a) auto-completion for tag-names (b) auto-completion for values

Fig. 4. The auto-completion for tag-names and values. In (a),the candidate
tag-names starting with p are listed, and in (b), the candidate values of node
“author” and starting with ana are chosen.

tag-trie tree for all the tag-names, which is not large and can
be kept in the memory. Each tag-name in the tree corresponds
to a unique path from the root to a leaf node. We first find the
corresponding trie node of the prefix, which is input by users,
and then traverse the subtree to get the values with a prefix of
the input message. E.g., in Figure 4(a), user input a letter “p”,
then the returned candidate tag-names are all starting with “p”.
(ii) Due to the large size of the values and the values are related
to different tag-names, e.g., “Anastasia Pagnoni” in Figure 4(b)
relates to the “author” rather than other tag-names. Thus, we
display a representative subset of values for each tag-name,
which can be loaded in the memory, to construct a dynamic
value-trie. After selecting the tag-name, the user focuses on
the value input-box. At this time, the client sends the tag-name
to the value-trie to locate the subtree rooted by the tag-name.
In Figure 4(b), the value-trie locates the subtree of “author”.

Once the users type any new letter in the value inputbox,
value-trie returns the values belonging to the tag-name and
starting with the letters by searching the corresponding path
in the subtree. However, if there is no such value satisfying
the requirement, we read the corresponding disk-resident file
through the indexes and display in a recursive way, and each
time we only read the representative subset of the rest data to
build a value-trie.

D. Order-sensitive Queries

To capture the semantics of XPath expressions with order
axes, such as the following-sibling and preceding-sibling, we
extend the common twig pattern by adding order constraint, in
addition to P-C and A-D edges. Our paper [6] has the detailed
discussion about the meaning of the symbol “<” (see Figure
3(c)) and how to answer order-sensitive queries. In this paper,
we focus on how to automatically generate an order-sensitive
query. Given two node types A and B in an XML database D,
we say that type A precedes B written A�B, if there are two
instance nodes a and b such that a precedes b in the depth-
first traverse of D. Those order information about node types
can be obtained in Index Builder in pre-processing. See the
example in Figure 3 (b) and (c). Since (b) does not have the
order constraint, the number of the candidate tag-names for
X2 in (b) is significantly larger than that for Y in (c).

E. Results Ranking and Query Rewriting
We propose a ranking model to rank the results according

to their importance and popularity. In addition, if there is no
result based on users’ initial query, we invoke a rewriting
mechanism to provide refined queries. To rank a result r for
a query q, we need to consider the structural and content
factors to compute an overall relevance score. The followings
are important factors: (1) weights of different tags, (2) length
of each path, (3) number of irrelative nodes. The following
is a scoring function that reflects the above three factors. The
score of a result r for a query q is defined as:

S T (r, q) =
∑

(pq,pr)∈P

1 + |pq|
1 + |pr| ∗

∑

tpq∈pq

w f − id f (tpq, r)
w f − id f (tpq, q)

−
∑

tT ∈T w f − id f (tT , r)√∑
tr∈r w f − id f (tr, r)2

(1)

where wf-idf is similar to ”XML tf-idf” in our paper [1], and
{pq, pr} is a mapping pair of paths from the query q and result
r respectively. Let T be the set of node types only in result r
but not in query q, and tpq , tr and tT are node types in path pq,
result r and set T respectively. To understand the S T score, the
first multiplier(i.e.(1+ |pq|)/(1+ |pr|)) actually addresses Factor
2, while the second multiplier addresses Factor 1 by computing
the weights of the nodes. Finally, the third component reduces
the score of the irrelative node types to address Factor 3.

In order to automatically rewrite queries, which have no
results, our main strategy is to relax the conditions of the
original query from the aspects of structural and/or value
conditions. We define four basic relaxation operations from
the lowest penalty to the highest, as follows: (i) remove the
“order” constraint; (ii) P-C edge to A-D edges; (iii) remove the

(3) position-aware

candidates

(1) the tool bar

(2) the initial node

(4) add edge

(5) auto-completion

(a) position-aware feature (b) auto-completion feature

Fig. 5. A snapshot of the demonstration of LotusX.

value constraint; (iv) prune the node with the smallest weight.
Note that more relaxation operations result in less similarity
with the original query.

Given an original query Q and a relaxation query Q′, we
define the Relaxation Similarity (RS) to measure the similarity
between Q and Q′.

RS (Q,Q′) =
1 + lg |Q′(D)|∑i=1
|RT (Q,Q′)| 2w(i)

(2)

where |Q′(D)| denotes the number of answers to Q′ in doc-
ument D; |RT (Q,Q′)| represents the times of employing the
four basic operations to transform Q into Q′; w(i)(> 1) is the
penalty of the relaxation operation i. In this way, a relaxation
query Q′ is ranked higher if RS(Q,Q’) is greater, meaning that
Q′ returns more answers and is more similar to Q.

III. DEMONSTRATION SCENARIOS
A prototype system (LotusX) has been implemented with

a web-based interface, which is running on Ubuntu 9.10.
In this demo, three XML databases are utilized, i.e., the
DBLP(130MB), the airline(50M), and the Sigmod(30M).

Scenario 1: Demonstrate the position-aware and auto-
completion features. The first scenario is to demonstrate how
to generate an XML twig query conveniently with the aids
of position-aware and auto-completion features. Assume that
a user wants to create an XML query in the interface. (S)he
can create a node by dragging the initial node (see (2) in the
Figure 5(a)). Then the system returns the candidates instantly
by the position-aware feature, as shown in (3) in the Figure
5(a). After the nodes are created, then (s)he can generate edges
by clicking the button in the tool bar (see (4) in the Figure
5(b)) and then either P-C or A-D edges are created. Note that,
the auto-completion feature (i)identifies the type of the tag-
name, e.g., in (5) in the Figure 5(b), the value of endPage is
number and that of author is string; (ii) supports search-as-
you-type, e.g., the user input “an” and the system returns the
corresponding values starting with the prefix.

Scenario 2: Generate a complex twig pattern query. This
scenario demonstrates how to create a complex twig pattern
query with “order-constraint” and content condition. Assume
the user wants to issue the query “finding the initPage of
articles whose endPage is greater than 128 and initPage should
be the preceding of endPage”, which is equivalent to an
XPath ”//article/endPage>‘128’[preceding-sibling: initPage]”.

The user can create the query in the interface as we introduced
in Scenario 1. In addition, (s)he can add “order” symbol to the
query by simply clicking the “Add Order” button (see (1) in
the Figure 5(a)). Thus, a complex twig pattern is successfully
created, which is shown in Figure 6(a).

Similarity: 98% Similarity: 93%

article

initPage

(a) Query Q (b)Rewritten Query Q1 (c)Rewritten Query Q2 (d)Rewritten Query Q3

endPage

Similarity: 83%

initPage endPage initPage endPage initPage endPage

article article article

“>128” “>128” “>128”

Fig. 6. Rewritten queries of query Q, Q1 has the highest similarity, i.e., 98%,
while Q2 and Q3 have less similarities (i.e., 93% and 83%, respectively).

Scenario 3: Query executing and auto-rewriting features.
This scenario is employed to demonstrate the power of query
executing and query rewriting features. We show that the
execution of the query in Figure 6(a) does not return any result,
since in the document initPage is not in preceding of endPage.
But LotusX can automatically rewrite the query by applying
different relaxation operations. For example, Q1 in Figure 6
(b) is rewritten by removing the “order” condition, which has
the highest similarity and has meaningful results. In addition,
Figure 6 (c) and (d) present the rewritten queries by changing
edges and removing node values, respectively. Note that, all
the three rewritten queries (i.e., Q1,Q2,Q3) have meaningful
results. Finally, we return the results for the refined query
(which is selected by users) which are sorted by the ranking
scores computed by Formula 1.

R

[1] Z. Bao, T. Ling, B. Chen, and J. Lu. Effective xml keyword search with
relevance oriented ranking. In Proc. ICDE, pages 517–528, 2009.

[2] Z. Bao, J. Lu, and T. W. Ling. Xreal: an interactive xml keyword
searching. In CIKM, pages 1933–1934, 2010.

[3] V. Borkar, M. Carey, S. Koleth, A. Kotopoulis, K. Mehta, J. Spiegel,
S. Thatte, and T. Westmann. Graphical XQuery in the aqualogic data
services platform. In Proc. SIGMOD, pages 1069–1080, 2010.

[4] D. Braga and A. Campi. A graphical environment to query xml data with
xquery. In WISE, pages 31–40, 2003.

[5] M. Erwig. Xing: a visual xml query language. J. Vis. Lang. Comput.,
14(1):5–45, 2003.

[6] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended xml tree pattern
matching: Theories and algorithms. IEEE Trans. Knowl. Data Eng.,
23(3):402–416, 2011.

[7] W. Ni and T. Ling. Translate graphical XML query language to SQLX.
In Proc. DASFAA, pages 907–913, 2005.

