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Abstract

Many clustering techniques aim at optimizing empirical criteria that are of
the form of a U -statistic of degree two. Given a measure of dissimilarity be-
tween pairs of observations, the goal is to minimize the within cluster point
scatter over a class of partitions of the feature space. It is the purpose of this
paper to define a general statistical framework, relying on the theory of U -
processes, for studying the performance of such clustering methods. In this
setup, under adequate assumptions on the complexity of the subsets forming
the partition candidates, the excess of clustering risk of the empirical min-
imizer is proved to be of the order OP(1/

√
n). A lower bound result shows

that the rate obtained is optimal in a minimax sense. Based on recent results
related to the tail behavior of degenerate U -processes, it is also shown how
to establish tighter, and even faster, rate bounds under additional assump-
tions. Model selection issues, related to the number of clusters forming the
data partition in particular, are also considered. Finally, it is explained how
the theoretical results developed here can provide statistical guarantees for
empirical clustering aggregation.

Keywords: Cluster analysis, pairwise dissimilarity, U -process, empirical
risk minimization, fast rates, minimax lower bound, median clustering

1. Introduction

In cluster analysis, the objective is to segment a dataset into subgroups,
such that data points in the same subgroup are more similar to each other
(in a sense that will be specified) than to those in other subgroups. Given
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the wide range of applications of the clustering paradigm, numerous data
segmentation procedures have been introduced in the machine-learning lit-
erature (see Chapter 14 in [23] and Chapter 8 in [14] for recent overviews
of ”off-the-shelf” clustering techniques). Whereas the design of clustering
algorithms is still receiving much attention in machine-learning (see [47]
and the references therein for instance), the statistical study of their per-
formance, with the notable exception of the celebrated K-means approach,
see [22, 32, 33, 7, 2] and more recently [9] in the functional data analysis
setting, may appear to be not sufficiently well-documented in contrast, as
pointed out in [44, 13]. Indeed, in the K-means situation, the specific form
of the criterion (and of its expectation, the clustering risk), as well as that
of the cells defining the clusters and forming a partition of the feature space
(Voronoi cells), permits to use, in a straightforward manner, results of the
theory of empirical processes in order to control the performance of empirical
clustering risk minimizers. Unfortunately, this center-based approach does
not carry over into more general situations, where the dissimilarity measure
is not a square hilbertian norm anymore, unless one looses the possibility
to interpret the clustering criterion as a function of pairwise dissimilarities
between the observations (cf K-medians).

It is the goal of this paper to establish a general statistical framework
for investigating clustering performance. The present analysis is based on
the observation that many statistical criteria for measuring clustering ac-
curacy are (symmetric) U -statistics (of degree two), functions of a matrix
of dissimilarities between pairs of data points. Such statistics have recently
received a good deal of attention in the machine-learning literature, insofar
as empirical performance measures of predictive rules in problems such as
statistical ranking (when viewed as pairwise classification), see [15], or learn-
ing on graphs [8], are precisely functionals of this type, generalizing sample
mean statistics. By means of uniform deviation results for U -processes, the
Empirical Risk Minimization paradigm (ERM) can be extended to situations
where natural estimates of the risk are U -statistics. In this way, we estab-
lish here a rate bound of order OP(1/

√
n) for the excess of clustering risk

of empirical minimizers under adequate complexity assumptions on the cells
forming the partition candidates (the bias term is neglected in the present
analysis). We prove a lower bound result, claiming that this learning rate
cannot be improved in the minimax sense, in absence of further assumptions.
A linearization technique, combined with sharper tail results in the case of
degenerate U -processes is also used in order to show that tighter rate bounds
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can be obtained under additional assumptions. In addition, conditions re-
lated to the underlying data distribution and to the collection of partitions
over which ERM is performed, under which fast rates of convergence can be
established (i.e. rates faster than OP(1/

√
n)), are exhibited. It is also shown

how to use the upper bounds proved throughout this analysis in order to deal
with the problem of automatic model selection, that of selecting the number
of clusters in particular, through complexity penalization. Ensemble learn-
ing methods have been proved efficient in many area of machine-learning,
in unsupervised settings in particular. Here, we formulate a (metric-based)
concept of (theoretical) median clustering rule over a collection of partitions
and state results, based on the same statistical techniques, guaranteeing that
it can be attained in an asymptotic fashion, when replacing (pseudo-) dis-
tances between partitions by their empirical counterparts. We point out that
a very preliminary version of this work has been presented at the conference
NIPS 2011.

The paper is structured as follows. In section 2, the notations are set
out, a formal description of cluster analysis, from the ”pairwise dissimilarity”
perspective, is given and the main theoretical concepts involved in the present
analysis are briefly recalled. Section 3 states a general minimax lower bound
result for the excess of clustering risk. In section 4, an upper bound for the
performance of empirical minimization of the clustering risk is established
in the context of general dissimilarity measures. Section 5 shows how to
refine the rate bound previously obtained by means of a recent inequality
for degenerate U -processes, while section 6 deals with automatic selection
of the optimal number of clusters. Finally, section 7 revisits the notion of
clustering aggregation by means of the approach developed all along the
article. Technical proofs are deferred to the Appendix section.

2. Theoretical background

In this section, after a brief description of the probabilistic framework
of the study, the general formulation of the clustering objective, based on
the notion of dissimilarity between pairs of observations, is recalled and the
connection of the problem of investigating clustering performance with the
theory of U -statistics and U -processes is highlighted. Concepts pertaining to
this theory and involved in the subsequent analysis are next recalled.
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2.1. Probabilistic setup and first notations

Here and throughout, (X1, . . . , Xn) denotes a sample of i.i.d. random
vectors, valued in a high-dimensional feature space X , typically a subset of
the euclidian space Rd with d >> 1, with common probability distribution
µ(dx). The indicator function of any event E will be denoted by I{E}, the
usual lp norm on Rd by ||x||p = (

∑d
i=1 |xi|p)1/p when 1 ≤ p < ∞ and by

||x||∞ = max1≤i≤d |xi| in the case p = ∞, with x = (x1, . . . , xd) ∈ Rd.
When well-defined, the expectation and the variance of a r.v. Z are denoted
by E[Z] and Var(Z) respectively. The cardinality of any finite set A is
denoted by #A. We denote by x+ = max(0, x) the positive part of any
real number x and, finally, for any partition P of the space X we denote by
ΦP : X 2 → {0, 1} the binary function that indicates whether two elements
of X belong to the same cell of P or not: ΦP(x, x′) =

∑
C∈P I{(x, x′) ∈ C2},

for all (x, x′) ∈ X 2.

2.2. Cluster analysis and pairwise dissimilarity

The goal of clustering techniques is to partition the data (X1, . . . , Xn)
into a given finite number of groups, K << n say, so that the observations
lying in a same group are more similar to each other than to those in other
groups. When equipped with a (borelian) measure of dissimilarity D : X 2 →
R∗+, the clustering task can be rigorously cast as the problem of minimizing
the criterion

Ŵn(P) =
2

n(n− 1)

∑
1≤i<j≤n

D(Xi, Xj) · ΦP(Xi, Xj), (1)

over all possible partitions P = {Ck : 1 ≤ k ≤ K} of the feature space
X . The quantity (1) is generally called the intra-cluster similarity or the
within cluster point scatter. The function D aiming at measuring dissimi-
larity between pairs of observations, we suppose that it fulfills the following
properties:

• (Symmetry) For all (x, x′) ∈ X 2, D(x, x′) = D(x′, x)

• (Separation) For all (x, x′) ∈ X 2: D(x, x′) = 0, ⇔ x = x′

Typical choices for the dissimilarity measure are of the form D(x, x′) =
φ(||x − x′||p), where p ≥ 1 and φ : R+ → R+ is a nondecreasing function
such that φ(0) = 0 and φ(t) > 0 for all t > 0. This includes the so-termed
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”standard K-means” setup, where the dissimilarity measure coincides with
the square euclidian norm (in this case, p = 2 and φ(t) = t2 for t ≥ 0).
Notice that the expectation of the r.v. (1) is equal to the following quantity:

Wµ(P) = E [D(X,X ′) · ΦP(X,X ′)] , (2)

where (X,X ′) denotes a pair of independent r.v.’s drawn from µ(dx). It will
be referred to as the clustering risk of the partition P , while its statistical
counterpart (1) will be called the empirical clustering risk. Optimal partitions
of the feature space X are defined as those that minimize Wµ(P). When no
confusion about the distribution µ(dx) under study is possible, the subscript
will be omitted and we will simply write W (P). Before formulating the
empirical clustering risk minimization problem, we collect several remarks
below.

Remark 1. (Maximization formulation) It is well-known that min-
imizing the empirical clustering risk (1) is equivalent to maximizing the
between-cluster scatter point, which is given by 1/(n(n−1)) ·

∑
i, j D(Xi, Xj) ·

(1−ΦP(Xi, Xj)), the sum of these two statistics being independent from the
partition P considered, equal to the quantity 1/(n(n − 1)) ·

∑
i 6=j D(Xi, Xj).

Its expectation is δD(µ) =
∫ ∫

D(x, x′)µ(dx)µ(dx′), which can be viewed as a
dispersion measure, extending well-known concepts in the 1-d setting such as
the variance or the Gini mean difference.

Remark 2. (Monotonicity) Let P be a partition of X . We call ”subpar-
tition of P” any partition P ′ of X whose cells can be obtained by splitting
those of P, i.e. such that: ∀C ′ ∈ P ′, ∃C ∈ P such that C ′ ⊂ C. We then
write P ′ ⊂ P. Notice that, in such a case, we necessarily have #P ≤ #P ′,
ΦP ′(., .) ≤ ΦP(., .) and thus: Wµ(P ′) ≤ Wµ(P) for any probability distri-
bution µ. For completeness, observe however that one may exhibit distribu-
tions µ and partitions P, P ′ for which we have Wµ(P) < Wµ(P ′), whereas
#P < #P ′.

Remark 3. (Uniqueness) By symmetry arguments, one may easily see
that, whenever it is attained, the clustering risk minimum over a given collec-
tion of partitions is not necessarily achieved in a unique fashion. Considering
the uniform distribution on the unit square [0, 1]2, notice for instance that
the partitions {[0, 1]× [0, 1/2[, [0, 1]× [1/2, 1]} and {[0, 1/2[×[0, 1], [1/2, 1]×
[0, 1]} have exactly the same clustering risk, with a function of the square
euclidian norm as dissimilarity measure say.
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Suppose we are given a (hopefully sufficiently rich) class Π of partitions
of the feature space X . Here, as the distribution µ is unknown in practice,
we consider minimizers of the empirical risk Ŵn over Π, i.e. partitions P̂∗n in
Π such that

Ŵn

(
P̂∗n
)

= min
P∈Π

Ŵn (P) . (3)

The design of practical algorithms for computing (approximately) empir-
ical clustering risk minimizers is beyond the scope of this paper (refer to [23]
or to [14] for an overview of ”off-the-shelf” clustering methods). Here, focus
is on the performance of such empirically defined rules solely.

2.3. U-statistics and U-processes

The subsequent analysis crucially relies on the fact that the quantity (1)
that one seeks to optimize is a U -statistic. For clarity’s sake, we recall the
definition of this class of statistics, generalizing basic sample means.

Definition 1. (U-statistic of degree two.) Let X1, . . . , Xn be inde-
pendent copies of a random vector X drawn from a probability distribution
µ(dx) on the space X and K : X 2 → R be a symmetric function such that
K(X1, X2) is square integrable. By definition, the functional

Un =
2

n(n− 1)

∑
1≤i<j≤n

K(Xi, Xj). (4)

is a (symmetric) U-statistic of degree two, with kernel K. It is said to be

degenerate when K(1)(x)
def
= E[K(x,X)] = 0 with probability one for all x ∈

X , non degenerate otherwise.

The statistic (4) is a natural (unbiased) estimate of the quantity

θ =

∫ ∫
K(x, x′)µ(dx)µ(dx′).

The class of U -statistics is very large and include most dispersion measures,
including the variance or the Gini mean difference (with K(x, x′) = (x− x′)2

and K(x, x′) = |x − x′| respectively, (x, x′) ∈ R2), as well as the celebrated
Wilcoxon location test statistic (with K(x, x′) = I{x+x′ > 0} for (x, x′) ∈ R2

in this case). Although the dependence structure induced by the summation
over all pairs of observations makes its study more difficult than that of basic
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sample means, this estimator has nice properties. It is well-known folklore
in mathematical statistics that it is the most efficient estimator among all
unbiased estimators of the parameter θ (i.e. that with minimum variance),
see [41]. Precisely, when non degenerate, it is asymptotically normal with
limiting variance 4 ·Var(K(1)(X)) (refer to Chapter 5 in [35] for an account of
asymptotic analysis of U -statistics). As shall be seen in section 5, the reduced
variance property of U -statistics is crucial, when it comes to establish tight
rate bounds.

Going back to the U -statistic of degree two (1) estimating (2), observe
that its symmetric kernel is: ∀(x, x′) ∈ X 2,

KP(x, x′) = D(x, x′) · ΦP(x, x′) =
K∑
k=1

D(x, x′) · I{(x, x′) ∈ C2
k}. (5)

Assuming that E[D2(X1, X2) ·I{(X1, X2) ∈ C2
k}] <∞ for all k ∈ {1, . . . , K}

and placing ourselves in the situation where K ≥ 1 is less than X ’s car-
dinality, the U -statistic (1) is always non degenerate, except in the (sole)
case where µ’s support, supp(µ), is made of K elements exactly and all P ’s
cells are singletons. Indeed, for all x ∈ X , denoting by k(x) the index of
{1, . . . , K} such that x ∈ Ck(x), we have:

K(1)
P (x)

def
= E[KP(x,X)] =

∫
x′∈Ck(x)

D(x, x′)µ(dx′). (6)

As the separation property is fulfilled by D, the quantity above is zero iff
Ck(x) ∩ supp(µ) = {x}. In the non degenerate case, notice finally that the

asymptotic variance of
√
n{Ŵn(P)−W (P)} is equal to 4 ·Var(D(X, Ck(X)),

where we set D(x,C) =
∫
x′∈C D(x, x′)µ(dx′) for all x ∈ X and any measur-

able set C ⊂ X .

By definition, a U -process is a collection of U -statistics, one may refer to
[18] for an account of the theory of U -processes. Echoing the role played by
the theory of empirical processes in the study of the ERM principle in binary
classification, the control of the fluctuations of the U -process{

Ŵn(P)−W (P) : P ∈ Π
}

indexed by a set Π of partition candidates will naturally lie at the heart of
the present analysis. As shall be seen below, this can be achieved mainly by
the means of the Hoeffding representations of U -statistics, see [24].
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3. A Minimax lower bound

In this section, the goal pursued is to obtain a minimax lower bound for
the excess of clustering risk. Let Π be a set of partitions of the feature space
X . A data sample Dn = {X1, . . . , Xn} made of i.i.d. realizations of the
distribution µ(dx) is here used exclusively to select a partition Pn from Π,
whose clustering performance is measured by the difference W (Pn) − W ∗,
where W ∗ = infP∈Π W (P). We investigate the problem of finding a lower
bound for

sup E [W (Pn)−W ∗] ,

where the supremum is taken over all possible distributions µ(dx) in a non-
parametric class L, no matter the selection method considered for choosing
Pn in Π: a worst-case result of this nature says that whatever the method
used for picking a partition in Π, there always exists a distribution in L so
that, when data are drawn from the latter, the method performs worse than
the bound in expectation. One may refer to Chapter 14 in [19] for lower
bounds in the classification context and to Chapter 2 of [39] for a complete
description of possible proof techniques leading to such results in a variety
of settings. For simplicity’s sake, in this section we restrict our attention to
the case where D(x, x′) = ||x − x′||p with 1 ≤ p ≤ +∞. By examining the
proof given in the Appendix, one may easily see that the lower bound result
stated below can be extended to a more general framework.

Theorem 1. Let ΠK be the class of partitions of the feature space X ⊂ [0, 1]d

with K ≥ 2 cells. Let L be the set of distributions µ(dx) with support included
in X ⊂ [0, 1]d. Then, for every partition Pn ∈ ΠK whose choice is based on
the sample X1, . . . , Xn, we have:

sup
µ∈L

Eµ[Wµ(Pn)− inf
P∈ΠK

Wµ(P)] ≥ C ·
√

1

n
,

where C > 0 denotes some constant depending on K and d solely.

The technical proof is inspired from the argument of Theorem 1 in [6] in the
K-means context, refer to the Appendix section for further details.

4. A bound for the excess of clustering risk

Here we establish an upper bound for the performance of an empirical
minimizer of the clustering risk over a class ΠK of partitions of X with K ≥ 2
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cells, K being fixed here and supposed to be smaller than X ’s cardinality.
Of course, the results stated in this section could be extended to situations
where the partitions considered do not all count the same number of cells.
This restriction is motivated by the fact that many clustering techniques
require to fix K in advance and by the use of explicit bounds involving K for
automatically selecting the optimal number of cells in section 6. We denote
by W ∗

K the clustering risk minimum over all partitions of X with K cells. The
following global suprema of empirical Rademacher averages, characterizing
the complexity of the cells forming the partition candidates, shall be involved
in the subsequent rate analysis: ∀n ≥ 2,

AK,n = sup
C ∈ P
P ∈ ΠK

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

εiD(Xi, Xi+bn/2c)I{(Xi, Xi+bn/2c) ∈ C2}

∣∣∣∣∣∣ (7)

where ε = (εi)i≥1 is a Rademacher chaos, independent from the Xi’s, see [27].
The following theorem reveals that the clustering performance of the em-

pirical minimizer (3) is of the order OP(1/
√
n), when neglecting the bias term

(depending on the richness of ΠK solely). As shown by Theorem 1, this rate
bound is actually tight.

Theorem 2. Consider a class ΠK of partitions with K ≥ 1 cells and suppose
that:

• there exists B <∞ such that for all P in ΠK, any C in P,

sup
(x,x′)∈C2

D(x, x′) ≤ B,

• the expectation of the Rademacher average AK,n is of the order O(n−1/2).

Let δ > 0. For any empirical clustering risk minimizer P̂∗n, we have with
probability at least 1− δ:

∀n ≥ 2, W (P̂∗n)−W ∗
K ≤ 4KE[AK,n] + 2BK

√
2 log(1/δ)

n

+

(
inf
P∈ΠK

W (P)−W ∗
K

)
≤ c(B, δ) · K√

n
+

(
inf
P∈ΠK

W (P)−W ∗
K

)
, (8)

for some constant c(B, δ) <∞, independent from n and K.
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The key for proving (8) is to express the U -statistic Ŵn(P) in terms of sums
of i.i.d. r.v.’s, as that involved in the Rademacher average (7):

Ŵn(P) =
1

n!

∑
σ∈Sn

1

bn/2c

bn/2c∑
i=1

KP(Xi, Xi+bn/2c), (9)

where the average is taken over Sn, the symmetric group of order n. The
main point lies in the fact that standard techniques in empirical process
theory can be then used to control Ŵn(P) −W (P) uniformly over ΠK un-
der adequate hypotheses, see the proof in the Appendix for technical de-
tails. We underline that, naturally, the complexity assumption is also a
crucial ingredient of the result stated above, and more generally to clus-
tering consistency results, see Example 1 in [13]. We also point out that
the ERM approach is by no means the sole method to obtain error bounds
in the clustering context. Just like in binary classification (see [28]), one
may use a notion of stability of a clustering algorithm to establish such
results, see [43, 37] and the references therein. Refer to [45, 46] for er-
ror bounds proved through the stability approach in the standard K-means
setup. In addition, we emphasize that the simplifying boundedness hypoth-
esis sup{D(x, x′) : (x, x′) ∈ C2, C ∈ P , P ∈ Π} < +∞ can be easily
relaxed. Indeed, under adequate tail assumptions for D(X,X ′) for instance,
rate bounds can be obtained by adapting slightly the argument given in
the Appendix section by means of the standard truncation trick, originally
introduced in [21].

Before showing how the bound for the excess of risk stated above can be
improved under stronger assumptions, a few remarks are in order.

Remark 4. (On the complexity assumption.) We point out that stan-
dard entropy metric arguments can be used in order to bound the expected
value of the Rademacher average An, see [10] for instance. In particular, if
the set of functions FΠK = {(x, x′) ∈ X 2 7→ D(x, x′) · I{(x, x′) ∈ C2} : C ∈
P , P ∈ ΠK} is a VC major class with finite VC dimension V (see [20]),
then E[AK,n] ≤ c

√
V/n for some universal constant c < ∞. This covers a

wide variety of situations, including the case where D(x, x′) = ||x−x′||βp and
the class of sets {C : C ∈ P , P ∈ ΠK} is of finite VC dimension.

Remark 5. (K-means.) In the standard K-means approach, the dissimi-
larity measure is D(x, x′) = ||x − x′||22 and partition candidates are indexed
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by a collection c of distinct ”centers” c1, . . . , cK in X : Pc = {C1, . . . , CK}
with Ck = {x ∈ X : ||x − ck||2 = min1≤l≤K ||x − cl||2} for 1 ≤ k ≤ K (with
adequate distance-tie breaking). One may easily check that for this specific
collection of partitions ΠK and this choice for the dissimilarity measure, the
class FΠK is a VC major class with finite VC dimension, see section 19.1
in [19] for instance. Additionally, it should be noticed than in most practical
clustering procedures, center candidates are picked in a data-driven fashion,
being taken as the averages of the observations lying in each cluster/cell. In
this respect, the M-estimation problem formulated here can be considered to
a certain extent as closer to what is actually achieved by K-means clustering
techniques in practice, than the usual formulation of the K-means problem
(as an optimization problem over c = (c1, . . . , cK) namely).

Remark 6. (Weighted clustering criteria.) Notice that, in practice,
the measure D involved in (1) may depend on the data. For scaling purpose,
one could assign data-dependent weights ω = (ωi)1≤i≤d in a coordinatewise

manner, leading to D̂(x, x′) =
∑d

i=1(xi − x′i)
2/σ̂2

i for instance, where σ̂2
i

denotes the sample variance related to the i-th coordinate. Although the cri-
terion reflecting the performance is not a U-statistic anymore, the theory we
develop here can be straightforwardly used for investigating clustering accu-
racy in such a case. Indeed, it is easy to control the difference between the
latter and the U-statistic (1) with D(x, x′) =

∑d
i=1(xi − x′i)

2/σ2
i , the σ2

i ’s
denoting the theoretical variances of µ’s marginals, under adequate moment
assumptions.

In the analysis carried out here we do not investigate the order of mag-
nitude of the bias term. Nevertheless, we point out that, in some situations,
it can be however quantified under adequate hypotheses. For instance, con-
sider the case where X = [0, 1]d and the cells of ΠK ’s elements can all be
obtained by binding together hypercubes of side length 2−j, with j ≥ 1. We
denote by Hj the set of all such hypercubes (it is of cardinality 2jd) and set
ΠK = Πj,K in this case. Assume in addition that µ(dx) has a bounded den-
sity with respect to Lebesgue measure and there exists an optimal partition
P∗ = {C∗k : 1 ≤ k ≤ K}, whose cells have boundaries that are all of finite
perimeter ,i.e. per(∂C∗k) <∞ for all k ∈ {1, . . . , K}. Then, one may easily
show that

inf
P∈Πj,K

W (P)−W ∗ ≤ c||dµ/dx||∞ ·max
H∈Hj

sup
(x,x′)∈H2

D(x, x′)· max
1≤k≤K

per(∂C∗)·2−jd,
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for some constant c < +∞, see Proposition 9.7 in [29]. Hence, in the case
where D(x, x′) = ||x−x′||γ∞ with γ > 0 for instance, the bias term is of order
2−j(γ+d), while the stochastic term can be easily shown to be of order 2jd/

√
n

(using classically a simple union bound argument, the number of possible
cells being finite, less than 22jd , in this case). Choosing the level of resolution
j = j(n) so that 2j(n) ∼ n1/(4d+2γ) as n → ∞ yields a rate bound of order
n−(γ+d)/(2γ+4d) in (8).

5. Tighter bounds for empirical clustering risk minimizers

We now show that one may refine the rate bound established above, by
considering another representation of the U -statistic (1), its (second) Hoeffd-
ing decomposition, see [35].

5.1. Improved first order analysis

The main argument of the subsequent analysis lies in the following or-
thogonal decomposition: for all partition P ,

Ŵn(P)−W (P) = 2Ln(P) +Mn(P), (10)

Ln(P) = (1/n)
∑n

i=1

∑
C∈P H

(1)
C (Xi) being a simple average of i.i.d random

variables with, for (x, x′) ∈ X 2,

HC(x, x′) = D(x, x′)·I{(x, x′) ∈ C2} and H(1)
C (x) = D(x, C)·I{x ∈ C}−D(C, C),

where D(C, C) =
∫
x∈C D(x, C)µ(dx) and E[HC(x,X)] = D(x, C) · I{x ∈ C},

and Mn(P) being a degenerate U -statistic based on the Xi’s with kernel given

by:
∑
C∈P H

(2)
C (x, x′), where

H(2)
C (x, x′) = HC(x, x′)−H(1)

C (x)−H(1)
C (x′)−D(C, C),

for all (x, x′) ∈ X 2. The leading term in (10) is the (centered) sample
mean 2Ln(P), of the order OP(

√
1/n), while the second term is of the or-

der OP(1/n). Hence, provided this holds true uniformly over P , the main
contribution to the rate bound should arise from the quantity

sup
P∈ΠK

|2Ln(P)| ≤ 2K sup
C∈P, P∈ΠK

|(1/n)
n∑
i=1

H(1)
C (Xi)−D(C, C)|,
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which thus leads to consider the following suprema of empirical Rademacher
averages:

RK,n = sup
C∈P, P∈ΠK

1

n

∣∣∣∣∣
n∑
i=1

εiD(Xi, C) · I{Xi ∈ C}

∣∣∣∣∣ . (11)

This supremum clearly has smaller mean and variance than (7). We also
introduce the quantities:

Zε = sup
C∈P, P∈ΠK

∣∣∣∣∣∑
i,j

εiεjH(2)
C (Xi, Xj)

∣∣∣∣∣ ,
Uε = sup

C∈P, P∈ΠK

sup
α:

P
j α

2
j≤1

∑
i,j

εiαjH(2)
C (Xi, Xj),

M = sup
C∈P, P∈ΠK

sup
1≤j≤n

∣∣∣∣∣∑
i

εiH(2)
C (Xi, Xj)

∣∣∣∣∣ .
Theorem 3. Consider a class ΠK of partitions with K ≥ 1 cells and suppose
that:

• there exists B <∞ such that, for all P ∈ ΠK, C ∈ P,

sup
(x,x′)∈C2

D(x, x′) ≤ B.

Let δ > 0. For any empirical clustering risk minimizer P̂∗n, with probability
at least 1− δ: ∀n ≥ 2,

W (P̂∗n)−W ∗
K ≤ 4KE[RK,n]+2BK

√
log(2/δ)

n
+Kκ(n, δ)+

(
inf
P∈ΠK

W (P)−W ∗
K

)
,

(12)
where we set for some universal constant C < ∞, independent from n, N
and K:

κ(n, δ) = C
(
E[Zε] +

√
log(1/δ)E[Uε] + (n+ E[M ])/ log(1/δ)

)
/n2. (13)

The result above relies on the moment inequality for degenerate U -processes
proved in [15].
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Remark 7. (Localization.) The same argument can be used to decom-

pose Λn(P)−Λ(P), where Λn(P) = Ŵn(P)−W ∗
K is an estimate of the excess

of risk Λ(P) = W (P)−W ∗
K, and, by means of concentration inequalities, to

obtain next a sharp upper bound that involves the modulus of continuity of the
variance of the Rademacher average indexed by the convex hull of the set of
functions {

∑
C∈P D(x, C) · I{x ∈ C}−

∑
C∗∈P∗ D(x, C∗) · {x ∈ C∗} : P ∈ ΠK},

following in the footsteps or recent advances in binary classification, see [27]
and subsection 5.3 in [10].

5.2. Fast rates of convergence

We now show that one may tighten the rate bound established above
in specific (but not uncommon) situations, just like in binary classification
([30, 40, 27]) or in ranking ([15, 16, 17]) under so-termed low-noise condi-
tions. In the unsupervised setup, the conditions we require to establish faster
rates of convergence are of completely different nature. Let Π be a collection
of partitions of the space X .

Conditions FR(α). Suppose that the following assumptions are fulfillled.

(i) There exists P∗ in Π such that W (P∗) = W ∗.

(ii) There exists B <∞ such that, for all P ∈ Π, C ∈ P ,

sup
(x,x′)∈C2

D(x, x′) ≤ B.

(iii) There exist α ∈ [0, 1] and κ <∞ such that: ∀P ∈ Π, ∀x ∈ X ,

E [I{ΦP(x,X)} 6= ΦP∗(x,X)}] ≤ κ · (W (P)−W ∗)α . (14)

Observe that, when α = 0, condition (iii) above is void. In contrast, when
α > 0, it ensures that, as W (P) gets closer to W ∗, P gets closer to P∗. In
particular, this condition guarantees uniqueness of the minimizer in Π and,
truth should be said, maybe hard to check in practice. Notice also that the
restriction α ≤ 1 arises from the fact that, for any P ∈ Π,

W (P)−W ∗ ≤ B · E [I{ΦP(X,X ′)} 6= ΦP∗(X,X
′)}] .

The next result reveals that, under the set of conditions FR(α) with
α ∈ [0, 1], the rate attained by the empirical minimizers of the clustering risk
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is of the order OP(n−1/(2−α)) (when neglecting the bias term), which clearly
improves upon the rate stated in Theorem 2 as soon as α > 0. As in [15], the
argument crucially relies on the small variance property of the U -statistics
Ŵn(P), P ∈ Π, that empirically reflect clustering performance.

Theorem 4. Consider a class Π of partitions. Suppose that it is of cardi-
nality N < +∞ and that conditions FR(α) are satisfied. Let δ > 0. For

any empirical clustering risk minimizer P̂∗n, we have with probability at least
1− δ:

∀n ≥ 2, W (P̂∗n)−W ∗ ≤ c ·
(

log(N/δ)

n

)1/(2−α)

, (15)

for some constant c <∞, independent from n and N .

Remark 8. (On the complexity assumption (bis)) Our major con-
cern is here to show how the conditions FR(α) makes the clustering problem
easier from a statistical perspective, rather than to state rate bound results
in the full generality. For this reason and to avoid a lengthy technical analy-
sis, a restrictive setup, stipulating the finiteness of the collection of partition
candidates, is considered. We point tout that the result above extends to a
much more general framework, including the case where complexity assump-
tions are expressed in terms of finite VC dimension or through (conditional)
Rademacher averages, just like in Theorem 5 of [15] (see Theorem 4’s proof
in the Appendix for further details). In a similar manner, condition (i) in
FR(α) could be also classically relaxed at the expense of complications in the
proof.

Consider P ∈ Π. The argument for proving Theorem 4 relies on the study
of the behavior of the U -statistic Λn(P) based on the sample X1, . . . , Xn,
with (symmetric) kernel

HP(x, x′) = D(x, x′) · {ΦP(x, x′)− ΦP∗(x, x
′)} .

The expected value of the statistic Λn(P) is equal to the excess of risk Λ(P) =
W (P)−W ∗ and we have the so-termed second Hoeffding’s representation (see
Chapter 5 in [35]):

Λn(P)− Λ(P) = 2Ln(P) +Mn(P), (16)

where Ln(P) = (1/n) ·
∑

i≤nH(1)(Xi) is a standard average of centered i.i.d.

r.v.’s, with H(1)(x) = E[HP(X, x)]−W (P) for all x ∈ X , andMn(P) is the
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degenerate U -statistic based on the Xi’s with kernel given by: ∀(x, x′) ∈ X 2,
H(2)(x, x′) = HP(x, x′)−H(1)(x)−H(1)(x′)− Λ(P).

The following result shows that Mn(P) is of order OP(1/n) uniformly
over Π. Incidentally, we point that it may be extended to cases where Π is of
infinite cardinality, by means of the Arcones-Giné inequality for degenerate
U -processes indexed by a collection of kernels with finite VC dimension or
by using the inequality stated in Theorem 11 in [15] in an even more general
context, see Lemma 8 in the Appendix.

Lemma 1. Suppose that Theorem 4’s assumptions are fulfilled. There ex-
ists a universal constant c < ∞ such that for all δ ∈ (0, 1), we have with
probability at least 1− δ: ∀n ≥ 2,

max
P∈Π
|Mn(P)| ≤ c

log(N/δ)

n
.

Proof. This is a straightforward application of the Bernstein type exponential
inequality for degenerate U -statistics with bounded kernel proved in [3] (see
assertion (d) of Proposition 2.3 therein) combined with the union bound. �

The bound stated in the following result provides the other key ingredient.
Notice that, for α = 1, it echoes the fast rate condition in the K-means
context introduced in [2] (see Eq. (8) therein).

Lemma 2. (Control of the conditional variance) Under Theorem
4 ’s assumptions, we have for all P ∈ Π,

Var
(
H(1)(X)

)
≤ c (Λ(P))α ,

for some finite constant c > 0.

Proof. Taking c = κB2, this straightforwardly results from conditions (ii)
and (iii) in FR(α). �

We point out finally that the following (consistent) estimate of the clus-
tering risk W (P), obtained by splitting the dataset into two halves, could
have been used:

1

bn/2c

bn/2c∑
i=1

D(Xi, Xi+bn/2c) · ΦP(Xi, Xi+bn/2c).
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However, one would have lost the reduced variance property and deriving
fast rates for the empirical minimizer would have required a condition much
stronger than condition (iii) in FR(α). Namely, it would have led to assume
that: ∀P ∈ Π, ∀(x, x′) ∈ X 2,

I{ΦP(x, x′) 6= ΦP∗(x, x
′)} ≤ κ · (W (P)−W ∗)α .

6. Model selection - choosing the number of clusters

A crucial issue in data segmentation is to determine the number K of cells
that exhibits the most the clustering phenomenon in the data. A variety of
automatic procedures for choosing a good value for K have been proposed
in the literature, based on data splitting, resampling or sampling techniques
([31, 38, 36]). Here we consider a complexity regularization method that
avoids to have recourse to such techniques and uses a data-dependent penalty
term based on the analysis carried out above.

Suppose that we have a sequence Π1, Π2, . . . of collections of partitions
of the feature space X such that, for all K ≥ 1, the elements of ΠK are
made of K cells and fulfill the assumptions of Theorem 2. In order to avoid
overfitting, consider the (data-driven) complexity penalty given by

pen(n,K) = 3KEε[AK,n] +
27BK logK

n
+
√

(2B logK)/n (17)

and the minimizer P̂ bK,n of the penalized empirical clustering risk, with

K̂ = arg min
K≥1

{
Ŵn(P̂K,n) + pen(n,K)

}
and Ŵn(P̂K,n) = min

P∈ΠK
Ŵn(P).

The next result shows that the partition thus selected nearly achieves the
performance that would be obtained with the help of an oracle, revealing the
value of the index K that minimizes E[P̂K,n]−W ∗, with W ∗ = infPW (P).

Theorem 5. (An oracle inequality) Suppose that, for all K ≥ 1, the
assumptions of Theorem 2 are fulfilled. Then, we have:

E
[
W (P̂ bK,n)

]
−W ∗ ≤ min

K≥1
{W ∗

K −W ∗ + pen(n,K)}+
π2

6

(
2B

√
2

n
+

18B

n

)
.

(18)

Of course, the penalty could be slightly refined using the results of Section
5. Straightforward extensions are left to the reader.
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7. Aggregation of clusterings - the Rand median

The principle of aggregation of simple decision rules have recently lead
to very efficient methods, generally referred to as ensemble learning tech-
niques. In the context of supervised learning, this approach has been shown
to enhance prediction accuracy and stability both at the same time, see [11]
and [12] in binary classification for instance. Several attempts have been
made to extend the aggregation paradigm to the unsupervised setting (refer
to [1] for instance), but, whereas the design of committee-based classifica-
tion/regression rules simply relies in general on the computation of a (possi-
bly weighted) average, devising aggregation of clustering rules is in contrast
much less straightforward. A possible angle for defining a consensus among
clusterings is the so-termed metric approach, leading to the notion of median
clustering, see [26]. Ordinal approaches, involving tournaments, could also
been considered for this purpose but are beyond the scope of the present
analysis, refer to [5, 4] for instance. In this section, we focus on a metric of
reference, related to the celebrated Rand index, and show how the theory of
U -processes again can be used to provide statistical guarantees for empirical
median computation. We point out that the Rand distance is by no means
the sole way of measuring closeness between partitions/clusterings and the
results established subsequently could be easily extended to any metric in-
volving pairwise comparisons, see [42].

Consider two partitions P and P ′ of the input space X . A possible way
of defining a distance between the latter is to compute the probability that
a pair of instances independently drawn from µ(dx) both belong to a same
cell for one partition but not for the other. This leads to the Rand distance,
given by:

dR(P ,P ′) = P {ΦP(X,X ′) 6= ΦP ′(X,X
′)} . (19)

In general, the rate of ”concording pairs”, 1 − dR(P ,P ′) namely, is usually
referred to as the Rand index, see [34]. The statistical counterpart of this
quantity based on the sample Dn = {X1, . . . , Xn} will be called the empir-
ical Rand distance, it is the U -statistic of degree two given by

d̂R(P ,P ′) =
2

n(n− 1)

∑
1≤i<j≤n

I {ΦP(Xi, Xj) 6= ΦP ′(Xi, Xj)} , (20)

whose kernel is defined by: KP,P ′(x, x′) = I{ΦP(x, x′) 6= ΦP ′(x, x
′)} for all

(x, x′) ∈ X 2. Notice that d̂R(P ,P ′) is an unbiased estimate of dR(P ,P ′),
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asymptotically gaussian with asymptotic variance given by

4×

 ∑
(C,C′)∈P×P ′

µ2(C∆C ′)µ(C ∩ C ′)−

 ∑
(C,C′)∈P×P ′

µ(C∆C ′)µ(C ∩ C ′)

2 ,

when P 6= P ′ (see further details in the Appendix). The next result shows
that, under adequate moment conditions, two partitions that are close in
the sense of the Rand distance have comparable intra-cell similarity. It is a
simple consequence of Hölder inequality, the proof is omitted.

Lemma 3. (On Rand distance and intra-cell similarity.) Let 1 <
q ≤ ∞. Suppose that:

(E [Dq(X,X ′)])
1/q

< +∞,

where (X,X ′) denotes a pair of independent r.v.’s drawn from µ(dx). Then,
for any partitions P and P ′ of the feature space X , we have:

|W (P)−W (P ′)| ≤ (E [Dq(X,X ′)])
1/q · (dR(P ,P ′))1−1/q

. (21)

Notice that, in subsection 5.2, a similar control has already been used and
the fast rate condition states that the reverse control holds true when one of
the partition is the clustering risk minimizer.

Consensus. Given a finite collection of partitions of the feature space, we
now recall how to define a natural notion of median/central partition based
on the distance introduced above, see [4].

Definition 2. (Rand median.) Let 1 ≤M <∞ and P = {P(1), . . . , P(M)}
be a collection of M partitions of the space X . A Rand consensus for P with
respect to a set Π of partitions of X is any partition P ∈ Π such that:

Θ(P ,P) = inf
P∈Π

Θ(P ,P), (22)

where Θ(P ,P) =
∑M

m=1 dR(P ,P(m)) for any P in Π.

Remark 9. (On existence and uniqueness of the median.) We
highlight the fact that, in the general case, there is no guarantee that a con-
sensus partition does exist, i.e. that the infimum in (22) is attained. Notice
however that, when the set Π is of finite cardinality, medians always exist.
Observe also that, when a median exists, it is in general not unique.
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Remark 10. (Alternative notions of median partitions.) We point
out that many other ways of quantifying the dissimilarity between clusterings
have been proposed in the literature, see [25] or [42]. Focus is here on the
Rand consensus, mainly because it is defined in a pairwise manner and can
be investigated by means of U-statistic/process tools.

In practice, the distribution µ is unknown and one relies on empirical
estimates of the Rand distances. This leads to the notion of empirical con-
sensus : for any finite collection of partitions P = {P(m) : 1 ≤ m ≤ M}
and any set of distributions, an empirical median partition is any partition

P̂n ∈ Π such that

Θ̂n(P̂n,P) = inf
P∈Π

Θ̂n(P ,P), (23)

where Θ̂n(P ,P) =
∑M

m=1 d̂R(P ,P(m)) for any P in Π. In contrast to theoret-
ical consensus partitions, empirical medians always exist, insofar as, over the
set Π, the function Θ̂n(.,P) takes a finite number of values only. However, its
computation is a NP-hard problem and generally requires the use of meta-
heuristics, see the account in [26] and the references therein for instance.
Here we do not address computational issues and focus on the properties of
(empirical) median partitions solely. The following result reveals that empir-
ical median partitions are asymptotically median in the sense of Definition
22, under adequate control of the complexity of the set of partitions over
which the median is taken.

Proposition 1. (Empirical aggregation of partitions.) Let M ≥ 1,
P = {P(m) : 1 ≤ m ≤ M} and Π be two sets of partitions of X such that
the collection of sets {C : C ∈ P , P ∈ Π} is of finite VC dimension. For
any P ∈ Π, consider

Θ̂n(P ,P) =
M∑
m=1

d̂R(P ,P(m)),

where the empirical Rand distance d̂R(., .) is computed from n ≥ 1 inde-

pendent observations drawn from µ(dx). Assume that P̂n ∈ Π is such that

Θ̂n(P̂n,P) = infP∈Π Θ̂n(P ,P). Then, as n→∞, we have:

Θ(P̂n,P)→ inf
P∈Π

Θ(P ,P) with probability one. (24)

Additionally, this convergence takes place at the rate OP(1/
√
n).
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The proof is based on the fact that, under the complexity assumptions stipu-
lated, the U -statistics Θ̂n(P ,P) converge to their expectations Θ(P ,P) uni-
formly over Π. Naturally, rate bounds could have also been established using
similar arguments, following in the footsteps of section 4.

The following result shows that Rand aggregation preserves consistency
under the fast rate condition introduced in subsection 5.2.

Proposition 2. (Rand median and consistency) Let Π be a collection
of partitions of X , which fulfills conditions (i)−(iii) in FR(α). Suppose that
there exists q ∈]1,+∞] such that (E[Dq(X,X ′)])1/q < +∞. Let M ≥ 1 and

consider M sequences of partitions PN = {P(1)
N , . . . , P(M)

N } in Π, indexed
by N ≥ 1. Suppose that all these sequences are asymptotically optimal in the
clustering risk sense: ∀m ∈ {1, . . . , M},

W
(
P(m)
N

)
→ inf
P∈Π

W (P), as N → +∞.

Assume that there exists a sequence of (PN)N≥1 such that, for all N ≥ 1,
PN is a Rand consensus of PN with respect to Π. Then, the median PN is
asymptotically optimal:

W
(
PN
)
→ inf
P∈Π

W (P), as N → +∞.

We point out that one could relax the assumption that the median is taken
over the whole set Π at the expense of an additional bias term, asymptotically
vanishing. By examining the proof, one may easily see that the result remains
true, when assuming that the consensus is taken over a collection ΠN ⊂ Π, of
clustering risk minimizer P∗N such that W (P∗N)→ infP∈ΠW (P) as N → +∞.

Propositions 1 and 2, when combined, show that consistency preservation
extends to empirical aggregation of consistent clustering rules, as stated in
the following result.

Corollary 1. (Rand median and consistency (bis)) Suppose that Propo-
sition 2’s assumptions are satisfied and that the collection of sets {C : C ∈
P , P ∈ Π} is of finite VC dimension. Assume also that an i.i.d. sample
X1, . . . , Xn, with n ≥ 1, is available, on which the computation of an em-

pirical Rand median P̂N of the collection PN with respect to the class Π is
based. Then, as N and n tend to infinity, we almost-surely have:

W
(
P̂N
)
→ inf
P∈Π

W (P).
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8. Conclusion

Whereas, until now, the theoretical analysis of clustering performance
was mainly limited to the K-means situation (but not only, cf [13] for in-
stance), this paper establishes bounds for the success of empirical clustering
risk minimization in a general ”pairwise dissimilarity” framework, relying on
the theory of U -processes. The excess of risk of empirical minimizers of the
clustering risk is proved to be of the order OP(n−1/2) under mild assump-
tions on the complexity of the cells forming the partition candidates. It is
also shown how to refine slightly this upper bound through a linearization
technique and the use of recent inequalities for degenerate U -processes. Un-
der additional assumptions, we also used the same method to establish faster
rates of convergence. To the best of our knowledge, the present analysis is
the first to state results of this nature. As regards complexity regularization,
while focus is here on the choice of the number of clusters, the argument
used in this paper also paves the way for investigating more general model
selection issues, including choices related to the geometry/complexity of the
cells of the partition considered. Finally, we stated preliminary statistical
results for empirical clustering aggregation, when consensus is defined in a
pairwise manner by means of the Rand distance.

Appendix - Technical proofs

Proof of Theorem 1

Following in the footsteps of Theorem 1’s proof in [6], the argument is
based on the choice of a finite family Ln ⊂ L of distributions on [0, 1]d that
contains some ”bad” distribution, making the selection of the partition that
minimizes the clustering risk difficult, and bound by below the supremum by
the average behavior over the class Ln.

sup
µ∈L

Eµ[Wµ(Pn)− inf
P∈ΠK

Wµ(P)] ≥ 1

#Ln

∑
µ∈Ln

Eµ[Wµ(Pn)− inf
P∈ΠK

Wµ(P)].

For simplicity, assume that K is divisible by 3, K = 3m/2 say, where m > 0 is
an integer divisible by 2. The collection Ln is made of distributions supported
by 2m fixed points {xi, xi + w : 1 ≤ i ≤ m} where w = (∆, 0, 0, . . . , 0) ∈
Rd with ∆ > 0. It is assumed that for all i 6= j, D(xi, xj) = ||xi−xj||p ≥ 2∆.
The values of the parameters m and ∆ ≥ 1 are chosen so that ∆ = c/

√
m for
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a constant c suitably chosen, in order to guarantee that one may build a set
{xi, xi+w : 1 ≤ i ≤ m} of points spaced this way in [0, 1]d. Let δ ∈ (0, 1/2)
and consider the family Ln of probability distributions µ such that

µ({xi}) = µ({xi + w})

for all i ∈ {1, . . . , m} and which assign mass (1− δ)/(2m) to m/2 points xi
and mass (1 + δ)/(2m) to the other m/2 points xj. Precisely, set Ln = {µγ :
γ ∈ Γ} with Γ = {γ ∈ {−1,+1}m :

∑m
j=1 γj = 0}, where µγ(xi) = (1 +

γiδ)/(2m) for 1 ≤ i ≤ m. We thus have #Ln = #Γ = m!/((m/2)!)2. With
no restriction, one may restrict our attention to partitions of the support of
the distributions in Ln. Consider the collection {Pα : α ∈ Γ} of partitions
of X = {xi, xi +w : 1 ≤ i ≤ m} such that, for all α ∈ Γ, the singletons {xi}
and {xi + w} correspond to cells of Pα when αi = +1, whereas {xi, xi + w}
is a cell of Pα when αi = −1 (such a partition has then m+m/2 = K cells).
We have the following intermediary result.

Lemma 4. For any partition P of X with K cells, there exists α ∈ Γ such
that: ∀µ ∈ Ln,

Wµ(Pα) ≤ Wµ(P).

In addition, for any partition P of X with K cells, we have:

∀γ ∈ Γ, Wµγ (Pγ) ≤ Wµγ (P).

Proof. The proof is quite similar to that of steps 3 and 4 in the argument of
Theorem 1’s proof in [6] and simply relies on the fact that, in our context,
we have: ∀i 6= j,

min {D(xi, xj + w)µγ({xj + w}), D(xi, xj)µγ({xj})}µγ({xi}) ≥

∆

(
1− δ
2m

)2

,

which is always larger than D(xi, xi + w)µγ({xi})µγ({xi + w}) = ∆((1 −
δ)/(2m))2 when {xi, xi + w} forms a cell of Pγ. Details are left to the
reader. �

Denote by Pn the collection of empirically designed partitions taking their
values in the set {Pα : α ∈ Γ} and by U a random variable independent

23



from the Xi’s and uniformly distributed on Γ. Consider Pbα∗ the empirically
designed partition defined as follows. For 1 ≤ i ≤ m, let Ni =

∑n
j=1 I{Xj ∈

{xi, xi +w}} and sort the indexes i by increasing order of magnitude of the
headcounts: Nσ(1) ≤ · · ·Nσ(m) with σ ∈ Sm. For i ∈ {1, . . . , m/2}, we set
α̂∗σ(i) = −1 ({xσ(i), xσ(i)+w} is a cell of Pbα∗), while, for i ∈ {m/2+1, . . . , m},
we set α̂∗σ(i) = +1 (both {xσ(i)} and {xσ(i) + w} are cells of Pbα∗). Notice
that, when the observations X1, . . . , Xn are drawn from µγ, the random
vector (N1, . . . , Nm) is distributed as a multinomial vector with parameters
(n; q1, . . . , qm), where qi = (1 + γiδ)/

∑m
j=1(1 + γjδ).

Lemma 5. We have:

min
Pn∈Pn

1

#Γ

∑
γ∈Γ

{
Eµγ

[
Wµγ (Pn)

]
−Wµγ (Pγ)

}
=

min
Pn∈Pn

EU [EµU [WµU (Pn)]−WµU (PU)]

≥ EU [EµU [WµU (Pbα∗)]−WµU (PU)] .

Proof. Observe that, for all (γ, α) ∈ Γ2, we have:

Wµγ (Pα)−Wµγ (Pγ) =
∆

2m2

m∑
i=1

1− αi
2

(1 + γiδ)
2 − (1− δ)2 ∆

2m2

=
∆δ

2m2

m∑
i=1

γi(1− αi) +
∆

2m2

{m
2

(1 + δ2)− (1− δ)2
}
.

Noticing that it suffices to focus on empirically designed partitions Pbα which
depend on the empirical counts N1, . . . , Nm, consider α̂ = α̂(N1, . . . , Nm),
taking its values in Γ. Observe that one may write

E
[
Wµγ (Pbα)−Wµγ (Pbα∗)] =

∆δ

2m2

m∑
i=1

γi(α
∗
i (n1, . . . , nm)−αi(n1, . . . , nm))

× Pµγ{(N1, . . . , Nm) = (n1, . . . , nm)}.

By virtue of Step 7 in Theorem 1’s proof in [6], the quantity given by∑m
i=1 γi(α

∗
i − αi)Pµγ{(N1, . . . , Nm) = (n1, . . . , nm)} is nonnegative for

any γ ∈ Γ, which establishes the lemma. �
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By symmetry, we have:

EU

[
EµU [WµU (Pbα∗)]−WµU (P(U))

]
= Eµγ

[
Wµγ (Pbα∗)]−Wµγ (Pγ),

for any fixed γ ∈ Γ. Now, denote by pj the probability that the empirically

optimal partition makes j ∈ {1, . . . , m/2} mistakes. Taking δ =
√
m/n, we

have:

Eµγ

[
Wµγ (Pbα∗)]−Wµγ (Pγ) = 2∆

δ

m2

m/2∑
j=1

jpj

≥ ∆δ

m

Φ(−2)4

128
=

c

(2K/3)3/2

Φ(−2)4

128

1√
n
,

using the lower bound for
∑m/2

j=1 jpj established in Theorem 1’s proof in [6]
(see Steps 10-11 therein). This permits to finish the proof.

Proof of Theorem 2

We may classically write:

Ŵ (P̂n)−W ∗
K ≤ 2 sup

P∈ΠK

|Ŵn(P)−W (P)|+ inf
P∈ΠK

W (P)−W ∗
K

≤ 2K sup
C∈P, P∈ΠK

|Un(C)− u(C)|+ inf
P∈ΠK

W (P)−W ∗
K ,(25)

where Un(C) denotes the U -statistic with kernel given byHC(x, x′) = D(x, x′)·
I{(x, x′) ∈ C2} and based on the sample X1, . . . , Xn and u(C) its expecta-
tion. Therefore, mimicking the argument of Corollary 3 in [15], based on the
so-termed first Hoeffding’s representation of U -statistics (see Lemma A.1 in
[15]), we may straightforwardly derive the lemma below.

Lemma 6. (Uniform deviations) Suppose that Theorem 2’s assumptions
are fulfilled. Let δ > 0. With probability at least 1− δ, we have: ∀n ≥ 2,

sup
C∈P, P∈ΠK

|Un(C)− u(C)| ≤ 2E[AK,n] +B

√
2 log(1/δ)

n
. (26)

Proof. The argument follows in the footsteps of Corollary 3’s proof in [15]. It
is based on the the so-termed first Hoeffding’s representation of U -statistics
(9), which provides an immediate control of the moment generating function
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of the supremum supC |Un(C) − u(C)| by that of the norm of an empirical
process, namely supC |An(C)− u(C)|, where, for all C ∈ P and P ∈ ΠK :

An(C) =
1

bn/2c

bn/2c∑
i=1

D(Xi, Xi+bn/2c) · I{(Xi, Xi+bn/2c) ∈ C2}.

Lemma 7. (see Lemma A.1 in [15]) Let Ψ : R → R be convex and nonde-
creasing. We have:

E
[
exp

(
λ · sup

C
|Un(C)− u(C)|

)]
≤ E

[
exp

(
λ · sup

C
|An(C)− u(C)|

)]
.

(27)

Now, using standard symmetrization and randomization tricks, one obtains
that: ∀λ > 0,

E
[
exp

(
λ · sup

C
|An(C)− u(C)|

)]
≤ E [exp (2λ · AK,n)] . (28)

Observing that the value of AK,n cannot change by more than 2B/n when
one of the (εi, Xi, Xi+bn/2c)

′s is changed, while the others are kept fixed, the
standard bounded differences inequality argument applies and yields:

E [exp (2λ · AK,n)] ≤ exp

(
2λ · E[AK,n] +

λ2B2

2n

)
. (29)

Next, Markov’s inequality with λ = (t−2E[AK,n])/B2 gives: P{supC |An(C)−
u(C)| > t} ≤ exp(−n(t − 2E[AK,n])2/(2B2)). The desired result is then
immediate. �

The rate bound is finally established by combining bounds (26) and (27).

Proof of Theorem 3 (Sketch of)
The theorem can be proved by using the decomposition (10), applying

the argument above in order to control supP |Ln(P)| and the lemma below
to handle the degenerate part. The latter is based on a recent moment
inequality for degenerate U -processes, proved in [15]. Technical details are
left to the reader.

Lemma 8. (see Theorem 11 in [15]) Suppose that Theorem 3’s assumptions
are fulfilled. There exists a universal constant C < ∞ such that for all
δ ∈ (0, 1), we have with probability at least 1− δ: ∀n ≥ 2,

sup
P∈ΠK

|Mn(P)| ≤ Kκ(n, δ).
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Proof of Theorem 4

By virtue of Bernstein’s exponential probability inequality combined with
the union bound, for all δ ∈ (0, 1), we have with probability at least 1− δ:

∀P ∈ Π, 0 ≤ Ln(P) +

√
2V ar(H(1)

P (X)) log(N/δ)

n
+

4 log(N/δ)

3n
.

Combining lemmas 1 and 2with the union bound again and the fact that
Λn(P̂ ∗n) ≤ 0, we obtain that, with probability at least 1− δ:

W (P̂∗n)−W ∗ ≤ 2

√√√√2B2
(
W (P̂∗n)−W ∗

)α
log(2N/δ)

n
+

4 log(2N/δ)

3n

+ c
log(2N/δ)

n
.

The desired result is then obtained by solving this inequality for W (P̂∗n)−W ∗.

Proof of Theorem 5

The proof mimics the argument of Theorem 8.1 in [10]. We thus obtain
that: ∀K ≥ 1,

E
[
W (P̂ bK,n)

]
−W ∗ ≤ E

[
W (P̂K,n)

]
−W ∗ + pen(K,n)

+
∑
k≥1

E

[(
sup
P∈Πk

{W (P)− Ŵn(P)} − pen(n, k)

)
+

]
.

Reproducing the argument of Theorem 2’s proof, one may easily show that:
∀k ≥ 1,

E
[

sup
P∈Πk

{W (P)− Ŵn(P)}
]
≤ 2kE[Ak,n].

Thus, for all k ≥ 1, the quantity P{supP∈Πk
{W (P)− Ŵn(P)} ≥ pen(n, k) +

2δ} is bounded by

P
{

sup
P∈Πk

{W (P)− Ŵn(P)} ≥ E
[

sup
P∈Πk

{W (P)− Ŵn(P)}
]

+
√

(2B log k)/n+ δ

}
+ P

{
3kEε[Ak,n] ≤ 2kE[Ak,n]− 27Bk log k

n
− δ
}
.

27



By virtue of the bounded differences inequality (jumps being bounded by
2B/n), the first term is bounded by exp(−nδ2/(2B2))/k2, while the second
term is bounded by, exp(−nδ/(9Bk))/k3 as shown by Lemma 8.2 in [10] (see
the third inequality therein). Integrating over δ, one obtains:

E

[(
sup
P∈Πk

{W (P)− Ŵn(P)} − pen(n, k)

)
+

]
≤ (2B

√
2/n+ 18B/n)/k2.

Summing next the bounds thus obtained over k leads to the oracle inequality
stated in the theorem.

Proof of Proposition 1

Observe that

0 ≤ Θ(P̂n,P)−Θ(Pn,P) ≤ 2 sup
P∈Π

∣∣∣Θ̂n(P ,P)−Θ(P ,P)
∣∣∣ .

Equipped with the notations introduced in section 7, for any P ∈ Π, the ker-
nel of the U -statistic Θ̂n(P) is given by

∑M
m=1KP,P(m)(x, x′). Noticing that,

under the assumption that the collection of cells forming the partitions in Π
(respectively, in P) is of finite VC dimension, this collection of kernels forms
a VC major class of functions (see [20]) of finite VC dimension, the strong
Law of Large Numbers for U -processes stated in Corollary 5.2.3 in [18] shows
that the term on the right hand side of the bound above vanishes almost-
surely, as n→ +∞. In addition, the CLT for U -processes given in Theorem
5.3.7 by [18] proves that this convergence holds at the rate OP(n−1/2).

Proof of Proposition 2

Using the triangular inequality, we get

dR
(
PN ,P∗

)
≤ 1

M

M∑
m=1

{
dR(P(m)

N ,P∗) + dR(PN ,P(m))
}

≤ 2

M

M∑
m=1

dR(P(m)
N ,P∗),

since we assumed P∗ ∈ Π. As condition (iii) in FR(α) entails that, for all

m ∈ {1, . . . , M}, dR(P(m)
N ,P∗) → 0 as N → +∞, this bound shows that

dR
(
PN ,P∗

)
→ 0 as N → +∞. Combined with Lemma 3, this establishes

the desired convergence.
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Proof of Corollary 1

Re-using the bounds involved in the two previous proofs, we obtain that;

dR(P̂n,P∗) ≤
2

M
sup
P∈Π
|Θ(P ,P)− Θ̂n(P ,P)|+ dR(PN ,P∗)

≤ 2 sup
(P,P ′)∈Π2

|dR(P ,P ′)− d̂R(P ,P ′)|+ dR(PN ,P∗).

The first term on the right hand side of the bound above vanishes as n→ +∞
with probability one, by virtue of the same SLLN argument as that used for
proving Proposition 1. The argument of Proposition 2’s proof shows next
that the second term converges to zero as N → +∞. Lemma 3 permits then
to finish the proof.
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[39] A. Tsybakov. Introduction à l’estimation non-paramétrique.
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