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This paper presents new graph-cut based optimization algorithms for image processing problems. Popular
graph-cut based algorithms give approximate solutions and are based on the concept of partition move. The
main contribution of this work consists in proposing novel partition moves called multilabel moves to mini-
mize Markov random field (MRF) energies with convex prior and any likelihood energy functions. These
moves improve the optimum quality of the state-of-the-art approximate minimization algorithms while con-
trolling the memory need of the algorithm at the same time. Thus, the two challenging problems, improving
local optimum quality and reducing required memory for graph construction are handled with our approach.
These new performances are illustrated on some image processing experiments, such as image restoration
and InSAR phase unwrapping.
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1. Introduction

Many image processing and low level computer vision problems
can be formulated as the minimization of energy (an objective func-
tion). General-purpose optimization techniques, such as simulated

annealing [15], perform optimization with an exponential time and
might be slow in practice. Therefore, fast and accurate energy minimi-
zation algorithms are needed. A family of fast approaches has been
proposed based on the graph-cut technique. The latter consists in
building a graph where the s,t-minimum-cut yields an optimal label-
ing of the considered energy.

In this paper we shall consider energies derived from a Markov
random field (MRF) with pairwise interactions. It is assumed that im-
ages are defined on a lattice denoted byP. The value of the image x at
each pixel p is referred to as xp and takes a value in a finite set of labels
L. The lattice is endowed with a neighborhood system and pairwise
interactions are considered. Two sites p and q that are in interaction
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with each other are denoted by (p, q). The set of all considered pair-
wise interactions is referred to as N . A first order Markovian energy
is therefore defined as the following:

E xð Þ ¼ ∑
p∈P

Ep xp
� �

þ ∑
p;qð Þ∈N

Ep;q xp; xq
� �

:

The terms Ep encode the data likelihood, measuring the distance of
the reconstruction to the observed data, while the terms Ep,q corre-
spond to the prior we have on the interactions. In this paper, only
priors that are a function of the difference between labels are consid-
ered, i.e., Ep,q(xp,xq)=Ep,q(xp−xq), (see [9] for instance for the gener-
al case).

Since exact optimization is generally an NP-hard problem formany
energy functions encountered in image processing and computer
vision, some authors have considered specific classes of energy func-
tions [18,9–11] for which the optimization is tractable. However
they require a large amount of memory which makes them difficult
to use for practical applications. Another class of approaches relies
on approximate energy optimization algorithms [6,20,28,21]. The
main challenge consists in proposing fast algorithms with lowmemo-
ry consumption while computing a good optimum (ideally the global
one). Indeed, recall that the huge memory requirement is the main
issue for exact optimization methods, whereas the possibility of
being trapped in a bad local minimum is the main drawback of ap-
proximate approaches.

Among the classes of approximate algorithms, the most popular are
most probably the α-expansion and αβ-swap move making algo-
rithms [6]. These latter are based on the concept of partition move as
originally proposed in [27]. They perform binary large partition moves
iteratively, changing the current configuration of the solution until its
convergence toward a local optimum of the energy function. These ap-
proximate algorithms have been successfully applied for solving several
image processing and computer vision tasks [26,4,12]. In many cases,
the computed solution is a global optimum or a local optimum very
close to a global one. Nevertheless, they are restricted to some classes
of energy functions (MRF energies with semi-metric or metric po-
tentials). A more recent approach is proposed in [21] and proposes
an alternative and more general view of state-of-the-art techniques
like the α-expansion algorithm, and generates solutions with guar-
anteed optimality properties for a much wider class of problems
(even for MRFs with non-metric potentials). We also refer the reader
to [23] for other efficient moves to approximately minimize general
MRF energies. However, there still remain some problems such as
those encountered in radar image processing where the associated
energy may present many local minima and requires more accurate
minimization algorithms [13].

The contribution of this paper consists in proposing new approxi-
mate minimization algorithms that yield a better energy minimum
than the state-of-the-art algorithms do. These algorithms are iterative
and based on the concept of partition move and especially on a novel
move that we call the multilabel move. Their main property is the
trade-off between the memory need and the quality of the optimum
in a versatile way.

We shall note that the recent work [29] proposes a similar concept
of multilabel moves for minimizing MRF energies with truncated con-
vex priors. Proposed algorithms use the so-called range move based
strategies [28], that are particular moves in the multilabel move space.
Indeed, a subset of labels related to the subset of states proposed to a
given variable has to be a sub-range of labels, i.e., a subset of consecutive
labels. Moreover, same size of subsets of labels for all variables has been
considered to build the multilabel graph.

In other recentwork [7], authors extend thework [28] and propose a
new strategy for graph construction, called graphical restriction, to cope
with the subsets of non sub-range labels thatmight change from 1 pixel
to another. Using a recursive and iterative scheme to select subsets of

labels, a multilabel swap move based algorithm is introduced that is
able to reach approximate minima of submodular MRF energies in a
shorter amount of time, compared to the range moves.

In our current work, a more generalized multilabel graph construc-
tion is proposed that can handle various multilabel movemaking strat-
egies and perform approximate optimization of submodular multilabel
MRF energies with a trade-off between computational requirements of
the algorithm and optimum quality. Different multilabel move strate-
gies are also explored in depth to solve more properly some image pro-
cessing problems.

The remainder of this paper is as follows. In Section 2, the pro-
posed multilabel move is introduced as well as a classification of
move making based optimization approaches. In Section 3, the pro-
posed large and multilabel approximate optimization algorithm is de-
scribed. Technical details about the newmultilabel constructed graph
are also provided. Experimental results for natural and radar image
processing are presented in Section 4. Some conclusions are drawn
in Section 5.

2. Partition move and graph-cut based optimization algorithms

A partition move based optimization algorithm is a way to make
the estimated solution changing during an optimization scheme of
an energy function. A standard algorithm that reflects this concept is
the iterated conditional modes (ICM) [3]. The latter performs the op-
timization by assigning iteratively to every pixel a label in the discrete
set L that locally optimizes the energy function. During the optimiza-
tion process, the solution changes its configuration iteratively until its
convergence to a local optimum. However, the ICM algorithm has
proven to be non-effective in the case of non-convex energy functions.
New move making optimization algorithms have been proposed for
this purpose based on the graph-cut technique [6]. The latter was
first applied to minimize pseudo-boolean energy functions in [17]
and was initially introduced in computer vision to solve the problem
of binary image restoration with ferromagnetic Ising-based models
in [16]. Then, it was applied to minimize energy functions defined on
multilabel variables [6,18,28,9]. Nevertheless, using the graph-cut
based optimization technique is restricted to some classes of energy
functions due to the submodularity condition needed to construct the
graph and computing the s-t minimum cut/maximum flow in a poly-
nomial time.

In the following, we describe in more detail the partition move ap-
proach. First, some definitions are given for the rest of the paper. Then,
approximate algorithms relying on large and binary partition moves
are described. Next, exact optimization algorithms are described con-
cisely. Eventually, a new partition move is introduced and a classifica-
tion of all possible move making optimization algorithms is proposed.

2.1. Move space

Let us first fix some vocabulary, similarly to the one given in [27].
Amove is a pair of labeling x; x′

� �
∈X � X , whereX is the set of all pos-

sible labeling. The set of movesM⊂X � X is called the move space. If
x; x′
� �

∈M, then we will say that x′ is a labeling obtained by one move
from x.

We now give the definition of local or global optimality with re-
spect to a move as the following:

Definition 2.1. Local/global minimum

A labeling x is a local minimumwith respect to a move spaceM, if
for each move x; x′

� �
∈M, we have E(x)≤E(x′).

Note that in case of M ¼ X �X , a local minimum with respect to
M is also a global minimum. We now describe possible move spaces.

15A. Shabou et al. / Image and Vision Computing 31 (2013) 14–30
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2.2. Large and binary partition moves (LBPM)

Algorithms of this part are based on large and binary partition
moves. A move from x to x′ is said to be large if many pixels change
their configurations simultaneously. Such a large move leads to bigger
changes affecting the current configuration compared to non-large
move based optimization algorithms, such as the ICM algorithm. This
makes the algorithm more robust to local minima and faster in con-
vergence. These moves have been proved to be effective through the
two popular algorithms: α-expansion and αβ-swap presented in [6].

The α-expansionmove consists in proposing to all sites of P either
to take a new labelα∈L, or to keep their current labeling in such way
that the energy E(x) decreases, i.e., E(x′)bE(x), where x′ is obtained
from x by an α-expansion move.

The αβ-swap move consists in proposing to a set of sites of x hav-
ing labels in the subset {α, β}, called active sites, to exchange their la-
bels in such a way that the energy E(x) decreases.

These twomoves are called binary moves since only two states are
proposed to each site within an iteration of the optimization algo-
rithm. Algorithms that perform local minimization using these two
moves work by starting from an initial labeling and then make a se-
ries of changes through optimal binary moves. This process is iterated
until no moves can further decrease the energy. They are based on the
graph-cut technique and described through specific steps called cy-
cles and iterations [6]. In a cycle, the minimization algorithm, based
on the binary expansion move (respectively binary swap move),
performs an iteration for every label α∈L (respectively every pair of
labels α;βð Þ∈L2), in a certain order (fixed or random). At each itera-
tion, an exact pseudo-boolean optimization is performed thanks to
the minimum cut. A cycle is said to be successful if a labeling that
gives a decrease of the energy is found for at least one iteration. The
algorithm stops after the first unsuccessful cycle, i.e., no further im-
provement is possible.

In [27], the author proves the convergence of these algorithms to
local minima in a finite number of cycles and shows that few number
of cycles are needed to converge in practice. However, since the
submodularity property of the energy function is required to perform
exact pseudo-boolean minimization via graph-cuts with a polynomial
time [16,20], only a family of energy functions can beminimized based
on the proposed large and binary moves. It has been shown in [6] that
the αβ-swap move works for the semi-metric prior function while the
α-expansion move works only for the metric prior (i.e., semi-metric
that satisfies the triangle inequality).

Finding the optimal partition move is a polynomial time consum-
ing task since the size of the constructed graph is linear with respect
to the number of sites and polynomial algorithms exist for the maxi-
mum flow computation on this graph (in particular, the very efficient
maximum flow approach proposed in [5] to the community working
on computer vision problems).

2.3. Exact optimization move

Another family of optimization algorithms [18,9,24] has been pro-
posed to perform exact optimization of some energy functions in a
pseudo-polynomial time [1]. These algorithms can be seen as partition
move algorithms in the space of moves M ¼ X �X , i.e., all sites in P
can take any label in L.

A first approach has been proposed by Ishikawa in [18]. The main
idea is to construct a graph in such way that any cut on this graph cor-
responds to a configuration of x. Thus an s-t minimum cut corresponds
to an optimal configuration, i.e., a configuration that has minimal en-
ergy. This graph is very large since for every site inP, Lj j nodes related
to all labels and edges connecting them to those of the neighboring
sites in P are necessary. Edges have specific weights making corre-
spondence between a cut on the graph and a configuration of x. It is

shown in [18] that the convexity of the prior is required for the appli-
cability of the approach.

The second approach was proposed in [11,9]. This approach relies
onmapping the problem of finding an optimal solution of theMarkov-
ian energy, where variables take values in the discrete set L, into a
combinatorial one which involves only binary variables. This mapping
is done by considering the level-sets of the labels instead of the label
values themselves. Using the exact binary optimization, as stated be-
fore, a global optimum of the original energy is reconstructed by pre-
serving the monotone property in energies defined on the level-sets
of x. The size of the graph constructed to perform this optimization
approach is the same as for the graph proposed by Ishikawa, since
for every level inL, nodes related to all sites inP are created. However,
edges are different from those of Ishikawa's graph, since all the nodes
in each level are now connected to the source and to the sink (to
perform binary optimizations) and additional edges are used to pre-
serve the monotone property. We note that computing minimum s-t
cut in this graph might be faster than computing it in the Ishikawa's
graph [11].

To extend the exact MRF energy minimization task to higher order
cliques, we refer to the work [24] where authors proceed by trans-
forming special classes of multi-label higher order functions to sub-
modular second order boolean functions, which can be minimized
exactly using the min-cut/max-flow technique.

2.4. Large and multilabel partition moves (LMPM)

We now introduce a new move called multilabel move. Since the
binary move exploits a limited number of two labels among those
in L, proposing more labels to a pixel in a single move may yield to
a better energy minimization result. The idea we explore next is the
use of large subsets of labels inL to performmultilabel moves. Partic-
ular cases of this new move give the previously described algorithms:

• if the label set is a binary set, it corresponds to a binary large move,
as described in Section 2.2,

• if the label set is the set of all labels, it corresponds to a global opti-
mization move, as described in Section 2.3.

A possible classification of the move making optimization algo-
rithms involving the class of multilabel moves is proposed in Fig. 1.
This classification is relative to the breadth of the move and the size
of the used label set. In this paper, we study the interest of the inter-
mediate size of the label sets. First, we describe the graph construc-
tion. Then we analyze some experiments.

3. LMPM optimization

We first describe the algorithm to perform an LMPM move before
describing the associated graph construction. Then we discuss the
properties of this approach.

3.1. LMPM algorithm

The LMPM algorithm, depicted in Fig. 2, is a general form of a
graph-cut and partition move based optimization algorithm. At each
iteration, an optimal move is accepted if it strictly decreases the ener-
gy function value. In the case of a multilabel move, the set of labels is
denoted by Lm⊂L. A cycle must visit all the labels in L and finished
after a prescribed number of iterations. More precisely, let us denote
by L ið Þ

m the label set with size m chosen at the ith iteration. We have
∪
i
L ið Þ
m ¼ L. A cycle is said to be successful, if the energy decreases ex-

actly for at least one iteration. Otherwise, the algorithm has already
converged to a local minimum and no further improvements are pos-
sible. We also note that for each move (expansion, swap, etc.), the

16 A. Shabou et al. / Image and Vision Computing 31 (2013) 14–30
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choice of L ið Þ
m can yield to a different solution. This choice is discussed

later.
Since the above algorithm is general, one can instantiate several var-

iations by choosing themove space. Threemoves (expansion, swap and
jump), originally introduced with their binary form in [27], are consid-
ered in this work and redefinedwith themultilabel property as follows:

• the αm-expansion move proposes to all sites in P either to switch
their labels in a set of labels Lm ¼ α1;α2;…;αmf g, or to keep their
current labeling.

We note that the particular multilabel expansion move proposed
recently in [29] is performed on a subset of consecutive labels with-
inL (sub-range of labels) to ensure the convexity of the prior energy
function in this subset and to directly use the Ishikawa's graph to
perform the optimal multilabel move.
Recently, in our previous work [25], a new expansion multilabel
move is performed on any subset in L with an appropriate graph
construction to minimize energy functions with the convex prior.
This move will be then considered in this work and compared to
the sub-range multilabel move of [29].

• the βm-swap move proposes to the active sites, i.e., the sites in P
with labels in Lm ¼ β1;β2;…;βmf g, to exchange their labels.
We also note that a particular multilabel swap move was proposed
in [28], called the α–β range move. The latter performs an approxi-
mate MRF optimization with truncated convex priors. However,
similar to [29], the considered move is restricted to subsets of con-
secutive labels to ensure the convexity of the prior for the graph
construction.
An attempt to generalize the multilabel swap move to a non sub-
range of label sets has been introduced in [7] through a technique
called graphical restriction, that transforms a multilabel graph
with sub-range label sets to a graphwith any subsets of labels. How-
ever, this technique is rather appropriate to the swap or expansion
strategies, where a quantized label set is considered along the opti-
mization process. For labels changing iteratively, as we will see in
the next strategy, it would be non efficient to apply the restriction
technique at each iteration.
Thus, the presentwork proposes amore general study for any subset
of linearly ordered labels. Besides an appropriate unified graph con-
struction for different move strategies will be provided.

• δm-jump move proposes to all sites in P, to either increase or de-
crease their labels by an amount in {0,δ1,δ2,…,δm/2}, in such a way
that we have xp � δi∈L ; ∀p∈P and i ¼ 1;…;m, where xp is the
current label of the site p.
Concerning the jump move strategy, different binary versions are
given in [8,4,27,12]. All of them are not optimal, since the increasing
and the decreasing steps of the jumpmove are performed in two sep-
arate iterations, successively.With the proposed newmultilabel jump
move algorithm, the optimal move that includes both the decrease
and increase of the label values of the sites can be performed in one
step, since the graph can take into account many labels at the same
time. Eventually, the subsets with any number of jump quantities
would be also possible to consider in the multilabel jump move.

Considering these three multilabel move strategies, the optimi-
zation algorithm's structure we propose is the same for all of them

Fig. 1. Classification of move making optimization algorithms. The hatched boxes correspond to the general class of partition moves explored in this work.

Fig. 2. Optimization algorithm based on large and multilabel moves.

17A. Shabou et al. / Image and Vision Computing 31 (2013) 14–30
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(Fig. 2). However, the results can be entirely different due to the spe-
cific choice of label sets and changing configurations related to each
move.

In this work, three issues need to be addressed to perform an LMPM
based optimization:

1. Given the label set Lm, how is the graph built to get the optimal
partition move x̂ from x in a polynomial (or pseudo-polynomial)
time using the minimum-cut/maximum flow technique?

2. Which class of energy functions can be optimized based on this
approach?

3. How larger label sets (i.e., applying multilabel moves) in the min-
imization scheme could improve the minimum quality?

Regarding the problem of label set choice, we discuss this issue
from an experimental point of view.

3.2. Graph construction

In this section, the construction of the graph used to compute the
optimal move in one iteration of the LMPM algorithm is presented.
The constructed graph is a layered graph similarly to the one pro-
posed by Ishikawa [18]. However the capacities on the edges need
to be redefined to take into account different subsets of labels for
each pixel, and the current labeling at each move. Thus, the proposed
construction is a generalization of the layered Ishikawa graph to any
multilabel graph for the move making algorithms.

Let us note by Gm ¼ Vm; Emð Þ a directed graph with non-negative
capacity edges, where m is the size of the label set Lm, Vm is the set
of vertices and Em is the set of edges. For the maximum-flow compu-
tation, two special vertices, the source s and the sink t are added to
the set of vertices.

As stated before, in one iteration i, a label set L ið Þ
m is generated. In

the case of βm-swap, this set is identical for all pixels. However, for
the αm-expansion move and the δm-jump, the set takes into account
the current labels assigned to the pixels in each iteration. Thus, a
label set for each pixel p has to be defined, at the iteration i, denoted
byL ið Þ

m pð Þ. This label set represents the current label of the pixel (label

generated through the iteration i−1) and the new proposed labels
L ið Þ
m , i.e., Lm pð Þ ¼ L ið Þ

m∪ xp
� �

. This label set is denoted by Lm pð Þ. For
the rest of this paper we consider that a linear order is chosen on
this set (ascending for example). Finally, let us denote by kp the size
of Lm pð Þ ¼ lpj ; j ¼ 1::kp

n o
.

The main idea of the method is to construct a graph such that a cut
in the graph corresponds to a configuration of the MRF given the label
sets Lm pð Þ ; p∈Pf g. The total cost of the cut is equal to the total en-
ergy of the configuration up to a constant. Thus, the minimum cut of
the graph yields the MRF configuration with minimal energy. If this
energy value is less than the current one, we obtain an optimal
move from the current configuration.

We now give details of the graph construction. Let us first define
the set of vertices Vm by

Vm ¼ Vm pð Þ p∈Pj g;f ð1Þ

with,

Vm pð Þ ¼ vp;i i ¼ 1::kp
��� o

:
n

ð2Þ

For each pixel p, we create kp nodes that correspond to the label
set Lm pð Þ.

Let us now define the set of edges Em by

Em ¼ ED
m∪EC

m∪EP
m; ð3Þ

where ED
m is a subset of so called data edges, EC

m is a subset of con-
straint edges and EP

m is a subset of penalty edges.
Data edges ED

m implement the likelihood energy terms Ep. They are
defined, as in [18], as the following

ED
m ¼ ∪

p∈P
ED
m pð Þ; ð4Þ

Fig. 3. Graph construction for an optimal multilabel expansion move. On the left, a part of the graph Gm defined on 3 pixels. A cut is depicted in bold and arcs in the cut are dotted
whereas continuous ones are not. A part of the graph is highlighted on the right. The three arc families are distinguished: data edges (vertical edges oriented to the top), constraint
edges (vertical edges oriented to the bottom) and penalty edges connecting all label nodes of two 4-connexity neighboring pixels.

18 A. Shabou et al. / Image and Vision Computing 31 (2013) 14–30
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with,

ED
m pð Þ ¼ s; vp;1

� �n o
∪ vp;i; vp;iþ1

� �
i ¼ 1::kp−1
��� o

∪ vp;kp ; t
� �n o

;
n

ð5Þ

and the capacities of these edges are set to

c s; vp;1
� �

¼ þ∞;
c vp;i; vp;iþ1

� �
¼ Ep xp ¼ lpi

� �
; i ¼ 1::kp−1;

c vp;kp ; t
� �

¼ Ep xp ¼ lpkp

� �
:

8>>><
>>>:

ð6Þ

To obtain the correspondence between a cut in the graph Gm and
the data terms of the energy function, constraint arcs are added to
guarantee that only one data arc per pixel is in the cut. These arcs
are defined following [18] by

EC
m ¼ ∪

p∈P
EC
m pð Þ; ð7Þ

with,

EC
m pð Þ ¼ vp;iþ1; vp;i

� �
i ¼ 1::kp−1
��� o

;
n

ð8Þ

and the capacity of each constraint arc is set to infinity, i.e. c(vp,i+1,vp,i)=
+∞ ; ∀ i=1..kp.

For the pairwise terms, the penalty edges are defined by

EP
m ¼ vp;i; vq;j

� �
p; q∈P;p ∼ q; i ¼ 1::kp; j ¼ 1::kq
��� o

:
n

ð9Þ

We shall see in the following that the cut for assigning the label lip

for a pixel p and the label ljq for the pixel q involves a limited number
of arcs.

More precisely, there are firstly the two data arcs (vp,i,vp,i+1) and
(vq,j,vq,j+1) that correspond to the two data energy terms related to
the pixels p and q. Then, various other edges, from EP

m, are in the
cut: those which are going from p to q, i.e., (vp,a,vq,b) where a≤ i and
b> j, and those which are going from q to p, i.e., (vq,b,vp,a) where
a> i and b≤ j. Thus, the total cost of the cut penalty edges for the
two neighboring pixels is given by

f lpi ; l
q
j

� �
¼
Xi
a¼1

Xkq
b¼jþ1

c vp;a; vq;b
� �

þ
Xkp
a¼iþ1

Xj
b¼1

c vq;b; vp;a
� �

: ð10Þ

(a) (b)

(c) (d)

Fig. 4. The original images and the corresponding noisy ones: (a) the true image of Penguin, and (b) the corresponding noisy image with 50% of pixels corrupted by the impulsive
noise (P=0.5). (c) The true image of Squirrel, (d) the corresponding noisy image with 70% of pixels corrupted by the impulsive noise (P=0.7).
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To get the correspondences between a cut in the multilabel graph
and the total energy cost, penalty edges are redefined as the following

c vp;a; vq;b
� �

¼ 1
2

g lpa−lqb−1

� �þ g lpa−1−lqb
� �

−g lpa−1−lqb−1

� �
−g lpa−lqb
� �� �

;

ð11Þ

with g=Ep,q and a>1, b>1. Auxiliary edges are required to obtain
the equivalence between the value of the cut and the convex function
g up to a constant. These edges have capacities denoted by Dp,q(j) for
the node vp,j and Dp,q(i) for the node vp,i. The total cost of the cut pen-
alty edges can be expressed as follows:

f li; lj
� �

¼ g lpi −lqj
� �

−Dp;q jð Þ−Dp;q ið Þ þ Cst; ð12Þ

with,

Dp;q ið Þ ¼ 1
2

g lpi −lq1
� �þ g lpi −lqkq

� �� �
;

Dp;q jð Þ ¼ 1
2

g lqj −lp1
� �

þ g lqj −lpkp

� �� �
;

Cst ¼ 1
2

g lp1−lqkq

� �
þ g lq1−lpkp

� �� �
:

8>>>>><
>>>>>:

ð13Þ

In our construction, the auxiliary edges aremergedwith data edges
since their capacities depend only on one variable.

It has been proven in [18,9] that g needs to be a convex function to
have a non-negative capacity c(vp,a,vq,b). The same demonstration
holds in our case.

Fig. 3 shows an example to summarize our graph construction.

Given the graphGm, a configuration x of all pixels p∈P and label sets
Lm pð Þ; p∈Pf g, there is a one to one correspondence between cuts of
finite capacities on this graph and a labeling that lives in Lm. Besides,
the cost of one cut is equal to the energy of the resulting configuration
up to a constant. Moreover, the convexity of the prior energy function
is a necessary and sufficient condition for the non-negativeness of all
edge capacities. Therefore, a minimum cut on the graph is computed
in pseudo-polynomial time.

3.3. Discussions

In this section we discuss the main properties and contributions of
this algorithm in terms of optimum quality.

The first trivial property is the following: if the same multilabel
move (an expansion move for instance) is done with different label
sets Lm and Lm′ such that Lm ⊂Lm′ , then the energy of the resulting
labeling is minimum for the move with the largest label set, since
the set of optima reached by the move with less labels is included
in the set of the other move optima. This property highlights the im-
portance of a multilabel move with a larger label set when one step of
the minimization algorithm is performed.

Thus, if the above inclusions hold at every step of theminimization
process, then a multilabel large move guarantees a better energy min-
imum when increasing the size m of subsets Lm. Nevertheless there
are no general theoretical results on the optimum quality of the
LMPM. It's assumed that in the worst case, for each expansion, swap
and jump moves, the optimum given by an LMPM is as good as the
one given by an LBPM, since the latter is a special case when m=2.
This assumption will also be verified in the Experimental results
section.

(a) (b) (c)

(d) (e)

Fig. 5. Restoration of the noisy image Fig. 4(b) using several state-of-the-art optimization algorithms: (a) α-expansion with random labels' scanning [6], (b) αβ-swap [6], (c) FastPD
[22], (d) multilabel expansion move of [29] with sub-ranges of labels of size 32, and (e) exact optimizer of Ishikawa [18].
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4. Experimental results

In this section, different experiments are presented to study the
optimum quality of LMPM algorithms. First, the restoration of images
corrupted by a strong uniform noise is presented. Even if this rate of
noise seems to be non-realistic for real image processing problems,
it provides a good way to compare the performances of approximate
optimization algorithms. Nevertheless, usually in the remote sensing
SAR image processing tasks, a similar amount of noise characterizes
the real data. Therefore, in the second part of the experiments, we
perform the MRF optimization in the case of more complex energy
functions related to a SAR problem. That is the phase unwrapping
(PU) in the interferometric synthetic aperture radar (InSAR) imaging,
where the goal is to unwrap and at the same time denoise the inter-
ferometric phase using the multichannel data. Such a reconstruction
is of great interest in the field of Geoscience and remote sensing
since it generates digital elevation models (DEM) of the Earth's sur-
face [2].

For all data, first we conduct comparisons between results ob-
tained with the proposed LMPM based optimization algorithms and
some state-of-the-art approaches.Wewill show that LMPM algorithms
performwell on difficult problems, proposing a trade-off between algo-
rithm complexity and optimum quality. They outperform the LBPM
based algorithms (such as the α-expansion, αβ-swap [6], and δ-jump
[4,12]), the fast primal–dual based algorithm (FastPD) [21,22], and the
multilabel moves proposed in [28,29]. For the latter, we show only the
optimal solution obtainedwith a parameterm (size of subsets of labels)
that gives a good result with our LMPM optimizer (trade-off between
memory and optimumquality). Exact solutions given by the algorithms
of [18,9] are also provided to note how close are the optima reached
by the LMPM algorithms to the global one, while using a much less
memory.

Second, the properties discussed in Section 3.3 will be verified em-
pirically on the different data. Thus, the different optima reached with
several sizes of subsets of labels are depicted, and numerical results
(computational complexities, energy minimum) are provided to eval-
uate the algorithm's performances.

We note that for the experiments on image restoration from the
impulsive noise, only the expansion and swap based LMPM algo-
rithms are tested, since they are more appropriate for this class of la-
beling problem, where we usually quantize the label set in a discrete
one L. Whereas for the InSAR phase unwrapping problem, a prelimi-
nary quantization of the continuous label set could introduce a loss of
physical information, that is needed to well reconstruct the DEM.
Thereby, the jump based LMPM algorithm will be used, allowing a
better labeling on this type of data.

The computational results we present have been obtained on a
machine with a 2 Ghz dual core CPU and 2 Go of RAM. The min-cut/

(a) (b) (c)

(d) (e)

Fig. 6. Restoration of the noisy image Fig. 4(b) using the proposed multilabel expansion move with subsets of random labels for different values of m∈{8,16,32,64,128}. (a) α8-
expansion, (b) α16-expansion, (c) α32-expansion, (d) α64-expansion, and (e) α128-expansion.

Table 1
Computational results of the experiment in Fig. 5: time is expressed with (min:s) and
graph size with the number of allocated nodes.

Figure Steps to converge Emin (×106) Time (min:s) Ej j (×105)

5(a) 5121 1.0738 2:01 0.21
5(b) 32,896 1.1942 0:11 0.21
5(c) 18 1.0356 1:17 0.21
5(d) 40 1.0220 5:11 6.72
5(e) 1 0.9954 4:02 55.91
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max-flow algorithm we use on our graphs is the one proposed in [5],
with the C++ implementation provided by the authors.2

4.1. Image restoration

Images used in this experiment are corrupted by impulsive noise
with parameter P. A pixel keeps its original value with a probability
(1−P) or it takes a new one uniformly in L. This kind of noise is
known to be more destructive than other noises like the additive
one for instance. In fact, if a pixel is corrupted by this noise, the infor-
mation that it carries is totally lost.

The associated data likelihood energy function for any site p is
given by

Ep xp
� �

¼
− log 1−Pð Þ þ P

L

	 

if yp ¼ xp;

− log
P
L

	 

else;

8>><
>>: ð14Þ

where y denotes the observed noisy image, and L is the cardinal of the
set L. For this experiment, we consider L ¼ 0;1;…;254;255f g:

Fig. 4(b) and (d) illustrates noisy images with different rates of
impulsive noise P=0.5 and P=0.7 respectively. Their corresponding
original images are depicted in Fig. 4(a) and (c) respectively.

We consider a discrete total variation (DTV) prior energy for the
MRF with the grid of 4-nearest neighbors as the neighborhood system
[11]. Thus, the prior energy is given by

Ep;q xp; xq
� �

¼ β ∑
p;qð Þ∈N

xp−xq
��� ���; ð15Þ

where β corresponds to a regularization coefficient. This parameter is
adjusted in the experiments to obtain the best visual result.

Given this energy model, we can perform restoration experiments
using both theαm-expansion and the βm-swapmovemaking algorithms.

It is important to note that for the experiments random permuta-
tions on the label set L are applied. Indeed, the results obtained by
the standard α-expansion or αβ-swap for example are much worse
if the new labels are proposed following the natural linear order.
More precisely, the sets Lm are generated as follows: we consider
any random permutation of the set L. First, we select the first m ele-
ments and then re-order them. This definesLm that is used to perform
the optimal move. Then, the next m elements of the permuted set L
are selected and the process remains the same. Once all the labels of

2 http://www.cs.cornell.edu/People/vnk/software.html.

(a) (b) (c)

(d) (e)

Fig. 7. Restoration of the noisy image Fig. 4(b) using the proposed multilabel swap move with subsets of random labels for different values of m∈{8,16,32,64,128}. (a) β8-swap,
(b) β16-swap, (c) β32-swap, (d) β64-swap, and (e) β128-swap.

Table 2
Computational results of the experiment in Fig. 6.

Figure Steps to converge Emin (×106) Time (min:s) Emj j (×105)

6(a) 448 1.0224 4:59 1.75
6(b) 112 1.0174 3:34 3.51
6(c) 40 0.9984 4:11 6.98
6(d) 20 0.9969 6:42 14
6(e) 6 0.9959 7:09 28
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L have been visited, a new permutation on the label setL is performed
and the process starts again until the convergence of the algorithm.

We have also experimentally verified that applying a random per-
mutation on labels gives better results in terms of optimum quality
than not performing any permutation. Regarding the initialization,
we have verified empirically that for the expansion moves it is better
to start from an initial uniform configuration; whereas for the swap
moves, starting from the noisy observed image leads to a faster con-
vergence toward a better local minimum of the energy. The latter
could be explained by the restriction of the swap move to only active
sites. Thus starting from the noisy image would induce a deep de-
crease in the energy, since many pixels would be involved in the
moves at the first steps of the minimization.

In Fig. 5, the restoration results obtained with some state-of-the-
art MRF optimization based algorithms (α-expansion Fig. 5(a),
αβ-swap Fig. 5(b), FastPD Fig. 5(c), multilabel expansion move of
[28] with sub-ranges of labels of size 32 Fig. 5(d) and the exact opti-
mum of Ishikawa's algorithm Fig. 5(e)) are depicted with the corre-
sponding computational numerical results highlighted in Table 1.

The approximate optimal solutions, compared to the exact solution
given by the Ishikawa algorithm (Fig. 5(e)), show poor results, i.e., bad
local optima of the considered non-convex energy are reached. De-
spite their low computational time, these algorithms could not be con-
sidered to solve this labeling problem since the obtained solutions are
still noisy and far from the optimal one.

To avoid being trapped in poor local optima, while using low
memory for graph construction, the use of the approximate LMPM

optimization algorithms would be necessary. In Fig. 6 results obtained
with the proposed LMPM αm-expansion algorithm, starting from a
uniform null image, with several values of the parameter m, are
presented. While, in Fig. 7 results obtained with the proposed
LMPM βm-swap algorithm, starting from the noisy image, with sever-
al values of the parameter m, are shown.

We see that we obtain better results than the previous algorithms
as m increases. Furthermore, the use of the subsets of random labels
requiring our graph construction improves the optimum quality
reached by the state-of-the-art multilabel move making algorithms
if we compare for instance our result obtained at m=32 (Fig. 6(c))
to the one given by the multilabel expansion move in Fig. 5(d).
Table 2 (resp. Table 3) shows the number of steps, the value of the
energy minimum, the time and the number of graph nodes needed
to compute a minimizer for several m with a multilabel expansion
move (resp. swap move).

It is important to note that, although the LMPM algorithm with 32
labels (for each step) converges toward a local optimum of the ener-
gy, the obtained solutions in Figs. 6(c) and 7(c) are very close to the
global one in Fig. 5(e) in terms of the reached energy's minimum
and reconstruction qualities. Besides the amount of memory required
to compute this result is much less than for the global solution. In-
deed the global minimal energy is Eglobal=0.9954e+06 while the ap-
proximate solution obtained using the α32-expansion algorithm
yields an energy of Eapprox=0.9984e+06. This corresponds to a rela-
tive error Eapprox−Eglobal

Eglobal
¼ 0:003. Furthermore, the algorithm for the exact

minimization (m=256) requires a huge amount of memory, while

(a) (b) (c)

(d) (e)

Fig. 8. Restoration of the noisy image Fig. 4(d) using several state-of-the-art optimization algorithms: (a) α-expansion with random labels' scanning, (b) αβ-swap [6], (c) FastPD
[22], (d) multilabel expansion move of [29] with sub-ranges of labels of size 32, and (e)exact optimizer of Ishikawa [18].

Table 4
Computational results of the experiment in Fig. 8: time is expressed with (min:s) and
graph size with the number of allocated nodes.

Figure Steps to converge Emin (×106) Time (min:s) Ej j (×105)

8(a) 5120 4.3408 7:35 6.02
8(b) 32,896 4.5395 0:34 6.02
8(c) 35 4.4007 10:51 6.02
8(d) 40 4.2084 13:18 96.31
8(e) 1 4.1576 15:36 773.47

Table 3
Computational results of the experiment in Fig. 7.

Figure Steps to converge Emin (×106) Time (min:s) Emj j (×105)

7(a) 658 1.0465 0:13 1.75
7(b) 328 1.0295 0:20 3.51
7(c) 164 1.0097 0:55 6.98
7(d) 82 1.0018 3:27 14
7(e) 41 0.9972 6:03 28
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the LMPM algorithm with 32 labels requires much less memory
(about 1/8th).

The same experiments are performed to restore the noisy image in
Fig. 4(d), showing the robustness of the proposed approach even in
the case of textured images, where the denoising from the high rate
impulsive noise would be a difficult task.

Results of the state-of-the-art optimization algorithms are depicted
in Fig. 8 with their corresponding numerical results in Table 4, and
those obtained with the proposed αm-expansion (resp. βm-swap) with
different values of the parameter m are highlighted in Fig. 9 (resp. 10)
and Table 6 (resp. 6).

Fig. 11 shows similar quantities to those depicted in Fig. 5 when
performing the denoising experiment with several random permuta-
tions on labels. More precisely, we have performed 10 random per-
mutations. Averages of the obtained values are depicted in the plots.

We note that the time needed to compute an optimal move in-
creases with larger label sets, since the size of the graph increases
with the number of labels. It is important to point out that improving
time computation of a partition move based optimization algorithm is
not the purpose of this work and the experiments are chosen to prove
the ability of the proposed algorithms to reach good energy minima
while a low memory is used (Table 5). However, in practice, a few
number m of labels is needed by an LMPM move to converge toward
a good local optimum of the energy, leading to a low computational
time, the same for the exact optimization algorithm. Thereby, this
computational time of the proposed LMPM algorithms does not
penalize their use for solving image processing problems. Indeed, let

us see the last experiment performed on the noisy squirrel image
with the αm-expansion move, for instance. Optimizing exactly with
256 labels takes a time similar as optimizing with LMPM with m=
32. The latter yields an image which is very close to the global mini-
mum with respect to the energy, while requiring much less memory
(about 1/8th) than the exact optimizer. The same conclusion holds
for the βm-swap move.

4.2. InSAR multichannel phase unwrapping

In this section, the problem of unwrapping the interferometric
SAR phase while denoising it at the same time is considered.

InSAR systems allow the generation of a digital elevation model
(DEM) of the Earth's surface. The approach relies on considering the
known relation between the interferometric SAR phase and the height
of the ground [2]. The main problem is the phase unwrapping opera-
tion since the measured interferometric phase is only known in the
principal interval [−π, π [ (wrapped phase). In order to restore the re-
lation between interferometric phase and ground height (which is
necessary to generate the DEM) it is necessary to unwrap the phase
(i.e., to know the phase in its absolute value). The unwrapping opera-
tion is not an easy task. In particular, if the so called Itoh condition [19]
(the absolute value of the phase difference between the neighboring
pixels is less than π) is not satisfied, the phase unwrapping operation
becomes an ill-posed problem. The Itoh condition is easily violated in
real InSAR data due to both the presence of low coherence areas and
the presence of high discontinuities.

(a) (b) (c)

(d) (e)

Fig. 9. Restoration of the noisy image Fig. 4(d) using the proposed multilabel expansion move with subsets of random labels for different values of m∈{8,16,32,64,128}. (a) α8-
expansion, (b) α16-expansion, (c) α32-expansion, (d) α64-expansion, and (e) α128-expansion.

Table 5
Computational results of the experiment in Fig. 9.

Figure Steps to converge Emin (×106) Time (min:s) Emj j (×105)

9(a) 640 4.2518 12:22 24.08
9(b) 128 4.1786 14:05 48.16
9(c) 40 4.1623 14:37 96.31
9(d) 24 4.1600 28:04 192.61
9(e) 14 4.1597 53:19 385.23

Table 6
Computational results of the experiment in Fig. 10.

Figure Steps to converge Emin (×106) Time (min:s) Emj j (×1005)

10(a) 656 4.3488 0:42 1.75
10(b) 328 4.3172 0:59 3.51
10(c) 164 4.2690 2:16 6.98
10(d) 82 4.2247 8:30 14
10(e) 87 4.1776 15:53 28
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To solve the phase unwrapping problem in the non-Itoh condition,
an efficient and robust method is the multichannel phase unwrapping
(MCPU) [14]. Multichannel InSAR techniques exploit the availability
of different and independent interferograms referred to the same

scene and obtained using different channels (baselines or frequen-
cies). In order to combine these different available channels, a statisti-
cal approach is used. In particular, to recover the unwrapped phase
and then generate the DEM, the solution is formulated as a maximum

(a) (b) (c)

(d) (e)

Fig. 10. Restoration of the noisy image Fig. 4(d) using the proposed multilabel swap move with subsets of random labels for different values of m∈{8,16,32,64,128}. (a) β8-swap,
(b) β16-swap, (c) β32-swap, (d) β64-swap, and (e) β128-swap.

Fig. 11. Plots of times, memory consuming and energy minima obtained by αm-expansion optimization algorithm performed with an increasing size of label sets Lm to denoise the
squirrel image. (a) Local minima of the energy, (b) time computation (s), (c) number of nodes needed for graph construction, (d) superimposition of the three plots (a), (b), and
(c) (note that in (d), all values are normalized in [0,1000] to superimpose the three curves in the same grid).
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a posteriori estimation. Thus, the MAP MCPU problem can be seen as
an energy minimization problem, where the multichannel data likeli-
hood energy function for any site p is given by [14]

Ep xp
� �

¼
XM
c¼1

− log

 
1−γ2

p;c

2π 1−γ2
p;c cos yp;c−xp

� �2	 


× 1þ
γp;c cos yp;c−xp

� �
arccos γp;c cos yp;c−xp

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ2

p;c cos yp;c−xp
� �2r

0
BB@

1
CCA
!

;

ð16Þ

where y denotes the observed profile called interferogram(i.e.wrapped
and noisy phase), x denotes the regularized phase,M is the total number
of the independent interferogram channels and γp,c is the coherence co-
efficient that depends on pixel p and on channel c.

For the a priori energy function, the discrete total variation (DTV)
model can be chosen [13]. As the total variation prior is well adapted
when coping with strong discontinuities, it can be used in the case of
InSAR applications and it particularly well fits urban scenarios. As we
can note, the total MRF energy function is a multi-modal function,
thus a highly non-convex one, requiring efficient and robust optimi-
zation algorithms to yield satisfying optima.

Experiments shown in this part are performed on simulated data.
Two profiles will be considered exhibiting various elevation struc-
tures. To generate independent noisy and wrapped phase data (inter-
ferograms), four frequencies {5, 6.33, 7.66, 9} GHz are used and an
interferometric noise with a constant coherence of {γp,c=0.7;∀p,c}
is added. Fig. 12(c) and (f) shows the 5 GHz noisy interferograms
generated from the original elevation profiles of Fig. 12(a) and (d)

respectively (Fig. 12(b) and (e) shows the 2D views of the considered
profiles respectively). It is important to note that the profile is ambig-
uous for all the working frequencies. Indeed, there are phase jumps
greater than π which violate the Itoh condition.

The first synthetic profile is of a size (128×128 pixels) and with a
maximum height of 200 m. While the second one seems to be more
natural in presenting similar properties to the real InSAR data with
a large size (800×300) and a continuous label set with a maximum
height of 1000 m.

Similar to the previous experiments, the performances of the pro-
posed LMPM algorithm are presented and compared to the state-of-
the-art optimization algorithms.

The phase unwrapping results are presented for different sizes of
label sets within the multilabel jump move. This kind of move is the
most appropriate to this labeling problem since no quantization of
the true label set [lmin,lmax] is needed, where lmin and lmax are respec-
tively the approximate minimum and maximum heights of the
reconstructed profile. Starting from an initialization, in each iteration,
a set of jump quantities are proposed to the pixels. Different possible
strategies to define these quantities are tested. We have verified ex-
perimentally that a dichotomy one is more efficient and leads to a
good solution within a defined precision. More precisely, the sets
Lm are generated as follows. First, we consider the set of m jump

(a) (b) (c)

(d) (e) (f)

Fig. 12. Synthetic InSAR data: (a) original Gaussian profile (3D view), (b) the corresponding 2D view, and (c) the 5 GHz noisy interferogram. (d) Original mountain profile (3D
view), (e) the corresponding 2D view, and (f) the 5 GHz noisy interferogram.

Table 7
Computational results of the experiment in Fig. 13.

Figure Steps to converge Emin (×104) Time (min:s) Ej j (×105)

13(a) 1800 2.9143 0:32 0.16
13(b) 90 2.9997 0:10 0.16
13(c) 6 2.8109 0:12 0.16
13(d) 1 2.6548 0:59 32.77

26 A. Shabou et al. / Image and Vision Computing 31 (2013) 14–30



Author's personal copy

quantities partitioning [lmin,lmax] in a dichotomous way, i.e., Em ¼
−δmax;−δmax

2 ;−δmax
4 ;…;−δmax

am
;þδmax

am
;…;þδmax

2 ;þδmax
� �

, where δmax is
initially defined depending on lmin and lmax, and am ¼ 1

2 log2 mð Þ.
Then, iteratively, δmax is reduced and the same process of the label
set selection is repeated again until the convergence of the algorithm
with a fixed precision on labels. In the next experiment for instance,
lmin and lmax are set respectively to 0 m and 200 m, so δmax is initially
set to 200 m and the highest precision on labels is set to 1 m.

The jump move has been already used for the InSAR phase un-
wrapping and regularization problem in several works [4,12] (Table 7).

Therefore, we compare our results using the LMPM jump moves to the
ones obtained by these two works. In [4], a simple binary jump move is
considered to unwrap the phase, where partitions increase and decrease
iteratively their current labeling with a constant quantity, called jump-
step, until its convergence to a local minimum.We shall note that exper-
iments highlighted in the related work are conducted on profiles not
ambiguous enough to evaluate the performances of approximate optimi-
zation algorithms. Whereas, all the profiles we are using in the current
work are ambiguous in a statistical point of view, with similar arti-
facts to those of the real InSAR data: aliasing, high noise rate and sharp

(a) (b) (c)

(d)

Fig. 13. Phase unwrapping of Fig. 12(c) using several state-of-the-art optimization algorithms: (a) binary jumpmove of [4], (b) dichotomous binary jumpmove of [12], (c) fastPD of
[22], and (d) exact optimizer of Ishikawa [18].

(a) (b) (c)

(d) (e)

Fig. 14. Phase unwrapping of Fig. 12(c) using the proposed multilabel jump move with subsets of labels for different values of m∈{2,8,16,32,64}. (a) δ2-jump, (b) δ8-jump,
(c) δ16-jump, (d) δ32-jump, and (e) δ64-jump.
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discontinuities. In [12], a faster version of the binary jump move has
been proposed using a dichotomy scheme for the proposed jump-
steps in order to regularize the InSAR phase. Thus, the problem of the
unwrapping has not been addressed. The latter requires a more robust
optimization algorithm to recover the 2kπ multiples of the absolute
unwrapped phase.

We also provide a global solution of the unwrapping problem and
an approximate one using FastPD [22] within a quantized set of labels
in order to show how closer are the optima reached by LMPM moves
to a global one compared to the solutions given by the state-of-
the-art approximate optimization algorithms.

For the first profile, reconstructed height images using the approx-
imate optimization algorithms of [4,12,22] and the exact optimizer of
[18] on the quantized label set L ¼ 0;1;2;…;200f g are presented in
Fig. 13(a), (b), (c) and (d) respectively. As we clearly observe, the op-
tima reached by the approximate optimizers are very poor local opti-
ma and far from a global one. Compared to results obtained in the
case of image restoration from an impulsive noise, we can note the
difficulty that the state-of-the-art approximate MRF optimization al-
gorithms encounter in dealing with the non-convex energies of the
phase unwrapping problem.

The results of the LMPM algorithm with δm-jump moves are
depicted in Fig. 14 formwhich is set to 2, 8, 16, 32 and 64. The results
show the contribution of our algorithm to better minimize the energy
function than the binary moves in Fig. 13(a) and (b) and the approx-
imate optimizer of [22]. Note also that in this experiment, a local op-
timum with an energy very close to the global one is reached while
using only the 1/7th of memory needed by an exact minimization al-
gorithm (32 labels instead of 200 labels).

Similar to the previous experiments, the multilabel properties
stated in Section 3.3 are verified based on the experimental simula-
tions through plots of energy values as a function of size m of the
label set Lm (Fig. 15).

We conduct the same experiment on the second profile to show
the robustness and the efficiency of the proposed LMPM jump algo-
rithms to recover a good estimate of the true profile even in presence
of complex structures, high noise rate and large scale data (Table 8).
We shall indicate that for the current data, performing exact optimiza-
tion would be computationally prohibitive both for memory and time
execution because of the huge graph that has to be built (Table 9). A
possible solution to overcome such difficulties could be by reducing
the size of the label set, or by partitioning the data into several blocs
where optimizations are done in each one. Then, a global solution is
obtained by collecting the subproblem solutions. However, we believe

Fig. 15. Plots of times, memory consuming and energy minima obtained by δm-jump optimization algorithm performed with an increasing size of label sets to unwrap the Gaussian
profile. (a) Local minima of the energy, (b) time computation (s), (c) number of nodes needed for graph construction, and (d) superimposition of the three plots (a), (b), and
(c) (note that in (d), all values are normalized in [0,1000] to superimpose the three curves in the same grid).

Table 8
Computational results of the experiment in Fig. 14.

Figure Steps to converge Emin (×104) Time (min:s) Emj j (×105)

14(a) 400 2.9021 0:26 0.16
14(b) 220 2.7831 0:36 1.31
14(c) 125 2.7307 0.46 2.62
14(d) 62 2.6613 1:07 5.24
14(e) 30 2.6612 1:30 10.28

Table 9
Computational results of the experiment in Fig. 16.

Figure Steps to converge Emin (×105) Time (min:s) Ej j (×105)

16(a) 201 4.49 8:00 3.2
16(b) 67 4.3591 3:51 3.2
16(c) 26 3.4781 1:08 3.2
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that such approaches are not preferred for SAR applications, since on
one hand they would not benefit from the global contextual informa-
tion coming from the whole data, and on the other hand they would

lead to losing some physical information that is necessary for the
reconstructed scene analysis. In the light of these requirements, mul-
tilabel moves for energy minimization would be an elegant solution

(a) (b) (c)

Fig. 16. Phase unwrapping of Fig. 12(f) using several state-of-the-art optimization algorithms: (a) binary jump move of [4], (b) dichotomous binary jump move of [12], and
(c) FastPd [22].

(a) (b) (c)

(d) (e)

Fig. 17. Phase unwrapping of Fig. 12(f) using the proposed multilabel jump move with subsets of labels for different values of m∈{2,8,16,32,64}. (a) δ2-jump, (b) δ8-jump,
(c) δ16-jump, (d) δ32-jump, and (e) δ64-jump.
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and clearly outperform the state-of-the-art approximate optimization
algorithms.

Two important conclusions could be driven from the last experi-
ment. First, we clearly see that performing the binary jump move
with multilabel graphs (see Fig. 17(a)), i.e., making the optimal
move from the three possible states: increasing or decreasing or keep-
ing the current labeling, gives much more better results than the iter-
ative schemes proposed in [4,12] (see Fig. 16(a) and (b)). Thus, we
believe that for the less ambiguous area to reconstruct, the proposed
δ2-jump move making algorithm would guarantee better results, or
even a convergence toward a global optimum of the energy, in a
short amount of time, even for a large scale data (Table 10). The sec-
ond conclusion is that the requirement of a hugememory for graph al-
location in order to converge toward a global optimumof the energy is
well managed using the proposed multilabel moves; since local opti-
ma that are very close to a global one could be from now on reached
while using only some labels within the set of all possible labels.
This fact is of a great interest inmany real applications, for the satellite
and medical image processing for instance, due to the data size and
continuous label sets. Multilabel move making algorithms provide a
robust and efficient method that offers a trade-off between complex-
ities (in time and memory) and the solution's quality.

5. Conclusion

We have proposed in this work new graph-cut based optimization
algorithms for approximate optimization of pairwise Markovian ener-
gies with convex prior. The algorithms are based on the concept of it-
erative partition moves that converge to a local or global optimum
depending on the number of chosen labels during the optimization
process. This choice leads to a new move that we called multilabel
move which is able to minimize complex Markovian energy functions
more accurately, i.e., converging to better optima of energies, while
less memory is needed. This trade-off is necessary in many image
processing and computer vision problems when working with high
dimension data with complex noise affecting them. The results
presented in this work show that better solutions are obtained using
this approach compared to those using binary or multi-range moves
and with less memory than those of the exact optimization methods.
A future work is dedicated to the fusion of these proposed determinis-
tic optimization algorithms with a stochastic approach in order to
guarantee a convergence to a better optimum while using more re-
stricted label set sizes (i.e., less memory).
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Table 10
Computational results of the experiment in Fig. 17.

Figure Steps to converge Emin (×105) Time (min:s) Emj j (×105)

17(a) 562 2.9519 10:53 6.4
17(b) 111 2.9238 14:31 12.8
17(c) 58 2.9229 15:07 25.6
17(d) 30 2.9228 16:46 51.2
17(e) 16 2.9225 18:30 102.4
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