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Abstract

Search applications in which queries are dependent on their contébgé@ming increas-
ingly relevant in today’s online applications. For example, the context malyebkmcation of
the user inocation-aware searclor the social network of the query initiator gocial-aware
search Processing such queries efficiently is inherently difficult, and reqteamiques that
go beyond the existing, context-agnostic ones. A promising direction fioregit, online an-
swering — especially in the case of top-k queries — is to materialize and ex@weibps query
results (views).

We consider in this paper context-aware query optimization based on Vi@wsing on
two important sub-problems. First, handling the possible differences irexobetween the
various views and an input query leads to view results having uncertamessd.e., score
ranges valid for the new context. As a consequence, current topkitalgs are no longer
directly applicable and need to be adapted to handle such uncertainty ihsdgees. Second,
adapted view selection techniques are needed, which can leverage éatbsttriptions of
gueries and statistics over their results. We present algorithms that sitttes two problems,
and illustrate their practical use in two important application scenarios: loeati@ne search
and social-aware search. We validate our approaches via extemp®eaneents, using both
synthetic and real-world datasets.

Keywords: social search, spatial search, context-aware search adgwrithms, information
retrieval



1 Introduction

Retrieving thek best data objects for a given query, under a certain scorimgdeimis one of the
most common problems in database systems and on Web. In rpphyations, and in particular
in current Web search engines, tens of thousands of questesepond need to be answered over
massive amounts of data. Significant research effort has fnetento addressing the performance
of top-k processing, towards optimal algorithms — such as TA and NRAJQY- or highly-efficient
data structures [19] (e.qg., inverted lists). In recentaede the use gbre-computed result&lso
calledviewg has been identified as a promising avenue for improvingieffay [11/6].

At the same time, with the advent of location-aware deviges;tagging, bookmarking appli-
cations, or online social applications, as a way to imprbegesult quality and the user experience,
new kinds of topk search applications are emerging, which can be simply testascontext-
aware The context of a query may represent the geogralpleationwhere the query was issued
or thesocial identity— within a social network — of the user who issued it. More galte it could
represent certain score parameters that can be definedsonpéred at query time. For example,
a query fortop-class vegetarian restaurangdould not give the same results if issuedParis or
in Istanbul as it should not give the same results if issued within asd@mmunity of culinary
reviewers or within a student community.

Unsurprisingly, taking into account a query context in foprocessing represents a new source
of complexity, and many of the common approaches employednitext-agnostic scenarios need
to be revisited([b, 14, 12]. Now, query processing usualliaigsman exploration of a “neighbor-
hood” space for the closest or most relevant objects, wisdiften interleaved with some of the
classic, context independent tégerocessing steps, such as scans over inverted lists.

Consequently, materializing and exploiting in searchesekalts of previous queries can play
an even more important role for efficient, online processihgueries with context. However, in
this direction, a broader view-based answering problem thahe context-agnostic setting needs
to be addressed, in which the cached results are modeledasked lists of objects having only
uncertain score®r score rangesinstead of exact scores. The rationale is that, even when th
cached results in views do have exact scores with respecte@antext, we should expect these
to evolve into score ranges wher@antext transpositiors necessary. For example, answers to the
previous query, for th@aris context, may be useful — but only to a certain extent — whesénee
guery is issued in a nearbersaillescontext, as one has to adapt the scores of restaurants feom th
parisian perspective to the versaillaise one; this, infitgrantroduces uncertainty.

The potential impact of view-based algorithms that can asjple such uncertainty is highly
relevant but not limited to the context-aware setting. Balesven when queries are not param-
eterized by a context, some of the most performant algosathsuch as NRA[]7] can support
early-termination and output unranked results with onlgreaanges (instead of a precise rank-
ing).

The general goal of this study is to enable efficient contexdre topk retrieval through tech-
niques that exploiexclusivelythe views. The rationale for this is that in many practicgblaga-
tions, access methods may be extensively optimized forsyiéive size of cached results may be
much less important than the one of the complete data (é.the anverted lists), and view results
(pre-computed for groups of attributes) may be much mom@méative towards finding the result
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for the input query. For instance, a user may go through aesespuof query reformulations, for
which result caching may be highly beneficial. View resultsymven be bound to main-memory,
in certain scenarios.

Our contributions We formalize and study in this paper the problem of contexdra topk
processing based on possibly uncertain precomputedsesuthe form ofviewsover the data.

We start by investigating top-processingfter the context transpositidmas been performed,
for a given input query and its context. The problem of angwgesuch topk queries usingnly
the information in views, inevitably, requires an adaatio the fact that these views may now
offer objects having uncertain scores. Consequently, tméght exist view instances from which
an exact topk cannot be extracted with full confidence. When this is the ,aasmuld be unsatis-
factory to simply refute the input query, or to consider raiggive, more expensive execution plans
(e.q., by going through the per-attribute lists). Instdadjould be preferable to provide most
informative answerin terms of (i) objects that are guaranteed to be in the topesult, and (ii)
objectsP that may appear in the tapresult.

We formalize this query semantics and describe two adapwtf TA and NRA, SR-TA
and SR-NRA. They support precomputed lists wattore rangesind the above described query
semantics and asoundandcompletei.e., they output théG, P)-answer. Intuitively, they imple-
ment the corroboration principle illustrated before, loage alinear programmingormulation.

Given that in many applications the set of views may be vegea think of social applications
in which many users may have pre-computed results — we afssidgr optimizations for SR-TA
and SR-NRA, based aselecting some (few) most promising vie@bviously, with fewer views,
the most informative answer=, P) may no longer be reached, and we are in general presented
a trade-off between the number of selected views — whichriaiétes the cost of the top-al-
gorithms SR-NRA and SR-TA — and the “quality” of the resultdjatance with respect to the
most informative answer given by all the views). Importgnive also show that SR-NRA and
SR-TA, when selecting views, acempleteandinstance optimator an important family of view
specifications.

Complementing our top-retrieval through view selection, we also show how a finahexhient
step allows us to reach the most informative result.

As a last level of service that can be provided to users, we toasider a sampling-based
approach by which, from the most informative result, a pbilistic interpretation can also lead to
amost likely topk answer to the input query.

Extensive experiments on both synthetic and real-worlds#ds illustrate the potential of our
techniques — enabling high-precision retrieval and imgantunning-time savings. More generally,
they illustrate the potential of top-query optimization based on cached results in a wide range of
applications.

2 Formal setting and problems

Context-awar e scoremodel. We assume a finite collection of obje@sand a countable collection
of attributes7. Under a givercontext parametef — an application-dependent notion — objects
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are associated to certain attributeby an object-attribute score functien(o,t | C).

Under a context, a query() consists of a set of attributgg, ..., ¢,}; its answer is given
by objectso € O having the highest scores(o, ) | C), computed via a monotone aggregation
functionh (e.g.,sum nmax, avg) over the object-attribute scores:

sc(0,@Q | C) = h(sc(o,ty | C),...,sc(o,t,|C)).

We can formalize the top-retrieval problem as follows:

Problem 1. Given a quen@ = {t1,...,t,} C T, a contextC, an integerk, and a score model
specification(sc, h), retrieve thek objectso € O having the highest scores(o, @ | C).

In certain applications, the context may always be empty ay simply be ignored in thec
scores, and, when necessary, we indicate this in our nothgidhe ‘L’ context. We usec(o, Q)
as short notation fogc(o, @ | L).

Threshold algorithms. We revisit in this paper the class of early termination toplgorithms
known aghreshold algorithmsThese algorithms, applicable in a context-agnosticregtfind the
top-k objects for an input quer§ by scanning sequentially (for each attribute) and in paréior
the entire attribute set @), relevant per-attribute lists that are ordered descenloyrsc values —
with inverted lists being a notable example — denoted indlleing L(¢), as the list for attribute
t. During a run, they maintain a sétof already encountered candidate objectsookkeeping for
each candidate the following values:

1. an upper-bound osr(o, )), the best possible score that may still be obtained fdenoted
hereaftebsc(o, Q),

2. alower-bound orc(o, @)), the worst possible score, denoted hereafter(o, )),

with the objects being ordered it by their worst scores.

At each iteration, or at certain intervals, threshold alpons may refine these bounds and
compare the worst score of th¢h object in D, wsc(Dlk|, @), with the best possible score of
either (i) objects in D outside the togk, bsc(o, @), or (ii) not yet encountered objects, denoted
bsc(x,Q).

When both these best scores are not greater than the worstddojk|, the run can terminate,
outputting the object®[1], ..., D[k] as the final topk.

A key difference between the various threshold algorithamsl in particular between TA and
NRA, resides in the way they are allowed to access the peéinatrlists. TA is allowed random
accesses to lists, as soon as an ohjd@s been encountered while sequentially accessing one list
among thg@)| relevant ones. These random accesses can complete the stolgects from a
guaranteed range to an exact value. In comparison, NRA isliogteal to use random accesses
in the per-attribute lists, but only sequential ones, arthexbjecto in the final topk may only
be given a score rangpysc(o, @), bsc(o, Q)]. (Various hybrid algorithms with respect to TA and
NRA are also possible and have been extensively studied iiteheture.)
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Table 1. An example sét of views.

TA was shown to bénstance optim@l among algorithms that do not make “wild guesses” or
probabilistic choices. Within this same class of algorishidRA was shown to be instance optimal
for algorithms in which onlysequentiahccesses are allowdd.

Views and precomputed results. We extend the classic tdpretrieval setting of TA/NRA
by assuming access to precomputed query results, callée folowingviews Each viewV is
assumed to have two components: @gdinition de f(V'), which is a pair query-contexe f (V') =
(QV,CV) and (i) a setans(V) of triples (o;, wsc;, bsc;), representing thanswerto query QY
under context". Each such triple says that objegthas a scorec(o;, Q¥ | CV') within the range
[wse;, bscy].

Since we are dealing with cached query results, all objeats@ppearing iruns(V') — repre-
sented explicitly ilans(V'), to simplify presentation, by one finalildcard « object— have with
respect to query)" and context" a worst score ofvsc, = 0 and a best possible score of either
bsc, = min{wsc; | (0;, wse;, bse;) € ans(V)}, if V's result is complete, in the sense that enough
objects had a non-zero score w.€X/, or otherwise.

Context transposition. Intuitively, when a viewl” and the to-be-answered quepydo not
share the same context, a transposition of the exact scosesi@ ranges inns(1') is necessary,
in order to obtain valid ranges fer:(o;, Q¥ | C) from those forsc(o;, @V | CV). In particular, in
the case of spatial or social search, this transformatidirinevitably yield a coarser score range.
We will detail the specific operation of context transpasitfor these two application scenarios in
Sectior{ 6.

Exploiting views. Given an input query) and a context, from a set of viewsd’ sharing the
same context — as e f (V') = (...,C) — a first opportunity that is raised by the ability to cache
results is to compute for objectse O tighter lower and upper bounds ovef(o, @ | C)). This
may be useful in threshold algorithms, as a way to refine seorges. We formalize this task next.

Problem 2. Given a queryQ = {t,,...,t,} C 7T, a contextC, an integerk, a score model
specification(sc, h) and a set of view¥ sharing the same context wif), given an objecb € O,
compute the tightest lower and upper bounds;a, @ | C) from the information inv.

1As good as any other algorithm from its class — within a cantstactor — over all possible inputs.
2This is an important family of algorithms for performanceen that random accesses can be orders of magnitude
more costly.



In this paper, consistent with the most common ranking nsftel context-aware search, we
will assume that the aggregation functiois summation. Under this assumption, Problem 2 could
be modeled straightforwardly by the following mathemdtm@gram, whose variables are given
in bold:

min Z sc(o,t; | C) (2.1)
t;€Q

max Z sc(o,t; | C) (2.2)
tieQ

wsc < Z sc(o,t; | C), VV € V s.t. (0,wsc, bsc) € ans(V)

t;eQV
Z sc(o,t; | C) < bsc, YV € V s.t. (0, wsc, bsc) € ans(V)
t;eQV

sc(o,t;|C) >0,Vt; € T

Example 1. Let us consider the views in Talile 1. We have access to thesesubur views,
defined by the sets of attributés}, {c}, {a,b} and{b, c}. We assume the empty contéxt L
for the views and for the to-be-answered query, whiclis= {a,b,c}. Consideringo6, for
example, we know that:

sc(ob, {a}) > 4 )
se(ob, {c}) > 2 ()
sc(06,{a}) + sc(06,{b}) > 10 (V)
sc(06, {b}) + sc(06,{c}) > 9 (Va)
se(o6, {a}) < 4 )
sc(06,{c}) <4 (V2)
sc(06, {a}) + sc(06, {b}) < 10 (V3)
sc(06, {b}) + sc(06,{c}) < 11 (Va)

Then, the lower bound ost(06, ) is obtained as also
wsc(06) = min(sc(06, {a}) + sc(06, {b}) + sc(06,{c})) = 13

by combining the worst scoresgfandV;. Similarly, the upper bound of(06, Q) is obtained
as

bsc(06, Q) = max(sc(06, {a}) + sc(06, {b}) + sc(06, {c})) =
by combining the best scoresiéfand V5.

We now formulate the problem of answering input topgueries() usingonly the information
in views, whose semantics needs to be adapted to the facidinzt may offer only a partial image
of the data. When an exact tépeannot be extracted with full confidencep®st informative
resultwould consist of two disjunctive, possibly-empty sets geabs from those appearing Wis
answer:



e a set of all the objects guaranteed to be in thekdpr ()
e aset of all objects that may also be in the tofar ().

Problen2 provides a way to properly define and identify disjet the former kind — thguaran-
teed ones- as the objects, for which

min Z sc(og,t; | C) > max Z sc(*,t; | C) (2.3)

t;€Q t;€Q

and at most — 1 objectso, can be found such that

min Z sc(og,t; | C) < max Z sc(oy, t; | C). (2.4)

t;€Q t;€Q

Similarly, we can identify objects of the latter kind — thessible ones as the objects, that are
not guaranteed and for which at mést- 1 objectso, can be found such that

min Z sc(oy, t; | C) > max Z sc(og,t; | C). (2.5)

t, €Q t;eQ
We formalize theéop-% retrieval problem using viewas follows.

Problem 3. Given a quen® = {t,...,t,} C T, a contexiC, an integerk, and a score model
specification(sc, h), given a set of view¥ sharing the same context with, retrieve from) a
most informative answesf the form(G, P), with

e (G C O consisting of alguaranteed objectsas in Eq. [2.B) and (Z214), whenis summation);
they must be among those with thlighest scores fof) andC.

e and P C O consisting of allpossible objectsutsideG (as in Eqg. [2.5), wheh is summa-
tion); they may be among those with théighest scores fof) and(, i.e., there exist data
instances where these appear in the top-

In order to solve Problein 3, a naive computation of upper ewe bounds for all objects
appearing in the views would suffice, but would undoubtedydo costly in practice. Instead, we
show in Sectiofl3 how we can solve Probleim 3 in the style oftiwlel algorithms, by extending
NRA and TA.

Over any data instance, the exact topan be thought of as the &tplus the topk’ items from
P, for k' = k — |G|. To give amost likely resultin a probabilistic sense, based on tHend P
object sets, we discuss in Sectidn 3 possible approachestiarating the probability of possible
top-k’ sets fromP.

Going further, even when the most promising candidate ¢tbjae considered first in SR-
TA or SR-NRA, their corresponding instances of the matheabprograms in Eq.[(2]11) and
Eq. (2.2) may still be too expensive to compute in practiserfevhen we are dealing with LPs,
as in Exampléll): the set of views may be too large — potentalithe order2/”! — and each
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view contributes one constraint in the program. In our ledfstrt approach, which would first
select some (few) most promising views~ V for the input query (Sectiof 4), we are presented
a trade-off between the size of the subBet which determines the cost of the tépalgorithms
SR-NRA and SR-TA — and the “quality” of the result, namelydistance with respect to the most
informative answer given by all the views. We quantify thstaihce between the most informative
result byV, denoted G, P), and the most informative answgk, P) by V as the difference in the
number of possible tog-combinations:

a=, |—]3||é|) () 29

We also show in Sectidl 4 how a final refinement step ¢¢et), based on random accesses in
the entire) set, allows us to reach = 0, i.e., the most informative result by.

3 Threshold algorithms

We start this section by presenting our adaptation of TAedebR-TA, which can be applied when
the input lists consist of objects with score ranges; SR-TWallow us to solve Problerin] 3.

Each of the input lists are assumed to be available in twoespne ordered descending by
the score lower-bound and one ordered descending by the apper-bound. SR-TA will read
sequentially in round-robin manner from the former grougisié and, similar to TA, maintains
a candidate seb of the objects encountered during the run. At each momeattghd heads of
the latter group of lists must give objects that are not yebiunseen objects), and sequential
accesses are performed in SR-TA whenever necessary in orgintain this configuration.

D is also ordered descending by the score lower-bounds. Boeithim stops when the score
of any of the unseen objects — the threshold cannot be greater than the one of kitle object in
the candidate sdb.

In our setting, the threshold is obtained as the solution of the following mathematica-pr
gram, taking into account from each viéithe score upper-bound of objects frams(1") — D:

T = max Z sc(o,t; | C) (3.1)
tieQ
Z sc(o,t; | C) < max(bsc;), VV €V, 0; € D s.t.
t;eQV
(0i, wscq, bsci) € ans(V)
sc(o,t1|C) >0,Vt; € T

One can note that when (i) we have only views that give ansteesmgleton queries, and (ii)
thewsc; = bsc; for each objecy; (i.e., the lists contain exact scores), we are in the setifrige
TA family of algorithms over inverted list inputs. Relaxingrdition (i), we have the setting of
top-k answering using views investigated in [11, 6]. Both thesgrggt and their corresponding
algorithms can guarantee that, at termination, the exaet is returned.
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Our more general setting, however, cannot provide suchagtees, as witnessed by the fol-
lowing example.

Algorithm 1: SR-TA(Q, k, V)
Require: queryQ, sizek, viewsV

1: D=10

2: loop

3: for each viewV € Vinturndo
4 (0;, wsc;, bsc;) < next tuple by sequential accesslin
5 read by random-accesses all other lists= V for tuples(o;, wsc;, bsc;) S.t.0; = o,
6: wsc < solution to the MP in Eq[(2]1) fas;
7
8
9

bsc <+ solution to the MP in EqL(212) fas;
add the tupldo;, wsc, bsc) to D
. end for
10: 7 « the solution to the MP in Eq(3.1)
11:  wsc; <+ lower-bound score ofth candidate inD
122 ifr < wscﬁD) then

13: break
14:  endif
15: end loop

16: {G, P}=PARTITION(D, k)
17: return G, P

Example 2. Let us revisit Examplel 1, for the top-5 quepy= {a,b,c}. We will not detail the
complete run of the algorithm on this example, instead shgpwimat happens at termination. The
algorithm stops at théth iteration. The threshold value is either obtained by commly the best
scores inV/1 and V4 of the unseen (not i) itemol, or by combining the best score W2 of o8
and the best score i3 of o1. Both result inr = 8. The worst score of the 5th itewf, is also 8,
enabling termination. This ensures that all the possibledidates for topk are already presentin
the list D (see Tabl€]2). Within this candidate list, there does nattexcombination o$ objects
that represents the top-and, instead, we can only divide into three sets:

1. the set; = {03, 05, 06,010} of guaranteed result objects,
2. the setP = {07, 04} of possible result objects,
3. the remaining objectsfo2, 09}.

Algorithm [1 details SR-TA. Its general flow is similar to theeoof TA, with the notable
addition of the generalized computation of bounds and oftitreshold value.

We now discuss our adaptation of NRA, called SR-NRA. Now, ¢kelusively sequential
nature of accesses to views means that the per-view scdieslyibe partially filled (the random
accesses in lin¢ of SR-TA are no longer possible).
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| obj |03 05 06 010 07 02 09 04
wsc | 18 17 13 9 8/ 7 5 3

bsc (18 17 14 12 8| 7 7 9

Table 2: CandidatedY) at termination, foQ={a, b, ¢}, k=5.

At any moment in the run of SR-NRAseen(o,V) C V gives the views in whiclv has
been encountered already through sequential accessesaywthas an object isully knownif
seen(o,V) = V, andpartially knownotherwise. Then, for view$” € seen(o,)V) we keep the
same constraints as in the MPs {2.[),1(2.2). For each Vieg seen(o, V), we adjust the corre-
sponding constraint as

0< Z sc(o,t|C) < max{bsc;|(0;, bsci, wsc;) € V,0; ¢ D} (3.2)
t;eQVv
The termination conditions need to keep track, besideshiteshold value, of the maximum
upper-bound score of partially known objects that not indbgent topk of D, denotethsc,q;.
Objects that are fully known are ignored in this estimatecasitheir scores are fully filled and they
might be candidates fap.
Partition for most infor mativeresult. Once the main loop of SR-TA or SR-NRA terminates,
candidated) are passed as input to a sub-routine whose role is to partitiato setsG and P
(line 14 in SR-TA, line25 in SR-NRA). Algorithm2 details this step: for each objedh D we

test the conditions of EJ.(2.3), (2.4), (R.5).

Algorithm 2: PARTITION(D, k)
Require: candidate listD, parametek
1: G + () the objects guaranteed to be in the top-k
2: P «+ () the objects that might enter the top-k
3: for each tuplgo, bsc,wsc) € D, 0 # % do
x <+ |{(d,bsc,wsc’) € D | d # o, bs¢ > wsc}|
wsc; <+ lower-bound score ofth candidate inD
if © < kand for(x, wsc,, bsc,) € D, bsc, < wscthen
addoto G
eseif bsc > wsc; then
addoto P
10:  endif
11: end for
12: return G, P

© N aR

At the termination of both SR-TA and SR-NRA, we are guarashtdatG and P aresound
and completgin the following sense:
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Property 1. An objecto is in the output sefr of PARTITION(D, k) iff in all possible data instances
o is the top-k forQ, C.

An objecto is in the output seP of PARTITION(D, k) iff in at least one possible data instance
o is in the top-k forQ, C.

Note that the size ofs is at mostk, while the one ofP is at most|O|, hence the need for
completeness, maximizing:| and minimizing| P|.

Extracting a Probable Top-k’ in P As discussed previously, the actual (inaccessible)itop-
answer for the input query could be seen as being composedqgddrts: the guaranteed objects
G plus a topk’ over P, for k' = k — |G|. By definition,G and P give the most informative certain
result that can be obtained from the views: there can be rrdetistic way to compute a certain
top-k’ over the P objects, nor a way to further prune the search space towanusra refinedP
set.

Therefore, we can only hope to improve the quality of theltdsua more detailegrobabilistic
description of the result, in which a most likely tépeould be identified frond and P. Since for
each object inP we have a lower and upper bound on its exact score, let us asatknown
probability-density function (e.g, uniform one) for scemgithin the known bounds. Based on this,
we can reason about the likelihood of a tipselection overP.

A naive way to obtain the most likely tofg-would be the following: enumerate all possible
subsets ofP of sizek’, and compute for each the probability of being the kbpEach of these
(',’:,') probability values can be easily obtained once we have fdr pair of object®;, 0, € P the
probability Pr(o; > 05). A much more efficient algorithm than the naive enumerasdo adapt
to our setting the sampling-based approach of [15], whichpmaes topk answers over uncertain
data, namely ranked object list with score ranges and pilityatbensity functions over them.

We describe a tractable approach for estimating the moslylitop+’ over a set of triples
(0;, wse;, bse;), under the assumption that sampling can be done in polyrdimia as well, for
uniform distribution. We use an encoding-decoding pairurfctions that map sets of objects to
numerical keys, and vice-versary = encode(S) is the key representing the s&t andS =
decode(key) gives the opposite mapping.

We proceed as follows. We first initialize a hash tabléor the domain of keys (range of
encode). For a given number of sampling rounds, at each rouwe go through the objects of
P and generate for each a score based on its range; we thentloedebjects based on these
scores into a list; (sample_scores subroutine). We obtain througicode the key for the set
consisting of the to’ objects inF;, and we increment the value corresponding to that key.in
At termination, we return the decoding of the key having tighast count iril".

4 View Selection

We consider now the view selection problem, which may imprttwe performance of our threshold
algorithms SR-NRA and SR-TA, possibly at the risk of yielgliresults that are less accurate. To
address this issue, we discuss at the end of this sectiondsukis obtained through view selection

11



can be refined to the most informative offiéroughout this section, we remain in the setting where
the query and views are assumed to have the same context.

We argue first that view selection comes as a natural pergpeactthe computation of score
bounds. Recall that, for a given object O, Probleni2 could be modeled straightforwardly by
the mathematical progranis (2.1) ahd[2.2). Put otherwisdhave as the dual of the minimization
problen{ 2.1 the following packing LP:

VI
max > wse X 1; s.t. D LSLVEEQ, Y L =0Vt¢Q (4.1)

(o,wsc,..)€ans(V;)

and we have as the dual the maximization problem (2.2) theWoig covering LP:

4
min Z bsc X u; s.t. Z u; > 1,Vt € Q, Z u; =0,Vt € Q (4.2)
=1, teQ"i teQVi

(0,..,bsc)cans(V;)

Based on the programis_(4.1) and (4.2), for each objett order to obtain its most refined
bounds, we would need to firactionally select views fron) — as opposed tmtegral selection
—such that the linear combinationsad scores with the coefficients andl; are optimal. In other
words, for computing the worst score or best score of eadchctbbt would suffice to select and
take into account only the viewlg € V such that (i)/; # 0, for worst scores, or (ii);; # 0, for
best scorel.

Solving the LPs[(4]1) and_(4.2) for each object, as a meansléztsonly the useful views,
would obviously be as expensive as solving directly the MBE)(and Z.2. Instead, it would be
preferable to solve these LPs and select some most releeavgindependently of any objedte.,
only once, before the run of the threshold algorithm. Indteaper-objectvsc andbsc values, in
an approximate version of the two LPs, each viéveould be represented by two unique values,
wsc(V') andbsc(V'). Our optimization problems would then simplify as follows:

VI

max Y _wse(V;) x I s.t. dMLSLVEEQ, > L =0t¢Q (4.3)
i=1 teQVi teQVi
VI

miansc(Vi) X u; 8.t Z uj > 1,Vt € Q, Z u;j =0,Vt € Q (4.4)
i=1 teQVi teQ"i

3Restricting the domain of the and! values to integers would lead to an NP-hard view selectioblpm. More
precisely, Eq.[{4]2) would reduce to an instance of the weijset cover problem, and Ef. (4.1) would reduce to an
instance of thé-dimensional perfect matching problem (whére- max(|Q(")|), ¥V € V). In our setting, however,
the restriction to the integer domain is not necessary, lage texist tractable methods for efficiently solving thevabo
LPs in their fractional form.
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and this would enable us to select the “good” views in thaah#ation step of the top- algo-
rithm, those participating to the computation of the optima., views havinghon-zerou and!
coefficients.

Furthermore, for each objeatencountered in the run of Algorithms SR-TA and SR-NRA, we
can now replace Ed. (2.1) arld (2.2) (lines 5-6 in SR-TA) by tileing estimates that use only
the selected viewy¥:

VI N V'
wsc = Z wse X l; ; bsc = Z bsc X u;
i=1 =1
(o,wsc,..)€ans(V;) (0,..,bsc)eans(V;)

This is possible since, by the duality property, we are guaexd that the feasible solutions for
Eq. (4.3), [(4.4) represent safe bounds d&@r scores, i.e.wsc < wsc andbsc > bsc. We can
similarly simplify Eq. [3.1), for the threshold value (fané 8 in SR-TA).

Candidatesfor wsc(V') and bsc(V'). We follow the described approach — approximating view
selection — in two distinct ways.

First, per-view score boundssc(V') andbsc(V') could be based solely on the view’s definition
Q", and we experimented in this paper with bounds that are defisesc(V) = bsc(V) = |QY|.
for eachV € V. The intuition for this choice is that object scores in a viévare proportional to
the number of attributes i@ .

Second, we consider and experiment with in Sedtion 7 tworabper-view measures that are
based on the views’ answers: (i) the average value of scaneji) the maximum value of scores.

Retrieving (G, P) after view selection We now discuss how the most informative regait P)

— that can be obtained from the complete set of vigwscan still be retrieved by refining a result
(G, P) obtained on a selection of viewad We only need to adopt the following modifications in
instances of SR-TA or SR-NRA running over a selection of wew

1. when the main loop terminates, compute the optimal bofordsl objects inP by random-
accessing their scores in all the viewsin

2. run for a second time the partition subroutine.

It can be easily shown that, in this way, we obtain the mosirmftive result, i.e., we reach
A = 0. Therefore, the “bulk” of the work could be done only on a st of views and its
result, potentially few candidate objects, could just dmesl at the end using the compléte We
describe in Sectidn 7 the impact of this optimization on thening time of SR-TA and SR-NRA.
To summarize, we have described two variants of SR-TA andN&¥: without view se-
lection, denoted SR-T&** and SR-NRA¢! and with view selection, denoted SR-FAand
SR-NRA*“, For the view selection variant, our notation conventiofl & to replace thesel
superscript by de f, max or avg one, depending on the selection method being used.
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5 Formal Guarantees

We study in this section the formal properties of our aldons, focusing oinstance optimality
Let A be the class of algorithms, including SR-TA and SR-NRA, treterministically output
the sound and complete sdtsand G, and do not make “wild guesses”. For a given set of views

V, we denote byD (V) the class of all instances of answers in those viewsare(V),V € V.

Given two algorithms4; € A andA, € A, we write A; < A, iff, for all sets of views),

A, is guaranteed to cost at least as muchias- in terms of I/O accesses (sequential, random or
a linear combination of the two) — over all instancedif)V). Conversely, we writed; A A, iff
there exists at least one view 3éand an instance ifv()) over whichA, costs less thad;. We

say that an algorithml € A is instance optimal oveA iff A < B,VB € A.

We first consider the question whether one of the two variah&R-TA or SR-NRA is guar-
anteed to perform better that the other, for all views andvans. The answer to this question is
far from obvious: on one hand, SR-TAor SR-NRA* should use fewer views to compute the
P andG sets, but they might either go too deep in the selected viewsight need additional
accesses in other views (see Seciibn 4); on the other hand@ASR or SR-NRA™*¢ may go
through views that are useless for deriving optimal boulids can prove the following:

Lemma 1. SR-NRA® £ SR-NRA™*“ £ SR-NRA*“ and SR-TA*! £ SR-TA™ £
SR-TA*,

Lemmal[1l tells us that neither of the two variants of SR-TA or-SRA can be instance
optimal for all possible set8. However,
we describe next a restricted class of views for which: (ir@fnement step is necessary after
selecting a subset of the views, and (i) SR*TAnd SR-NRA® become instance optimal.

Let V be the class ofets) of pairwise disjoint viewsi.e., s.t. Q"' N QY = ,VV,,V; €
V,V; # V;. We say an algorithml € A is instance optimal oveA andV if A < B,VB € A and
VYV € V. We can prove the following:

Theorem 1. SR-TA* is instance optimal oveh andV.
SR-NRA* s instance optimal oveA andV, when only sequential accesses are allowed.

Intuitively, for this class of views, the only way to obtaiaunds for a query) is the following:
(i) for lower-bounds, only the view¥ that haveQ" C (@ are taken into account, while (ii) for
upper-bounds all view’' that verify Q" N Q # 0 are used. Note that this method is in effect the
view selection algorithm for the class of pairwise disjoirgws. Note also that the setting of [7],
i.e. per-attribute lists of exact scores, is strictly subed byV.

6 Context Transposition
We have discussed until now how queries can be answered ljitexgppre-computed results from
views, with the important assumption that these share time s@ntext with the input query. We

remove now this restriction, and consider also views that heve been computed in a different
context. We show how we can still answer input queries by d¢lertiques discussed so far, by
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pre-processing views in order to place them in the contett@fnput query. We call this step the
context transposition

Let us consider the two motivating applications of coni@wire search: location-aware search
and social-aware search. In both applications, one VigssxcontextC" can be seen as consisting
of

1. alocation(or start poin) CV .1, e.g., geo-coordinates in a multidimensional space fatlon-
aware search, or the social identity of a seeker in sociakawearch,

2. acontextual parametef" .a., which basically parameterizes the influence of the spatial
social aspect in scores.

Given an input query), a contextC — with C.l andC.a — and a viewV with a different context
(either the location orv may differ, or both), in order to be able use pre-computedltge$rom

V', we need to derive from the existing.s(V') tuples new score bounds: for eaehwsc, bsc) €
ans(V') we want to obtain a new tuple, f.,(wsc), fy(bsc)). The functionsf,, and f, represent
the core of the context transposition, their role being tqriee worst scores and best scores of
objects fromans(V') to new guaranteed bounds for contéxt

7 Experiments

We performed our experiments on a single core of a i7-860 @BMAachine equipped with 8GB
of RAM. We implemented our algorithms in Java, and we usedriidementation for our tests on
synthetic data and social data. We also implemented them ) f0#a more reliable comparison
with IR-TREE, for spatial data.

Context-agnostic setting with complete views. Our first series of tests, over synthetic data,
concerns a setting in which the input queries and the viewsestne same context (i.e., context
plays no role and is ignored in the computation). We gendmatact scores in the range 100 for
100,000 objects antd) attributes, with exponential or uniform distributions.€éry we generated all
possible combinations @fand3 attributes, each representing one view. For each of thesyienws
computed the exact (aggregated) scores allesbjects; the views areompletan that sense. We
then made these lists uncertain by replacing each exaat sgla score range, using the gaussian
distribution with mean equal to the exact value and standevéhtion (std, in short) equal to either
5, 10 or 20. Over the sets of views obtained in this way, we u$e@ randomly-generated input
gueries consisting df distinct attributes.

We compare in Figurel 1 the SR-TA variants over the two datailbligions, for the std values
5 and 10 (to avoid clutter, the plots for std0 are not given). We have recorded (i) the relative
running-time of the algorithms that use view selectiontwihe algorithm using all the views —
three selection criteria per two std values, for six plog$in(ii) the number of sequential accesses
by all four variants — with the two std values, for eight pliotels, and (iii) the number of random
accesses by all four variants — with the two std values, fgintgplot lines.

One can note that the algorithms with view selection achggeificant savings in terms of
both running-time and I/O accesses. The algorithm basedaastatistics, SR-TA**, achieves
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Figure 1: Performance comparison between SR-TA variargs ynthetic data with uniform and
exponential distribution.

I —Jl— nosel std=5—¢— avg std=5—&— max std=5—— def std=5- |- nosel std=10- ¢ - avg std=10- A—- max std=10- =)~ def std=10 |

Sdl. + Dist. Rel. running-time Min. precision |P|

10 50 100 10 50 100 10 50 100

avg+uni 0576 0.676 0.712 057 069 072 10 36 64
def +uni  0.350 0.446 0544 057 069 072 10 36 64
max +uni 0.296 0.395 0.446 057 069 072 10 36 64

avg+exp 0.732 1.128 1287 060 063 064 10 46 86
def +exp 0531 0.771 1.003 060 063 064 10 46 86
max +exp 0456 0684 0827 060 063 064 10 46 86
Table 3: Comparison between SR-TA and TA (exact scores), itwamand exponential distribu-
tions, for stds.

better performance than the one based on view definitionsT&R/, which in turn does better
than the one based on average-statistics, SR¥TAurthermore, we can observe that the relative
running-time of these algorithms does not depend on the\aflk, and the influence of the interval
coarseness (by standard deviation) is more important ietpenential distribution. One can also
note a “clustering” effect, by standard deviation, in theecaf sequential-access measures; this is
likely due to the fact that top-processing on noisier data needs to go deeper in the viewesth r
termination.

We also compared the performance of SR-TA, over score ramigieow noise (std ob), with
the one of Fagin’s TA over the exact per-attribute inveristd | We trace two measures: the relative
running-time and the minimum precision. The latter is cotegwas|G|/k, i.e., the ratio between
the size of the guaranteed set and the requiréiche results are presented in Tdble 3. One can note
that SR-TA* can have a running-time that is a low fraction of that of TAl@g as0.296, with a
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Sd. Std Overhead |G|—|G| |P|—|P| A

avg 5 0.031 38 -208 1.96 x 1070
avg 10 0.033 35 =734 4.14 x 10??
avg 20 0.119 15 -4828  2.65 x 10212
def 5 0.040 37 -206 2.76 x 1099
def 10 0.038 34 =727 1.96 x 10129
def 20 0.138 15 -4749  5.93 x 10211
max 5 0.041 35 -179 5.54 x 1064
max 10 0.041 33 575 6.38 x 10119
max 20 0.117 15 -3592  7.96 x 10200

Table 4: Running-time overhead anddifference, for SR-TA with final refinement versus SR-
TA*¢! without refinement , fok=100 and exponential distribution.

precision@10 06.577). This is mainly due to the fact that, although inexact, weehaggregated
scores pertaining t@ or 3 query terms, while the noise levels are rather low. While gigract
lists of aggregated data for tdpprocessing would certainly improve efficiency, as showrdLi |
our experiments show that even relatively noisy aggregd#ea can lead to improvements, with
reasonable precision.

Finally, we give in Tablé} the overhead of the refinement dispussed in Sectidd 4, which
uses random-accessing to refine a resiljt®) to the most informative one(3(P). Overhead is
measured as the ratio between the running-time of the bgseitam and the one of the refined
algorithm. We also report on th&® measure. Note that, while the number of possible combingtio
that are “avoided” increases exponentially with the stathdiviation, the overhead of additional
I/O accesses is small (rang&-13%).

L ocation-aware search. The dataset used in this setting is the PolyBot one, provigeitid
authors of[[4]. It consists of 6,115,264 objects (documeautsl their coordinates in a 2D space,
and a total of 1,876 attributes (terms). We have generziedews defined by-term queries at
5 different locations, varying the size of theins lists (500, 1000 and2000 entries). We used0
to-be-answered queries @atocations (different to the ones of views) and we varied {10, 20}
anda € {0.7,0.8,0.9}. For thea values, we used values close to those indicated by the @uthor
of [5].

The algorithm we use as baseline in our evaluation is ouremphtation of the IRFREE
of [5]. Itis based on R-tree indices|[8], whose nodes are badavith inverted lists consisting of
the documents located inside the rectangle defined by the Adek algorithm maintains a priority
gueue, containing either objects and their scores, or tndesiand the maximum scores in their
inverted list. The algorithm alternates between visitiogles and adding objects to the candidate
list. It stops wherk objects have been retrieved. Our implementation of thierélgn achieves
very similar running-time to the one reported|in [5].

We present in Figurlg 2 the results for relative running-tamd precision. The relative running-
time is computed as the ratio between the running-time offdRand the one of IRFREE. Pre-
cision is computed as the percentage of topems returned by SR-TA that also appear in the
output of IRTREE. Here, we used the sampling method from Sedtion 3 to obtaimtbst likely
top-k from the (&, P) answer, through 1,000 rounds of uniform sampling.

One can note that, for high values @fand low values oft, the response time of SR-TA
is significantly lower than that of the IRREE (in practice, of the order of milliseconds), with
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Figure 2: Location-aware search: performance and precisfocSR-TA* versus exact early-
termination algorithm (IRFREE [5]), for variousa values and list sizes (grey=top-10, white=top-
20).

reasonably high precision levels (betw&ett and0.92). This is because the tdpanswer is based
on a large setiy of guaranteed objects, which reduces the overhead of thplis@nprocedure.
When the uncertainty introduced by coarser score rangegwsvieads to larger sef3 instead,
the sampling procedure is more costly, but overall the ngntime remains a small fraction of the
one of the IRTREE, with a precision around.s.

Social-awar e search. For this application scenario, we used the publicly-adddelicious
bookmarking data of [16]. We extracted a random subset afoibtaining 80,000 users, their
tagging behavior on 595,811 objects (items) with 198,08tbates (tags). For assigning weights
to links between users, we generated three similarity nédsyty computing the Dice coefficients
of either (i) common tags in a tag similarity network, (iijyramon items in an item similarity
network or (iif) common item-tag pairs in an item-tag simit\anetwork.

For each of the three similarity networks, we randomly chioseekers for our tests. Then, a
number ofl0 users were randomly chosen, among those having a link wiidphivef at most).66
to any of theb seekers (to ensure that no view is too “useful”, having toangf an influence on the
running-time and precision). For each of these users and ®&0.0,0.1,0.2,0.3}, we generated
40 views of 1 and2-tag queries, each containihg0 entries.

The tests were made on a set lof 3-tag queries for each of the seekers, varyingv €
{0.0,0.1,0.2,0.3} andk € {10, 20}.

The baseline algorithm we used for the performance compaisa direct adaptation of the
CONTEXTMERGEalgorithm of [14]. In short, depending on the valuexgfCONTEXTMERGEal-
ternates between per-attribute inverted lists of objentkam inverted list containing users ordered
descending by their proximity relative to the seeker. Wheretigorithm visits a user, her relevant
objects — those that were tagged by her with attributes ajpeia the input query — are retrieved
and added to the candidate list. In manner similar to NRA, thershm keeps a threshold value
representing the maximal possible score of objects, bas#&ueomaximal scores from the inverted
lists and the proximity value of not yet visited users. Theni@ation condition is very similar to
that of NRA.

Similar to the location-aware search, we present in Figutee3results in terms of relative
running-time and precision. One can note that the runrimeg-is still a low fraction of the one of
the exact algorithm, while the precision levels are corrsidly higher than in the case of location-
aware search. As expected, the lowest precision levelstaagned when the search relies exclu-
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Figure 3: Social-aware search: performance and precisioBR>TA*! versus exact early-
termination algorithm (ONTEXTMERGE [14]), in three similarity networks (grey=top-10,
white=top-20).

sively on the social component of the score. This is due tdeitteghat the bounds computed by the
context transposition in social search yield coarser srges whemv = 0, which are source of
more uncertainty in the scores and the togesult. Moreover, due to the skew in proximity values
in the network, even whem has low non-zero values, the textual component has a stnflagmnce

in scores, and thus leads to significant improvements irojtié estimates (the most likely result).

8 Main Related Work

The most common data structure for tbarocessing is the inverted index file (for a general
survey on indexing for to@- processing see [19]), over which a key challenge is to opgmi
response time [17, 18]. Regarding algorithms, among the maily cited and used are the
early-termination threshold algorithms TA and NRA 0f [7]hih provide instance optimality
guarantees. Many other tdpaggregation algorithms have been proposed in the litexaéumd we
refer the interested reader to the suniey [10] and the nedesetherein. The use of precomputed
results, either as previous answers to quelies][6, 9] or esechintersection lists [11], has been
identified as an important direction for efficiency. A lingaogramming formulation over score
information is first introduced in [6] and extended|in/[11].[L5], the authors study topprocess-
ing when only score ranges are known, instead of exact oerésgda probabilistic ranking model
based on partial orders and introduce several semanticari&ing queries, but do not deal with
aggregation of uncertain scores over multiple dimensitmshe area of location-aware retrieval,
Cong et al.[[5] introduce the concept ok T queries, for which they include in the ranking model
both the distance of a document’s location w.r.t. the qu&intpand the textual features of the
document. They propose the IR-tree index, consisting of are®{8] in which each node has
an inverted list of relevant documents. Other models foritdpcation-aware keyword querying
have been proposed, for selecting either groups of objeatxcbllectively satisfy a query|[2], or
the k-best objects scored by the features in their neighborhd@K ¢r the topk objects in a given
guery rectangle [4]. Various approaches for combininguaixinverted lists and spatial indexes
for keyword retrieval were also studied i [4]. In the aresofial-aware search, for which book-
marking applications are a popular abstraction, procgssip+ queries while having the social
network as an integral part of the ranking model has beenderesl in recent research.| [1] is the
first to consider this problem, yet under significant reitiits, taking into account only a subset of
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users and their documents in answers. TlkNCEXTM ERGEalgorithm [14] is the first to address
the social-aware search without imposing limitations o élploration space, and they use the
ranking model that we adopted in this paper.[In [3], perdaatbn based on a similarity network
is shown to outperform other personalization approachdsan-personalized search.

9 FutureWork

Our formulation of the view selection sub-problem opens yndinections for future research.
For example, finding combinatorial algorithms for view stilen seems a promising approach for
further reducing the overhead of LP computations. Regairtiegefinement to the most probable
result, it would be interesting to consider also approatchascan rely only on a subset of the
remaining views, possibly in an incremental manner. Theystf more refined definitions of
classes of views that guarantee instance optimality is@n@tvenue of further research.

With respect to applications, other context-aware scesampplication-dependent context
transpositions, as well as other ranking models, remairtstiodied. Another important research
direction is to study cost models that could help query pgsoEes in prioritizing view-based taop-
computations over exact topeomputations.
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