
Context-Aware Top-k Processing using Views

Silviu Maniu Bogdan Cautis
Institut Mines-Télécom, Télécom ParisTech - CNRS LTCI

first.last@telecom-paristech.fr

Abstract

Search applications in which queries are dependent on their context arebecoming increas-
ingly relevant in today’s online applications. For example, the context may bethe location of
the user inlocation-aware searchor the social network of the query initiator insocial-aware
search. Processing such queries efficiently is inherently difficult, and requirestechniques that
go beyond the existing, context-agnostic ones. A promising direction for efficient, online an-
swering – especially in the case of top-k queries – is to materialize and exploit previous query
results (views).

We consider in this paper context-aware query optimization based on views,focusing on
two important sub-problems. First, handling the possible differences in context between the
various views and an input query leads to view results having uncertain scores, i.e., score
ranges valid for the new context. As a consequence, current top-k algorithms are no longer
directly applicable and need to be adapted to handle such uncertainty in object scores. Second,
adapted view selection techniques are needed, which can leverage both the descriptions of
queries and statistics over their results. We present algorithms that address these two problems,
and illustrate their practical use in two important application scenarios: location-aware search
and social-aware search. We validate our approaches via extensive experiments, using both
synthetic and real-world datasets.

Keywords: social search, spatial search, context-aware search, top-k algorithms, information
retrieval

1

1 Introduction

Retrieving thek best data objects for a given query, under a certain scoring model, is one of the
most common problems in database systems and on Web. In many applications, and in particular
in current Web search engines, tens of thousands of queries per second need to be answered over
massive amounts of data. Significant research effort has been put into addressing the performance
of top-k processing, towards optimal algorithms – such as TA and NRA [7, 10] – or highly-efficient
data structures [19] (e.g., inverted lists). In recent research, the use ofpre-computed results(also
calledviews) has been identified as a promising avenue for improving efficiency [11, 6].

At the same time, with the advent of location-aware devices,geo-tagging, bookmarking appli-
cations, or online social applications, as a way to improve the result quality and the user experience,
new kinds of top-k search applications are emerging, which can be simply described ascontext-
aware. The context of a query may represent the geographiclocationwhere the query was issued
or thesocial identity– within a social network – of the user who issued it. More generally, it could
represent certain score parameters that can be defined or personalized at query time. For example,
a query fortop-class vegetarian restaurantsshould not give the same results if issued inParis or
in Istanbul, as it should not give the same results if issued within a social community of culinary
reviewers or within a student community.

Unsurprisingly, taking into account a query context in top-k processing represents a new source
of complexity, and many of the common approaches employed incontext-agnostic scenarios need
to be revisited [5, 14, 12]. Now, query processing usually entails an exploration of a “neighbor-
hood” space for the closest or most relevant objects, which is often interleaved with some of the
classic, context independent top-k processing steps, such as scans over inverted lists.

Consequently, materializing and exploiting in searches theresults of previous queries can play
an even more important role for efficient, online processingof queries with context. However, in
this direction, a broader view-based answering problem than in the context-agnostic setting needs
to be addressed, in which the cached results are modeled as unranked lists of objects having only
uncertain scoresor score ranges, instead of exact scores. The rationale is that, even when the
cached results in views do have exact scores with respect to one context, we should expect these
to evolve into score ranges when acontext transpositionis necessary. For example, answers to the
previous query, for thePariscontext, may be useful – but only to a certain extent – when thesame
query is issued in a nearbyVersaillescontext, as one has to adapt the scores of restaurants from the
parisian perspective to the versaillaise one; this, inherently, introduces uncertainty.

The potential impact of view-based algorithms that can copewith such uncertainty is highly
relevant but not limited to the context-aware setting. Indeed, even when queries are not param-
eterized by a context, some of the most performant algorithms, such as NRA [7] can support
early-termination and output unranked results with only score ranges (instead of a precise rank-
ing).

The general goal of this study is to enable efficient context-aware top-k retrieval through tech-
niques that exploitexclusivelythe views. The rationale for this is that in many practical applica-
tions, access methods may be extensively optimized for views, the size of cached results may be
much less important than the one of the complete data (e.g., of the inverted lists), and view results
(pre-computed for groups of attributes) may be much more informative towards finding the result

2

for the input query. For instance, a user may go through a sequence of query reformulations, for
which result caching may be highly beneficial. View results may even be bound to main-memory,
in certain scenarios.

Our contributions We formalize and study in this paper the problem of context-aware top-k
processing based on possibly uncertain precomputed results, in the form ofviewsover the data.

We start by investigating top-k processingafter the context transpositionhas been performed,
for a given input query and its context. The problem of answering such top-k queries usingonly
the information in views, inevitably, requires an adaptation to the fact that these views may now
offer objects having uncertain scores. Consequently, theremight exist view instances from which
an exact top-k cannot be extracted with full confidence. When this is the case, it would be unsatis-
factory to simply refute the input query, or to consider alternative, more expensive execution plans
(e.g., by going through the per-attribute lists). Instead,it would be preferable to provide amost
informative answer, in terms of (i) objectsG that are guaranteed to be in the top-k result, and (ii)
objectsP that may appear in the top-k result.

We formalize this query semantics and describe two adaptations of TA and NRA, SR-TA
and SR-NRA. They support precomputed lists withscore rangesand the above described query
semantics and aresoundandcomplete, i.e., they output the(G,P)-answer. Intuitively, they imple-
ment the corroboration principle illustrated before, based on alinear programmingformulation.

Given that in many applications the set of views may be very large – think of social applications
in which many users may have pre-computed results – we also consider optimizations for SR-TA
and SR-NRA, based onselecting some (few) most promising views. Obviously, with fewer views,
the most informative answer(G,P) may no longer be reached, and we are in general presented
a trade-off between the number of selected views – which determines the cost of the top-k al-
gorithms SR-NRA and SR-TA – and the “quality” of the result (adistance with respect to the
most informative answer given by all the views). Importantly, we also show that SR-NRA and
SR-TA, when selecting views, arecompleteandinstance optimalfor an important family of view
specifications.

Complementing our top-k retrieval through view selection, we also show how a final refinement
step allows us to reach the most informative result.

As a last level of service that can be provided to users, we then consider a sampling-based
approach by which, from the most informative result, a probabilistic interpretation can also lead to
amost likely top-k answer to the input query.

Extensive experiments on both synthetic and real-world datasets illustrate the potential of our
techniques – enabling high-precision retrieval and important running-time savings. More generally,
they illustrate the potential of top-k query optimization based on cached results in a wide range of
applications.

2 Formal setting and problems

Context-aware score model. We assume a finite collection of objectsO and a countable collection
of attributesT . Under a givencontext parameterC – an application-dependent notion – objectso

3

are associated to certain attributest, by an object-attribute score functionsc(o, t | C).
Under a contextC, a queryQ consists of a set of attributes{t1, . . . , tn}; its answer is given

by objectso ∈ O having the highest scoressc(o,Q | C), computed via a monotone aggregation
functionh (e.g.,sum, max, avg) over the object-attribute scores:

sc(o,Q | C) = h(sc(o, t1 | C), . . . , sc(o, tn | C)).

We can formalize the top-k retrieval problem as follows:

Problem 1. Given a queryQ = {t1, . . . , tn} ⊂ T , a contextC, an integerk, and a score model
specification(sc, h), retrieve thek objectso ∈ O having the highest scoressc(o,Q | C).

In certain applications, the context may always be empty or may simply be ignored in thesc
scores, and, when necessary, we indicate this in our notation by the ‘⊥’ context. We usesc(o,Q)
as short notation forsc(o,Q | ⊥).

Threshold algorithms. We revisit in this paper the class of early termination top-k algorithms
known asthreshold algorithms. These algorithms, applicable in a context-agnostic setting, find the
top-k objects for an input queryQ by scanning sequentially (for each attribute) and in parallel (for
the entire attribute set ofQ), relevant per-attribute lists that are ordered descending by sc values –
with inverted lists being a notable example – denoted in the followingL(t), as the list for attribute
t. During a run, they maintain a setD of already encountered candidate objectso, bookkeeping for
each candidate the following values:

1. an upper-bound onsc(o,Q), the best possible score that may still be obtained foro, denoted
hereafterbsc(o,Q),

2. a lower-bound onsc(o,Q), the worst possible score, denoted hereafterwsc(o,Q),

with the objects being ordered inD by their worst scores.
At each iteration, or at certain intervals, threshold algorithms may refine these bounds and

compare the worst score of thekth object inD, wsc(D[k], Q), with the best possible score of
either (i) objectso in D outside the topk, bsc(o,Q), or (ii) not yet encountered objects, denoted
bsc(∗, Q).

When both these best scores are not greater than the worst score ofD[k], the run can terminate,
outputting the objectsD[1], . . . , D[k] as the final top-k.

A key difference between the various threshold algorithms,and in particular between TA and
NRA, resides in the way they are allowed to access the per-attribute lists. TA is allowed random
accesses to lists, as soon as an objecto has been encountered while sequentially accessing one list
among the|Q| relevant ones. These random accesses can complete the scores of objectso from a
guaranteed range to an exact value. In comparison, NRA is not allowed to use random accesses
in the per-attribute lists, but only sequential ones, and each objecto in the final top-k may only
be given a score range,[wsc(o,Q), bsc(o,Q)]. (Various hybrid algorithms with respect to TA and
NRA are also possible and have been extensively studied in theliterature.)

4

V1({a},⊥) V2({c},⊥) V3({a, b},⊥) V4({b, c},⊥)

o ws bs o ws bs o ws bs o ws bs

o3 7 8 o3 8 8 o5 16 16 o5 11 11
o5 6 7 o4 3 7 o6 10 10 o3 10 11
o6 4 4 o6 2 4 o3 10 10 o6 9 11
o7 3 5 o10 2 3 o10 6 9 o10 8 9
o9 3 4 o7 2 2 o2 6 6 o2 6 7
o10 1 3 o8 1 3 o7 6 6 o1 5 7
o2 1 2 o9 1 2 o1 5 8 o7 4 4
o1 1 1 o5 1 1 o9 4 5 o4 3 8
∗ 0 1 ∗ 0 1 ∗ 0 4 ∗ 0 3

Table 1: An example setV of views.

TA was shown to beinstance optimal1 among algorithms that do not make “wild guesses” or
probabilistic choices. Within this same class of algorithms, NRA was shown to be instance optimal
for algorithms in which onlysequentialaccesses are allowed.2

Views and precomputed results. We extend the classic top-k retrieval setting of TA/NRA
by assuming access to precomputed query results, called in the followingviews. Each viewV is
assumed to have two components: (i) adefinition, def(V), which is a pair query-contextdef(V) =
(QV , CV) and (ii) a setans(V) of triples (oi, wsci, bsci), representing theanswerto queryQV

under contextCV . Each such triple says that objectoi has a scoresc(oi, QV | CV) within the range
[wsci, bsci].

Since we are dealing with cached query results, all objects not appearing inans(V) – repre-
sented explicitly inans(V), to simplify presentation, by one finalwildcard ∗ object– have with
respect to queryQV and contextCV a worst score ofwsc∗ = 0 and a best possible score of either
bsc∗ = min{wsci | (oi, wsci, bsci) ∈ ans(V)}, if V ’s result is complete, in the sense that enough
objects had a non-zero score w.r.t.QV , or otherwise0.

Context transposition. Intuitively, when a viewV and the to-be-answered queryQ do not
share the same context, a transposition of the exact scores or score ranges inans(V) is necessary,
in order to obtain valid ranges forsc(oi, QV | C) from those forsc(oi, QV | CV). In particular, in
the case of spatial or social search, this transformation will inevitably yield a coarser score range.
We will detail the specific operation of context transposition for these two application scenarios in
Section 6.

Exploiting views. Given an input queryQ and a contextC, from a set of viewsV sharing the
same context – as indef(V) = (. . . , C) – a first opportunity that is raised by the ability to cache
results is to compute for objectso ∈ O tighter lower and upper bounds oversc(o,Q | C)). This
may be useful in threshold algorithms, as a way to refine scoreranges. We formalize this task next.

Problem 2. Given a queryQ = {t1, . . . , tn} ⊂ T , a contextC, an integerk, a score model
specification(sc, h) and a set of viewsV sharing the same context withQ, given an objecto ∈ O,
compute the tightest lower and upper bounds onsc(o,Q | C) from the information inV.

1As good as any other algorithm from its class – within a constant factor – over all possible inputs.
2This is an important family of algorithms for performance, given that random accesses can be orders of magnitude

more costly.

5

In this paper, consistent with the most common ranking models for context-aware search, we
will assume that the aggregation functionh is summation. Under this assumption, Problem 2 could
be modeled straightforwardly by the following mathematical program, whose variables are given
in bold:

min
∑

ti∈Q

sc(o, ti | C) (2.1)

max
∑

ti∈Q

sc(o, ti | C) (2.2)

wsc ≤
∑

tj∈QV

sc(o, tj | C), ∀V ∈ V s.t. (o, wsc, bsc) ∈ ans(V)

∑

tj∈QV

sc(o, tj | C) ≤ bsc, ∀V ∈ V s.t. (o, wsc, bsc) ∈ ans(V)

sc(o, tl | C) ≥ 0, ∀tl ∈ T

Example 1. Let us consider the views in Table 1. We have access to the results of four views,
defined by the sets of attributes{a}, {c}, {a, b} and{b, c}. We assume the empty contextC = ⊥
for the views and for the to-be-answered query, which isQ = {a, b, c}. Consideringo6, for
example, we know that:

sc(o6, {a}) ≥ 4 (V1)

sc(o6, {c}) ≥ 2 (V2)

sc(o6, {a}) + sc(o6, {b}) ≥ 10 (V3)

sc(o6, {b}) + sc(o6, {c}) ≥ 9 (V4)

sc(o6, {a}) ≤ 4 (V1)

sc(o6, {c}) ≤ 4 (V2)

sc(o6, {a}) + sc(o6, {b}) ≤ 10 (V3)

sc(o6, {b}) + sc(o6, {c}) ≤ 11 (V4)

Then, the lower bound onsc(o6, Q) is obtained as also

wsc(o6) = min(sc(o6, {a}) + sc(o6, {b}) + sc(o6, {c})) = 13

by combining the worst scores ofV1 andV4. Similarly, the upper bound onsc(o6, Q) is obtained
as

bsc(o6, Q) = max(sc(o6, {a}) + sc(o6, {b}) + sc(o6, {c})) = 14

by combining the best scores ofV2 andV3.

We now formulate the problem of answering input top-k queriesQ usingonly the information
in views, whose semantics needs to be adapted to the fact thatviews may offer only a partial image
of the data. When an exact top-k cannot be extracted with full confidence, amost informative
resultwould consist of two disjunctive, possibly-empty sets of objects from those appearing inV ’s
answer:

6

• a set of all the objects guaranteed to be in the top-k for Q

• a set of all objects that may also be in the top-k for Q.

Problem 2 provides a way to properly define and identify objects of the former kind – theguaran-
teed ones– as the objectsox for which

min
∑

ti∈Q

sc(ox, ti | C) ≥ max
∑

ti∈Q

sc(∗, ti | C) (2.3)

and at mostk − 1 objectsoy can be found such that

min
∑

ti∈Q

sc(ox, ti | C) < max
∑

ti∈Q

sc(oy, ti | C). (2.4)

Similarly, we can identify objects of the latter kind – thepossible ones– as the objectsox that are
not guaranteed and for which at mostk − 1 objectsoy can be found such that

min
∑

ti∈Q

sc(oy, ti | C) > max
∑

ti∈Q

sc(ox, ti | C). (2.5)

We formalize thetop-k retrieval problem using viewsas follows.

Problem 3. Given a queryQ = {t1, . . . , tn} ⊂ T , a contextC, an integerk, and a score model
specification(sc, h), given a set of viewsV sharing the same context withQ, retrieve fromV a
most informative answerof the form(G,P), with

• G ⊂ O consisting of allguaranteed objects(as in Eq. (2.3) and (2.4), whenh is summation);
they must be among those with thek highest scores forQ andC.

• andP ⊂ O consisting of allpossible objectsoutsideG (as in Eq. (2.5), whenh is summa-
tion); they may be among those with thek highest scores forQ andC, i.e., there exist data
instances where these appear in the top-k.

In order to solve Problem 3, a naïve computation of upper and lower bounds for all objectso
appearing in the views would suffice, but would undoubtedly be too costly in practice. Instead, we
show in Section 3 how we can solve Problem 3 in the style of threshold algorithms, by extending
NRA and TA.

Over any data instance, the exact top-k can be thought of as the setG plus the top-k′ items from
P , for k′ = k − |G|. To give amost likely result, in a probabilistic sense, based on theG andP
object sets, we discuss in Section 3 possible approaches forestimating the probability of possible
top-k′ sets fromP .

Going further, even when the most promising candidate objects are considered first in SR-
TA or SR-NRA, their corresponding instances of the mathematical programs in Eq. (2.1) and
Eq. (2.2) may still be too expensive to compute in practice (even when we are dealing with LPs,
as in Example 1): the set of views may be too large – potentially of the order2|T | – and each

7

view contributes one constraint in the program. In our best-effort approach, which would first
select some (few) most promising viewsṼ ⊂ V for the input query (Section 4), we are presented
a trade-off between the size of the subsetṼ – which determines the cost of the top-k algorithms
SR-NRA and SR-TA – and the “quality” of the result, namely itsdistance with respect to the most
informative answer given by all the views. We quantify the distance between the most informative
result byṼ, denoted(G̃, P̃), and the most informative answer(G,P) by V as the difference in the
number of possible top-k combinations:

∆ =

(˜|P |

k − ˜|G|

)
−

(
|P |

k − |G|

)
. (2.6)

We also show in Section 4 how a final refinement step over(G̃, P̃), based on random accesses in
the entireV set, allows us to reach∆ = 0, i.e., the most informative result byV.

3 Threshold algorithms

We start this section by presenting our adaptation of TA, called SR-TA, which can be applied when
the input lists consist of objects with score ranges; SR-TA will allow us to solve Problem 3.

Each of the input lists are assumed to be available in two copies, one ordered descending by
the score lower-bound and one ordered descending by the score upper-bound. SR-TA will read
sequentially in round-robin manner from the former group oflists and, similar to TA, maintains
a candidate setD of the objects encountered during the run. At each moment, the read heads of
the latter group of lists must give objects that are not yet inD (unseen objects), and sequential
accesses are performed in SR-TA whenever necessary in order to maintain this configuration.

D is also ordered descending by the score lower-bounds. The algorithm stops when the score
of any of the unseen objects – the thresholdτ – cannot be greater than the one of thekth object in
the candidate setD.

In our setting, the thresholdτ is obtained as the solution of the following mathematical pro-
gram, taking into account from each viewV the score upper-bound of objects fromans(V)−D:

τ = max
∑

ti∈Q

sc(o, ti | C) (3.1)

∑

tj∈QV

sc(o, tj | C) ≤ max(bsci), ∀V ∈ V , oi 6∈ D s.t.

(oi, wsci, bsci) ∈ ans(V)

sc(o, tl | C) ≥ 0, ∀tl ∈ T

One can note that when (i) we have only views that give answersto singleton queries, and (ii)
thewsci = bsci for each objectoi (i.e., the lists contain exact scores), we are in the settingof the
TA family of algorithms over inverted list inputs. Relaxing condition (i), we have the setting of
top-k answering using views investigated in [11, 6]. Both these settings and their corresponding
algorithms can guarantee that, at termination, the exact top-k is returned.

8

Our more general setting, however, cannot provide such guarantees, as witnessed by the fol-
lowing example.

Algorithm 1: SR-TA(Q, k,V)

Require: queryQ, sizek, viewsV
1: D = ∅
2: loop
3: for each viewV ∈ V in turn do
4: (oi, wsci, bsci)← next tuple by sequential access inV
5: read by random-accesses all other listsV ′ ∈ V for tuples(oj, wscj, bscj) s.t. oi = oj
6: wsc← solution to the MP in Eq. (2.1) foroi
7: bsc← solution to the MP in Eq. (2.2) foroi
8: add the tuple(oi, wsc, bsc) toD
9: end for

10: τ ← the solution to the MP in Eq. (3.1)
11: wsct ← lower-bound score ofkth candidate inD
12: if τ ≤ wsc

(D)
t then

13: break
14: end if
15: end loop
16: {G,P}=PARTITION(D, k)
17: return G, P

Example 2. Let us revisit Example 1, for the top-5 queryQ = {a, b, c}. We will not detail the
complete run of the algorithm on this example, instead showing what happens at termination. The
algorithm stops at the6th iteration. The threshold value is either obtained by combining the best
scores inV 1 andV 4 of the unseen (not inD) itemo1, or by combining the best score inV 2 of o8
and the best score inV 3 of o1. Both result inτ = 8. The worst score of the 5th item,o7, is also 8,
enabling termination. This ensures that all the possible candidates for top-k are already present in
the listD (see Table 2). Within this candidate list, there does not exist a combination of5 objects
that represents the top-k and, instead, we can only divideD into three sets:

1. the setG = {o3, o5, o6, o10} of guaranteed result objects,

2. the setP = {o7, o4} of possible result objects,

3. the remaining objects:{o2, o9}.

Algorithm 1 details SR-TA. Its general flow is similar to the one of TA, with the notable
addition of the generalized computation of bounds and of thethreshold value.

We now discuss our adaptation of NRA, called SR-NRA. Now, theexclusively sequential
nature of accesses to views means that the per-view scores will only be partially filled (the random
accesses in line4 of SR-TA are no longer possible).

9

obj o3 o5 o6 o10 o7 o2 o9 o4

wsc 18 17 13 9 8 7 5 3
bsc 18 17 14 12 8 7 7 9

Table 2: Candidates (D) at termination, forQ={a, b, c}, k=5.

At any moment in the run of SR-NRA,seen(o,V) ⊆ V gives the views in whicho has
been encountered already through sequential accesses. We say that an object isfully known if
seen(o,V) = V, andpartially knownotherwise. Then, for viewsV ∈ seen(o,V) we keep the
same constraints as in the MPs (2.1), (2.2). For each viewV 6∈ seen(o,V), we adjust the corre-
sponding constraint as

0 ≤
∑

tj∈QV

sc(o, tj |C) ≤ max{bsci|(oi, bsci, wsci) ∈ V, oi 6∈ D} (3.2)

The termination conditions need to keep track, besides the threshold value, of the maximum
upper-bound score of partially known objects that not in thecurrent top-k of D, denotedbscrest.
Objects that are fully known are ignored in this estimate, since their scores are fully filled and they
might be candidates forP .

Partition for most informative result. Once the main loop of SR-TA or SR-NRA terminates,
candidatesD are passed as input to a sub-routine whose role is to partition it into setsG andP
(line 14 in SR-TA, line25 in SR-NRA). Algorithm 2 details this step: for each objecto in D we
test the conditions of Eq. (2.3), (2.4), (2.5).

Algorithm 2: PARTITION(D, k)

Require: candidate listD, parameterk
1: G← ∅ the objects guaranteed to be in the top-k
2: P ← ∅ the objects that might enter the top-k
3: for each tuple(o, bsc, wsc) ∈ D, o 6= ∗ do
4: x← |{(o′, bsc′, wsc′) ∈ D | o′ 6= o, bsc′ > wsc}|
5: wsct ← lower-bound score ofkth candidate inD
6: if x ≤ k and for(∗, wsc∗, bsc∗) ∈ D, bsc∗ ≤ wsc then
7: addo to G
8: else if bsc > wsct then
9: addo to P

10: end if
11: end for
12: return G, P

At the termination of both SR-TA and SR-NRA, we are guaranteed thatG andP aresound
and complete, in the following sense:

10

Property 1. An objecto is in the output setG of PARTITION(D, k) iff in all possible data instances
o is the top-k forQ, C.

An objecto is in the output setP of PARTITION(D, k) iff in at least one possible data instance
o is in the top-k forQ, C.

Note that the size ofG is at mostk, while the one ofP is at most|O|, hence the need for
completeness, maximizing|G| and minimizing|P |.

Extracting a Probable Top-k’ in P As discussed previously, the actual (inaccessible) top-k
answer for the input query could be seen as being composed of two parts: the guaranteed objects
G plus a topk′ overP , for k′ = k − |G|. By definition,G andP give the most informative certain
result that can be obtained from the views: there can be no deterministic way to compute a certain
top-k′ over theP objects, nor a way to further prune the search space towards amore refinedP
set.

Therefore, we can only hope to improve the quality of the result by a more detailedprobabilistic
description of the result, in which a most likely top-k could be identified fromG andP . Since for
each object inP we have a lower and upper bound on its exact score, let us assume a known
probability-density function (e.g, uniform one) for scores within the known bounds. Based on this,
we can reason about the likelihood of a top-k′ selection overP .

A naïve way to obtain the most likely top-k′ would be the following: enumerate all possible
subsets ofP of sizek′, and compute for each the probability of being the top-k′. Each of these(
|P |
k′

)
probability values can be easily obtained once we have for each pair of objectso1, o2 ∈ P the

probabilityPr(o1 > o2). A much more efficient algorithm than the naïve enumeration is to adapt
to our setting the sampling-based approach of [15], which computes top-k answers over uncertain
data, namely ranked object list with score ranges and probability-density functions over them.

We describe a tractable approach for estimating the most likely top-k′ over a set of triples
(oi, wsci, bsci), under the assumption that sampling can be done in polynomial-time as well, for
uniform distribution. We use an encoding-decoding pair of functions that map sets of objects to
numerical keys, and vice-versa:key = encode(S) is the key representing the setS, andS =
decode(key) gives the opposite mapping.

We proceed as follows. We first initialize a hash tableT for the domain of keys (range of
encode). For a given number of sampling rounds, at each roundl we go through the objects of
P and generate for each a score based on its range; we then orderthe objects based on these
scores into a listPl (sample_scores subroutine). We obtain throughencode the key for the set
consisting of the topk′ objects inPl, and we increment the value corresponding to that key inT .
At termination, we return the decoding of the key having the highest count inT .

4 View Selection

We consider now the view selection problem, which may improve the performance of our threshold
algorithms SR-NRA and SR-TA, possibly at the risk of yielding results that are less accurate. To
address this issue, we discuss at the end of this section how results obtained through view selection

11

can be refined to the most informative one.Throughout this section, we remain in the setting where
the query and views are assumed to have the same context.

We argue first that view selection comes as a natural perspective in the computation of score
bounds. Recall that, for a given objecto ∈ O, Problem 2 could be modeled straightforwardly by
the mathematical programs (2.1) and (2.2). Put otherwise, we have as the dual of the minimization
problem 2.1 the following packing LP:

max

|V|∑

i=1,

(o,wsc,..)∈ans(Vi)

wsc× li s.t.
∑

t∈QVj

lj ≤ 1, ∀t ∈ Q,
∑

t∈QVj

lj = 0, ∀t 6∈ Q (4.1)

and we have as the dual the maximization problem (2.2) the following covering LP:

min

|V|∑

i=1,

(o,..,bsc)∈ans(Vi)

bsc× ui s.t.
∑

t∈QVj

uj ≥ 1, ∀t ∈ Q,
∑

t∈QVj

uj = 0, ∀t 6∈ Q (4.2)

Based on the programs (4.1) and (4.2), for each objecto, in order to obtain its most refined
bounds, we would need to firstfractionally select views fromV – as opposed tointegralselection
– such that the linear combinations ofo’s scores with the coefficientsui andli are optimal. In other
words, for computing the worst score or best score of each object, it would suffice to select and
take into account only the viewsVi ∈ V such that (i)li 6= 0, for worst scores, or (ii)ui 6= 0, for
best scores.3

Solving the LPs (4.1) and (4.2) for each object, as a means to select only the useful views,
would obviously be as expensive as solving directly the MPs (2.1) and 2.2. Instead, it would be
preferable to solve these LPs and select some most relevant viewsindependently of any object, i.e.,
only once, before the run of the threshold algorithm. Instead of per-objectwsc andbsc values, in
an approximate version of the two LPs, each viewVi could be represented by two unique values,
wsc(V) andbsc(V). Our optimization problems would then simplify as follows:

max

|V|∑

i=1

wsc(Vi)× li s.t.
∑

t∈QVj

lj ≤ 1, ∀t ∈ Q,
∑

t∈QVj

lj = 0, ∀t 6∈ Q (4.3)

min

|V|∑

i=1

bsc(Vi)× ui s.t.
∑

t∈QVj

uj ≥ 1, ∀t ∈ Q,
∑

t∈QVj

uj = 0, ∀t 6∈ Q (4.4)

3Restricting the domain of theu andl values to integers would lead to an NP-hard view selection problem. More
precisely, Eq. (4.2) would reduce to an instance of the weighted set cover problem, and Eq. (4.1) would reduce to an
instance of thek-dimensional perfect matching problem (wherek = max(|Q(V)|), ∀V ∈ V). In our setting, however,
the restriction to the integer domain is not necessary, and there exist tractable methods for efficiently solving the above
LPs in their fractional form.

12

and this would enable us to select the “good” views in the initialization step of the top-k algo-
rithm, those participating to the computation of the optimal, i.e., views havingnon-zerou and l
coefficients.

Furthermore, for each objecto encountered in the run of Algorithms SR-TA and SR-NRA, we
can now replace Eq. (2.1) and (2.2) (lines 5-6 in SR-TA) by the following estimates that use only
the selected views̃V:

w̃sc =

|Ṽ|∑

i=1
(o,wsc,..)∈ans(Vi)

wsc× li ; b̃sc =

|Ṽ ′|∑

i=1
(o,..,bsc)∈ans(Vi)

bsc× ui

This is possible since, by the duality property, we are guaranteed that the feasible solutions for
Eq. (4.3), (4.4) represent safe bounds foro’s scores, i.e.,̃wsc ≤ wsc and b̃sc ≥ bsc. We can
similarly simplify Eq. (3.1), for the threshold value (for line 8 in SR-TA).

Candidates for wsc(V) and bsc(V). We follow the described approach – approximating view
selection – in two distinct ways.

First, per-view score boundswsc(V) andbsc(V) could be based solely on the view’s definition
QV , and we experimented in this paper with bounds that are defined aswsc(V) = bsc(V) = |QV |.
for eachV ∈ V. The intuition for this choice is that object scores in a viewV are proportional to
the number of attributes inQV .

Second, we consider and experiment with in Section 7 two natural per-view measures that are
based on the views’ answers: (i) the average value of scores,and (ii) the maximum value of scores.

Retrieving (G,P) after view selection We now discuss how the most informative result(G,P)
– that can be obtained from the complete set of viewsV – can still be retrieved by refining a result
(G̃, P̃) obtained on a selection of views̃V. We only need to adopt the following modifications in
instances of SR-TA or SR-NRA running over a selection of views:

1. when the main loop terminates, compute the optimal boundsfor all objects inP̃ by random-
accessing their scores in all the views inV,

2. run for a second time the partition subroutine.

It can be easily shown that, in this way, we obtain the most informative result, i.e., we reach
∆ = 0. Therefore, the “bulk” of the work could be done only on a selection of views and its
result, potentially few candidate objects, could just be refined at the end using the completeV. We
describe in Section 7 the impact of this optimization on the running time of SR-TA and SR-NRA.

To summarize, we have described two variants of SR-TA and SR-NRA: without view se-
lection, denoted SR-TAnosel and SR-NRAnosel, and with view selection, denoted SR-TAsel and
SR-NRAsel. For the view selection variant, our notation convention will be to replace thesel
superscript by adef , max or avg one, depending on the selection method being used.

13

5 Formal Guarantees

We study in this section the formal properties of our algorithms, focusing oninstance optimality.
LetA be the class of algorithms, including SR-TA and SR-NRA, thatdeterministically output

the sound and complete setsP andG, and do not make “wild guesses”. For a given set of views
V, we denote byD(V) the class of all instances of answers in those views, i.e.,ans(V), V ∈ V.

Given two algorithmsA1 ∈ A andA2 ∈ A, we writeA1 � A2 iff, for all sets of viewsV,
A2 is guaranteed to cost at least as much asA1 – in terms of I/O accesses (sequential, random or
a linear combination of the two) – over all instances inD(V). Conversely, we writeA1 6� A2 iff
there exists at least one view setV and an instance inD(V) over whichA2 costs less thanA1. We
say that an algorithmA ∈ A is instance optimal overA iff A � B, ∀B ∈ A.

We first consider the question whether one of the two variantsof SR-TA or SR-NRA is guar-
anteed to perform better that the other, for all views and answers. The answer to this question is
far from obvious: on one hand, SR-TAsel or SR-NRAsel should use fewer views to compute the
P andG sets, but they might either go too deep in the selected views or might need additional
accesses in other views (see Section 4); on the other hand, SR-TAnosel or SR-NRAnosel may go
through views that are useless for deriving optimal bounds.We can prove the following:

Lemma 1. SR-NRAsel 6� SR-NRAnosel 6� SR-NRAsel and SR-TAsel 6� SR-TAnosel 6�
SR-TAsel.

Lemma 1 tells us that neither of the two variants of SR-TA or SR-NRA can be instance
optimal for all possible setsV. However,
we describe next a restricted class of views for which: (i) norefinement step is necessary after
selecting a subset of the views, and (ii) SR-TAsel and SR-NRAsel become instance optimal.

Let V be the class ofsetsV of pairwise disjoint views, i.e., s.t. QVi ∩ QVj = ∅, ∀Vi, Vj ∈
V , Vi 6= Vj. We say an algorithmA ∈ A is instance optimal overA andV if A � B, ∀B ∈ A and
∀V ∈ V . We can prove the following:

Theorem 1. SR-TAsel is instance optimal overA andV.
SR-NRAsel is instance optimal overA andV, when only sequential accesses are allowed.

Intuitively, for this class of views, the only way to obtain bounds for a queryQ is the following:
(i) for lower-bounds, only the viewsV that haveQV ⊆ Q are taken into account, while (ii) for
upper-bounds all viewsV that verifyQV ∩ Q 6= ∅ are used. Note that this method is in effect the
view selection algorithm for the class of pairwise disjointviews. Note also that the setting of [7],
i.e. per-attribute lists of exact scores, is strictly subsumed byV.

6 Context Transposition

We have discussed until now how queries can be answered by exploiting pre-computed results from
views, with the important assumption that these share the same context with the input query. We
remove now this restriction, and consider also views that may have been computed in a different
context. We show how we can still answer input queries by the techniques discussed so far, by

14

pre-processing views in order to place them in the context ofthe input query. We call this step the
context transposition.

Let us consider the two motivating applications of context-aware search: location-aware search
and social-aware search. In both applications, one viewV ’s contextCV can be seen as consisting
of

1. alocation(orstart point) CV .l, e.g., geo-coordinates in a multidimensional space for location-
aware search, or the social identity of a seeker in social-aware search,

2. acontextual parameterCV .α, which basically parameterizes the influence of the spatialor
social aspect in scores.

Given an input queryQ, a contextC – with C.l andC.α – and a viewV with a different context
(either the location orα may differ, or both), in order to be able use pre-computed results from
V , we need to derive from the existingans(V) tuples new score bounds: for each(o, wsc, bsc) ∈
ans(V) we want to obtain a new tuple(o, fw(wsc), fb(bsc)). The functionsfw andfb represent
the core of the context transposition, their role being to map the worst scores and best scores of
objects fromans(V) to new guaranteed bounds for contextC.

7 Experiments

We performed our experiments on a single core of a i7-860 2.8GHz machine equipped with 8GB
of RAM. We implemented our algorithms in Java, and we used thisimplementation for our tests on
synthetic data and social data. We also implemented them in C++, for a more reliable comparison
with IR-TREE, for spatial data.

Context-agnostic setting with complete views. Our first series of tests, over synthetic data,
concerns a setting in which the input queries and the views share the same context (i.e., context
plays no role and is ignored in the computation). We generated exact scores in the range[0, 100] for
100,000 objects and10 attributes, with exponential or uniform distributions. Then, we generated all
possible combinations of2 and3 attributes, each representing one view. For each of the views, we
computed the exact (aggregated) scores overall objects; the views arecompletein that sense. We
then made these lists uncertain by replacing each exact value by a score range, using the gaussian
distribution with mean equal to the exact value and standarddeviation (std, in short) equal to either
5, 10 or 20. Over the sets of views obtained in this way, we used100 randomly-generated input
queries consisting of5 distinct attributes.

We compare in Figure 1 the SR-TA variants over the two data distributions, for the std values
5 and10 (to avoid clutter, the plots for std20 are not given). We have recorded (i) the relative
running-time of the algorithms that use view selection w.r.t. the algorithm using all the views –
three selection criteria per two std values, for six plot lines, (ii) the number of sequential accesses
by all four variants – with the two std values, for eight plot lines, and (iii) the number of random
accesses by all four variants – with the two std values, for eight plot lines.

One can note that the algorithms with view selection achievesignificant savings in terms of
both running-time and I/O accesses. The algorithm based on max-statistics, SR-TAmax, achieves

15

k=10 k=50 k=100
0

0.2

0.4

0.6

ru
nn

in
g-

ti
m

e
co

ef
f.

Relative running-time of view selection

k=10 k=50 k=100

0.5

1

1.5
·105

se
qu

en
ti

al
ac

c.

Sequential accesses

k=10 k=50 k=100
0

2

4

6

8
·105

ra
nd

om
ac

c.

Random accesses

Uniform distribution

k=10 k=50 k=100
0

0.2

0.4

0.6

0.8

ru
nn

in
g-

ti
m

e
co

ef
f.

Relative running-time of view selection

k=10 k=50 k=100
0

0.5

1

1.5

2

2.5

·105

se
qu

en
ti

al
ac

c.

Sequential accesses

k=10 k=50 k=100
0

0.2

0.4

0.6

0.8

1

·106

ra
nd

om
ac

c.

Random accesses

Exponential distribution
Figure 1: Performance comparison between SR-TA variants over synthetic data with uniform and
exponential distribution.

nosel std=5 avg std=5 max std=5 def std=5 nosel std=10 avg std=10 max std=10 def std=10

Sel. + Dist. Rel. running-time Min. precision |P |

10 50 100 10 50 100 10 50 100

avg + uni 0.576 0.676 0.712 0.57 0.69 0.72 10 36 64
def + uni 0.350 0.446 0.544 0.57 0.69 0.72 10 36 64
max + uni 0.296 0.395 0.446 0.57 0.69 0.72 10 36 64

avg + exp 0.732 1.128 1.287 0.60 0.63 0.64 10 46 86
def + exp 0.531 0.771 1.003 0.60 0.63 0.64 10 46 86
max + exp 0.456 0.684 0.827 0.60 0.63 0.64 10 46 86

Table 3: Comparison between SR-TA and TA (exact scores), for uniform and exponential distribu-
tions, for std5.

better performance than the one based on view definitions, SR-TAdef , which in turn does better
than the one based on average-statistics, SR-TAavg. Furthermore, we can observe that the relative
running-time of these algorithms does not depend on the value ofk, and the influence of the interval
coarseness (by standard deviation) is more important in theexponential distribution. One can also
note a “clustering” effect, by standard deviation, in the case of sequential-access measures; this is
likely due to the fact that top-k processing on noisier data needs to go deeper in the views to reach
termination.

We also compared the performance of SR-TA, over score rangeswith low noise (std of5), with
the one of Fagin’s TA over the exact per-attribute inverted lists. We trace two measures: the relative
running-time and the minimum precision. The latter is computed as|G|/k, i.e., the ratio between
the size of the guaranteed set and the requiredk. The results are presented in Table 3. One can note
that SR-TAsel can have a running-time that is a low fraction of that of TA (aslow as0.296, with a

16

Sel. Std Overhead |G| − |G̃| |P| − |P̃| ∆

avg 5 0.031 38 -208 1.96× 1070

avg 10 0.033 35 -734 4.14× 10129

avg 20 0.119 15 -4828 2.65× 10212

def 5 0.040 37 -206 2.76× 1069

def 10 0.038 34 -727 1.96× 10129

def 20 0.138 15 -4749 5.93× 10211

max 5 0.041 35 -179 5.54× 1064

max 10 0.041 33 -575 6.38× 10119

max 20 0.117 15 -3592 7.96× 10200

Table 4: Running-time overhead and∆ difference, for SR-TAsel with final refinement versus SR-
TAsel without refinement , fork=100 and exponential distribution.
precision@10 of0.577). This is mainly due to the fact that, although inexact, we have aggregated
scores pertaining to2 or 3 query terms, while the noise levels are rather low. While using exact
lists of aggregated data for top-k processing would certainly improve efficiency, as shown in [11],
our experiments show that even relatively noisy aggregateddata can lead to improvements, with
reasonable precision.

Finally, we give in Table 4 the overhead of the refinement stepdiscussed in Section 4, which
uses random-accessing to refine a result (G̃, P̃) to the most informative one, (G,P). Overhead is
measured as the ratio between the running-time of the base algorithm and the one of the refined
algorithm. We also report on the∆ measure. Note that, while the number of possible combinations
that are “avoided” increases exponentially with the standard deviation, the overhead of additional
I/O accesses is small (range3%-13%).

Location-aware search. The dataset used in this setting is the PolyBot one, provided by the
authors of [4]. It consists of 6,115,264 objects (documents) and their coordinates in a 2D space,
and a total of 1,876 attributes (terms). We have generated20 views defined by2-term queries at
5 different locations, varying the size of theirans lists (500, 1000 and2000 entries). We used10
to-be-answered queries at5 locations (different to the ones of views) and we variedk ∈ {10, 20}
andα ∈ {0.7, 0.8, 0.9}. For theα values, we used values close to those indicated by the authors
of [5].

The algorithm we use as baseline in our evaluation is our implementation of the IR-TREE

of [5]. It is based on R-tree indices [8], whose nodes are enriched with inverted lists consisting of
the documents located inside the rectangle defined by the node. The algorithm maintains a priority
queue, containing either objects and their scores, or tree nodes and the maximum scores in their
inverted list. The algorithm alternates between visiting nodes and adding objects to the candidate
list. It stops whenk objects have been retrieved. Our implementation of this algorithm achieves
very similar running-time to the one reported in [5].

We present in Figure 2 the results for relative running-timeand precision. The relative running-
time is computed as the ratio between the running-time of SR-TA and the one of IR-TREE. Pre-
cision is computed as the percentage of top-k items returned by SR-TA that also appear in the
output of IR-TREE. Here, we used the sampling method from Section 3 to obtain the most likely
top-k from the (G,P) answer, through 1,000 rounds of uniform sampling.

One can note that, for high values ofα and low values ofk, the response time of SR-TA
is significantly lower than that of the IR-TREE (in practice, of the order of milliseconds), with

17

α =0.9 α =0.8 α =0.7

0

0.1

0.2

0.3
R

el
at

iv
e

ru
nn

in
g-

ti
m

e

0.7

0.8

0.9

1

0.92

0.87

0.79

P
re

ci
si

on

500

α =0.9 α =0.8 α =0.7

0

0.1

0.2

0.3

0.4

R
el

at
iv

e
ru

nn
in

g-
ti

m
e

0.7

0.8

0.9

1

0.92

0.87

0.79

P
re

ci
si

on

1000

α =0.9 α =0.8 α =0.7

0

0.2

0.4

0.6

0.8

R
el

at
iv

e
ru

nn
in

g-
ti

m
e

0.7

0.8

0.9

1

0.92

0.86

0.79 P
re

ci
si

on

2000

Figure 2: Location-aware search: performance and precision of SR-TAsel versus exact early-
termination algorithm (IR-TREE [5]), for variousα values and list sizes (grey=top-10, white=top-
20).

reasonably high precision levels (between0.86 and0.92). This is because the top-k answer is based
on a large setG of guaranteed objects, which reduces the overhead of the sampling procedure.
When the uncertainty introduced by coarser score ranges in views leads to larger setsP instead,
the sampling procedure is more costly, but overall the running-time remains a small fraction of the
one of the IR-TREE, with a precision around0.8.

Social-aware search. For this application scenario, we used the publicly-available Delicious
bookmarking data of [16]. We extracted a random subset of it,containing 80,000 users, their
tagging behavior on 595,811 objects (items) with 198,080 attributes (tags). For assigning weights
to links between users, we generated three similarity networks, by computing the Dice coefficients
of either (i) common tags in a tag similarity network, (ii) common items in an item similarity
network or (iii) common item-tag pairs in an item-tag similarity network.

For each of the three similarity networks, we randomly chose5 seekers for our tests. Then, a
number of10 users were randomly chosen, among those having a link with weight of at most0.66
to any of the5 seekers (to ensure that no view is too “useful”, having too strong an influence on the
running-time and precision). For each of these users and forα ∈ {0.0, 0.1, 0.2, 0.3}, we generated
40 views of1 and2-tag queries, each containing500 entries.

The tests were made on a set of10 3-tag queries for each of the5 seekers, varyingα ∈
{0.0, 0.1, 0.2, 0.3} andk ∈ {10, 20}.

The baseline algorithm we used for the performance comparison is a direct adaptation of the
CONTEXTMERGEalgorithm of [14]. In short, depending on the value ofα, CONTEXTMERGEal-
ternates between per-attribute inverted lists of objects and an inverted list containing users ordered
descending by their proximity relative to the seeker. When the algorithm visits a user, her relevant
objects – those that were tagged by her with attributes appearing in the input query – are retrieved
and added to the candidate list. In manner similar to NRA, the algorithm keeps a threshold value
representing the maximal possible score of objects, based on the maximal scores from the inverted
lists and the proximity value of not yet visited users. The termination condition is very similar to
that of NRA.

Similar to the location-aware search, we present in Figure 3the results in terms of relative
running-time and precision. One can note that the running-time is still a low fraction of the one of
the exact algorithm, while the precision levels are considerably higher than in the case of location-
aware search. As expected, the lowest precision levels are obtained when the search relies exclu-

18

α =0.0 α =0.1 α =0.2 α =0.3
0.2

0.25

0.3

0.35
R

el
at

iv
e

ru
nn

in
g-

ti
m

e

0.85

0.9

0.95

1

0.84

0.97 0.98 0.98

P
re

ci
si

on

tag similarity

α =0.0 α =0.1 α =0.2 α =0.3

0.2

0.25

0.3

0.35

R
el

at
iv

e
ru

nn
in

g-
ti

m
e

0.95

0.96

0.97

0.98

0.99

0.95

0.99

0.98
0.98

P
re

ci
si

on

item similarity

α =0.0 α =0.1 α =0.2 α =0.3

0.4

0.6

0.8

1

R
el

at
iv

e
ru

nn
in

g-
ti

m
e

0.92

0.94

0.96

0.98

0.92

0.98 0.98
0.98

P
re

ci
si

on

item-tag similarity

Figure 3: Social-aware search: performance and precision of SR-TAsel versus exact early-
termination algorithm (CONTEXTMERGE [14]), in three similarity networks (grey=top-10,
white=top-20).

sively on the social component of the score. This is due to thefact that the bounds computed by the
context transposition in social search yield coarser scoreranges whenα = 0, which are source of
more uncertainty in the scores and the top-k result. Moreover, due to the skew in proximity values
in the network, even whenα has low non-zero values, the textual component has a strong influence
in scores, and thus leads to significant improvements in the top-k estimates (the most likely result).

8 Main Related Work

The most common data structure for top-k processing is the inverted index file (for a general
survey on indexing for top-k processing see [19]), over which a key challenge is to optimize
response time [17, 18]. Regarding algorithms, among the mostwidely cited and used are the
early-termination threshold algorithms TA and NRA of [7], which provide instance optimality
guarantees. Many other top-k aggregation algorithms have been proposed in the literature, and we
refer the interested reader to the survey [10] and the references therein. The use of precomputed
results, either as previous answers to queries [6, 9] or as cached intersection lists [11], has been
identified as an important direction for efficiency. A linearprogramming formulation over score
information is first introduced in [6] and extended in [11]. In [15], the authors study top-k process-
ing when only score ranges are known, instead of exact ones, define a probabilistic ranking model
based on partial orders and introduce several semantics forranking queries, but do not deal with
aggregation of uncertain scores over multiple dimensions.In the area of location-aware retrieval,
Cong et al. [5] introduce the concept of LkT queries, for which they include in the ranking model
both the distance of a document’s location w.r.t. the query point and the textual features of the
document. They propose the IR-tree index, consisting of an R-tree [8] in which each node has
an inverted list of relevant documents. Other models for top-k location-aware keyword querying
have been proposed, for selecting either groups of objects that collectively satisfy a query [2], or
thek-best objects scored by the features in their neighborhood [13], or the top-k objects in a given
query rectangle [4]. Various approaches for combining textual inverted lists and spatial indexes
for keyword retrieval were also studied in [4]. In the area ofsocial-aware search, for which book-
marking applications are a popular abstraction, processing top-k queries while having the social
network as an integral part of the ranking model has been considered in recent research. [1] is the
first to consider this problem, yet under significant restrictions, taking into account only a subset of

19

users and their documents in answers. The CONTEXTMERGEalgorithm [14] is the first to address
the social-aware search without imposing limitations on the exploration space, and they use the
ranking model that we adopted in this paper. In [3], personalization based on a similarity network
is shown to outperform other personalization approaches and non-personalized search.

9 Future Work

Our formulation of the view selection sub-problem opens many directions for future research.
For example, finding combinatorial algorithms for view selection seems a promising approach for
further reducing the overhead of LP computations. Regardingthe refinement to the most probable
result, it would be interesting to consider also approachesthat can rely only on a subset of the
remaining views, possibly in an incremental manner. The study of more refined definitions of
classes of views that guarantee instance optimality is another avenue of further research.

With respect to applications, other context-aware scenarios, application-dependent context
transpositions, as well as other ranking models, remain to be studied. Another important research
direction is to study cost models that could help query processors in prioritizing view-based top-k
computations over exact top-k computations.

References
[1] S. Amer-Yahia, M. Benedikt, L. Lakshmanan, and J. Stoyanovich. Efficient network aware search in collaborative tagging sites. InVLDB, 2008.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. InSIGMOD, 2011.

[3] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el, I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized social search based on the user’s social network. InCIKM, 2009.

[4] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs. space: Efficient geo-search query processing. In CIKM, 2011.

[5] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web objects. InVLDB, 2009.

[6] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries using views. InVLDB, 2006.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. InPODS, 2001.

[8] A. Guttman. R-tree: a dynamic index structure for spatialsearching. InSIGMOD, 1984.

[9] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for answering ranked queries using ranked views. In VLDBJ, 2004.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in relational database systems. InACM Comp. Surv., 2008.

[11] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii. Top-kaggregation using intersections of ranked inputs. InWSDM, 2009.

[12] S. Maniu and B. Cautis. Taagle: Efficient, personalized search in collaborative tagging networks. InSIGMOD, 2012.

[13] J. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Norvag. Efficient processing of top-k spatial preference queries. In VLDB, 2010.

[14] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, and G. Weikum. Efficient top-k querying over social-tagging networks. InSIGIR, 2008.

[15] M. A. Soliman, I. F. Ilyas, and S. Ben-David. Supporting ranking queries on uncertain and incomplete data. InVLDBJ, 2010.

[16] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social bookmarking items: A del.icio.us cookbook. InECAI Mining Social Data Workshop, 2008.

[17] H. Yan, S. Ding, and T. Suel. Inverted index compressionand query processing with optimized document ordering. InWWW, 2009.

[18] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in search engines. InWWW, 2008.

[19] J. Zobel and A. Moffat. Inverted files for text search engines. InACM Comp. Surv., 2006.

20

	Introduction
	Formal setting and problems
	Threshold algorithms
	View Selection
	Formal Guarantees
	Context Transposition
	Experiments
	Main Related Work
	Future Work

