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Abstract In any connected, undirected graph G = (V, E), the distance d(x, y) between
two vertices x and y of G is the minimum number of edges in a path linking x to y in G.
A sphere in G is a set of the form Sr (x) = {y ∈ V : d(x, y) = r}, where x is a vertex
and r is a nonnegative integer called the radius of the sphere. We first address in this paper
the following question: What is the minimum number of spheres with fixed radius r ≥ 0
required to cover all the vertices of a finite, connected, undirected graph G? We then turn
our attention to the Hamming Hypercube of dimension n, and we show that the minimum
number of spheres with any radii required to cover this graph is either n or n + 1, depending
on the parity of n. We also relate the two above problems to other questions in combinatorics,
in particular to identifying codes.
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1 Introduction

We define identifying codes in a connected, undirected graph G = (V, E), in which a code
is simply a nonempty subset of vertices. These definitions can help, in various meanings,
to unambiguously determine a vertex. The motivations may come from processor networks
where we wish to locate a faulty vertex under certain conditions, or from the need to iden-
tify an individual, given its set of attributes. Then we turn our attention to the Hamming
Hypercube of dimension n, and we show that the minimum number of spheres with any radii
required to cover this graph is either n or n + 1, depending on n mod 2. We also relate the
two above problems to other questions in combinatorics, in particular to identifying codes.
In G we define the usual distance d(v1, v2) between two vertices v1, v2 ∈ V as the smallest
possible number of edges in any path between them. For an integer r ≥ 0 and a vertex
v ∈ V , we define Br (v) the ball (resp. Sr (v) the sphere) of radius r centred at v, as the set
of vertices within (resp. at) distance r from v. Whenever two vertices v1 and v2 are such that
v1 ∈ Br (v2) (or, equivalently, v2 ∈ Br (v1)), we say that they r -cover each other. Similarly,
if v1 and v2 are such that v1 ∈ Sr (v2) (or, equivalently, v2 ∈ Sr (v1)), we say that they exactly
r -cover each other. A set X ⊆ V (exactly) r -covers a set Y ⊆ V if every vertex in Y is
(exactly) r -covered by at least one vertex in X . The elements of a code C ⊆ V are called
codewords. For each vertex v ∈ V , we denote by KC,r (v) = C ∩ Br (v) the set of codewords
r -covering v. Analogously, we denote by XC,r (v) = C ∩ Sr (v) the set of codewords exactly
r -covering v. Two vertices v1 and v2 with KC,r (v1) �= KC,r (v2) are said to be r -separated
by code C , and any codeword belonging to exactly one of the two sets Br (v1) and Br (v2) is
said to r -separate v1 and v2;

A code C ⊆ V is called r -identifying [6] if all the sets KC,r (v), v ∈ V , are nonempty and
distinct. In other words, every vertex is r -covered by at least one codeword, and every pair
of vertices is r -separated by at least one codeword.

2 Identifying and covering by spheres

2.1 Mediating codes

It is proved in [3] (Corollary 4) that identifying codes give special coverings by spheres.
In fact, a weaker property than identification, namely mediation, that we now define, will
already be sufficient for that purpose. A code C ⊆ V is called r -mediating if every vertex is
r -covered by at least one codeword, but the property that KC,r (v1) and KC,r (v2) be distinct
is only required for adjacent vertices v1 and v2. This implies in fact that for any two adja-
cent vertices v1 and v2, there exists a codeword c with vi ∈ Sr (c) and v j ∈ Sr+1(c), with
{i, j} = {1, 2}. For L ⊂ [0, n], define an L-shell by: SL(v) = {x ∈ V : d(x, v) ∈ L}. Thus
Br (v) = S[0,r ](v), Sr (v) = S{r}(v).

Proposition 1 If C is r-mediating, then ∪c∈C {S{r,r+1}(c)} = V . In words, V is covered by
the L = {r, r + 1}-shells centered at codewords.

Proof Suppose indirectly C mediating and the existence of a vertex v uncovered by such
shells. Then for all c ∈ C, d(v, c) ≤ r − 1 or ≥ r + 2. Thus, KC,r (v) ⊂ Br−1(v). Consider
any v′ adjacent to v; then KC,r (v) ⊂ Br (v

′) by the triangle inequality and thus KC,r (v) ⊂
KC,r (v

′). Since KC,r (v) �= KC,r (v
′) by the mediation property, there exists a c ∈ C with

d(c, v′) = r and d(c, v) = r + 1, a contradiction. ��
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2.2 Lower bounds for sphere coverings

A special kind of sphere covering is studied in [4], exact r -step domination. This corresponds
to the requirement that any vertex is exactly r -covered by a unique codeword: |XC,r (v)| = 1,
for every v ∈ V . It is proved in [4] that every such code has size at least log2 r +1. The proof
extends in fact trivially to the relaxed case of sphere covering:

Proposition 2 If C is a covering of V by r-spheres, then |C | ≥ log2 r + 1.

We need a few more definitions and easy facts. The diameter �(G) = � of a graph G is
the maximum distance between two vertices. The radius ρ(G) = ρ is the minimum integer
such that Bρ(v) = V for some v ∈ V ; such a v is called a center. If C is r -identifying, then
r ≤ ρ ≤ � ≤ 2ρ, with a unique center in case of equality r = ρ.

Consider a maximal path P of length � in G, and a codeword c ∈ C , a r -sphere covering.
We show that c cannot cover too many vertices of P and deduce a lower bound on |C |.
Proposition 3 |Sr (c) ∩ P| ≤ 2r + 1.

Proof Denote by [v1, v�+1] the vertices of P , identified with [1,� + 1]. Let i ∈ P be the
“smallest” vertex r -covered by c, and j the “largest”. Note that we do not necessarily have
that [i, j] ∈ P;thus |Sr (c) ∩ P| ≤ j − i + 1. Since d(c, i) = d(c, j) = r , by the triangle
inequality d(i, j) = j − i ≤ 2r . ��
Corollary 4 A r-sphere covering C of a graph satifies: |C | ≥ �/(2r + 1) ≥ ρ/(2r + 1).

2.3 A construction

An example of exact r -domination is given in [4] with the following parameters:

� = 9, r = 6, |C | = 4 = 2r/3.

From this example, we can easily construct, for an infinite number of r ’s (multiples of 6),
a graph inheriting an exact r -dominating code (thus a r -sphere covering) C with |C | = 2r/3.

3 Covering the hamming space by spheres

We now focus on the binary Hamming space of dimension n, also called the binary n-cube,
which is a regular bipartite graph. We need to give some specific definitions and notation. We
consider the n-cube as the set of binary row-vectors of length n, denote it by G = (Fn, E)

with F = {0, 1} and E = {{x, y} : d(x, y) = 1}, the usual graph distance d(x, y) between
two vectors x and y being called here the Hamming distance — it simply consists of the
number of coordinates where x and y differ. A sort of converse of Proposition 1 is proved in [5]

Proposition 5 If 0 < r ≤ n − 2 and C0 is such that ∪c∈C0{S{r,r+1}(c)} = Fn, then C :=
∪c∈C0{S1(c)} is r-identifying.

The following result is proved in [1,2]:

Theorem 6 If C is a covering by L- shells, then |C | ≥ n/|L|.
Note that this bound is generally weaker than the trivial sphere-covering bound: |C | ≥

2n/|SL |, unless L is centered around n/2 (in which case |SL | ≈ 2n).
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Corollary 7 A r- mediating code has size at least n/2.

Proof By Proposition 1, such a code is L-covering with |L| = 2. ��
We now present a generalization of the previous theorem to the case where each codeword

ci is surrounded by its own Li -shell (we allow multisets for codes).
For x = (xi ), y = (yi ) ∈ Fn , it is easy to see that

d(x, y) =
n∑

i=1

(xi + yi − 2xi yi ).

Theorem 8 Consider k ≥ 1 vertices x1, x2, . . . , xk (not necessarily distinct) of Fn and k
non-negative radii r1, r2, . . . , rk such that

Fn =
k⋃

j=1

Sr j (x j ).

Then k ≥ n if n is even, and k ≥ n + 1 if n is odd.

Let us denote by U the set of all y ∈ {−1, 1}n and {1, 2, . . . n} by [n]. A vector y ∈ U is
said to be even if its number of −1 is even, otherwise it is odd. We shall need the following
(Lemma 1 from [1]).

Lemma 9 Let P(y1, . . . yn) be a n-multilinear function over the reals with degree strictly
less than n

2 , i.e.

P(y1, . . . , yn) =
∑

X

λX

∏

i∈X

yi

where the sum is taken over all subsets X of [n] of size |X | < n
2 . Suppose that P(y) = 0 for

all even y ∈ U (or similarily for all odd y ∈ U), then P = 0.

Proof of the theorem For x ∈ Fn , consider the vector x̄ ∈ U with x̄i = 1 if xi = 0 and
x̄i = −1 if xi = 1 ; thus x̄i = 1−2xi so for x, y ∈ Fn we have d(x, y) = 1

2 (n −∑n
i=1 x̄i ȳi ).

Let us call a vertex v ∈ Fn even if
∑n

i=1 vi is even, otherwise odd. With the previous nota-
tion, x is even if and only x̄ is even. Now if v,w ∈ Fn then d(v,w) is even if and only if v

and w have the same parity. Hence for even v ∈ Fn we have d(v, x j )− r j even if and only if
x j and r j have the same parity : let us denote by J the set of j ∈ {1 . . . k} with this property.
We then have

∏

j∈J

(d(v, x j ) − r j ) = 0

for all even v ∈ Fn , and so

Q(y) =
∏

j∈J

(n − 2r j− < x̄ j , y >)/2

vanishes over all even y ∈ U . Moreover, Q(y) �= 0 if y ∈ U is odd. Using the fact that
(−1)2 = 1, we can expand Q and simplify all squares of variables in the expansion of
Q, to obtain a multilinar polynomial P with P(y) = Q(y) = 0 for all even y ∈ U , and
P(y) = Q(y) �= 0 for all odd y ∈ U . Using the lemma, we see that the degree of P is at
least n

2 : we conclude that |J | ≥ n
2 . The same argument holds if we consider the set K of

j ∈ [k] such that x j and r j do not have the same parity : we have |K | ≥ n
2 . Puting these

facts together we see that k ≥ n if n is even, and k ≥ n + 1 if n is odd. ��
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The bounds given in the theorem are tight : indeed, for any vertex x we have

Fn =
n⋃

i=0

S{i}(x).

If n is even then

Fn =
n−1⋃

i=1

S{i}(x) ∪ Sn/2(y)

where y is any vertex satisfying d(x, y) = n/2.

Corollary 10 Let C = {ci } be a covering by Li -shells, then �i |Li | ≥ n.

4 Open problems

In the general case, we have the following extension of Corollary 10:

Conjecture Let C = {ci } be a covering of a graph G by Li -shells, then �i |Li | = �(ρ(G)).

Worth studying is the following specialization of identifying codes to exact identification:
C is a covering of V by r -spheres and furthermore all the sets XC,r (v), v ∈ V , are nonempty
and distinct.

Also, it would be interesting to narrow the gap between lower and upper bounds for
coverings of graphs by r -spheres.
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