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Abstract—Due to the lossy nature of transform coding, JPEG
introduces characteristic traces in the compressed images. A
forensic analyst might reveal these traces by analyzing the his-
togram of discrete cosine transform (DCT) coefficients and exploit
them to identify local tampering, copy-move forgery, etc. At
the same time, it has been recently shown that a knowledgeable
adversary can possibly conceal the traces of JPEG compression,
by adding a dithering noise signal in the DCT domain, in order to
restore the histogram of the original image. In this paper, we study
the processing chain that arises in the case of JPEG compression
anti-forensics. We take the perspective of the forensic analyst,
and we show how it is possible to counter the aforementioned
anti-forensic method revealing the traces of JPEG compression,
regardless of the quantization matrix being used. Tests on a large
image dataset demonstrated that the proposed detector was able
to achieve an average accuracy equal to 93%, rising above 99%
when excluding the case of nearly lossless JPEG compression.

Index Terms—Anti-forensics, digital image forensics, JPEG
compression.

I. INTRODUCTION

HE availability of low-cost digital cameras, together with

the widespread adoption of multimedia sharing platforms,
have made the acquisition and the dissemination of digital im-
ages a virtually costless job. For this reason, images have be-
come a popular and easy means to convey information. At the
same time, producing photorealistic forgeries of original content
has become a rather simple task, even for non professional users.
In many cases, these forgeries might be innocuous. However, in
some circumstances they could be used for malicious purposes,
e.g., when the doctored images are employed as evidence in
courtrooms, or as material for propaganda, etc. In those cases,
forgeries may aim at discrediting somebody’s reputation or at
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altering facts to influence the public opinion. In order to limit
the hazards connected to misuse of digital images, in the past
few years a variety of digital image forensic techniques have
been proposed by the forensic community [3], [4]. Differently
from watermarking or hashing, these methods do not rely on ex-
trinsic information embedded into the image at the moment of
acquisition, or received by a secure server upon demand. In fact,
the questioned image is typically the only source of information
available to the forensic analyst. Therefore, forensic techniques
analyze the image content in order to find traces left by specific
acquisition, coding or editing operations, which could be telltale
of malicious tampering. These traces include, e.g., footprints left
by the camera sensor noise [5]; coding [6], [7]; resampling [8];
cropping [9]; and point-wise processing [10].

The footprints left by JPEG compression play an important
role in detecting possible forgeries, since JPEG is by far the
most widely used image compression standard. To achieve lossy
compression, a JPEG encoder quantizes each discrete cosine
transform (DCT) coefficient of an image to multiples of a quan-
tization step size, specified by the JPEG quantization matrix.
When an image is decoded, the distribution of reconstructed
DCT coefficients differs from the original, i.e., it exhibits a
characteristic comb-like shape, which might reveal the original
quantization matrix [6]. This fact enables several forensic anal-
ysis tasks, including the identification of which camera took
a picture [11], or the detection of double JPEG compression
[12]-[14]. Furthermore, localized evidence of double compres-
sion can reveal “copy-move” forgeries, in which an adversary
copies portions of other images into the doctored picture, before
resaving the result as JPEG [9], [15]-[17].

Given the relevance of JPEG compression footprints in
image forensics, a natural question arises about whether these
traces could be concealed by a knowledgeable adversary.
Indeed, Stamm et al. [18] have shown that the statistical
footprints of JPEG compression can be removed by adding a
properly designed dithering noise signal to the quantized DCT
coefficients of a JPEG-compressed image. The distribution of
the dithering noise signal is such that the resulting coefficients
are approximately distributed as those of the uncompressed
original image. Using this technique, the authors of [18] have
also demonstrated that many of the aforementioned forensic
techniques based on JPEG footprints can be fooled [19]. Never-
theless, this anti-forensic approach is not exempt from leaving
behind traces of its own.

In this work, we build on the observation that the anti-forensic
dither is a noisy signal which cannot replace the image content
lost during quantization. As that, it introduces visible distortion
in the attacked image, which appears as a characteristic grainy
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noise that allows to discriminate attacked images from original
uncompressed images. In our previous work [1] we have ana-
lyzed these traces in terms of distortion introduced in the tam-
pered image. Based on that, we take here the perspective of
the forensic analyst and show how he can effectively counter
the anti-forensic measures adopted by an adversary operating
according to [18]. To this end, we extend our previous work
[2] to the general and more challenging scenario in which the
quantization matrix template is unknown to the forensic ana-
lyst. The core of the proposed detector consists in recompressing
the questioned image by varying the coding conditions and an-
alyzing the amount of grainy noise left by the adversary. We
design an anti-forensics detector which only needs to change,
at each compression round, a pair of properly selected DCT co-
efficients. This recompress-and-observe paradigm is inspired to
similar methods presented in the literature, which exploit the
idempotency property of quantization in order to, e.g., estimate
the quality factor in JPEG compressed images [20], exposing
forgeries [21] and to identify the video codec [22]. However, to
the best of the authors’ knowledge, it has never been applied to
the problem of detecting JPEG compression anti-forensics be-
fore. Our experiments demonstrate that it is possible to correctly
detect attacked images with an accuracy equal to 93%, which
rises above 99% when excluding the case of nearly lossless
JPEG compression. These results indicate that removing JPEG
compression footprints is not as simple as previously thought,
since the process of footprint removal inevitably introduces new
traces in the doctored image.

We observe that there is a tight relationship between steganal-
ysis and forensic analysis. Indeed, some methods originally
developed to detect stego images can be used for the problem
at hand, by considering the uncompressed original image as the
cover image, and the decompressed JPEG image with added
the anti-forensic dithering signal as the stego image. This is,
e.g., the approach recently taken in [23], in which JPEG com-
pression anti-forensics is countered by means of calibration
features, originally proposed in the field of steganalysis [24]. In
addition to [23], we also include in our experiments the detector
based on SPAM (Subtractive Pixel Adjacency Matrix) features
[25], which were proposed to detect steganographic methods
that embed in the spatial domain by adding a low-amplitude
independent stego signal. Notice that the above mentioned
steganographic approaches are effective to detect whether an
additive noise signal has been added to the cover image (thus
including the anti-forensic dither as a special case). Conversely,
the approach proposed in this paper targets the specific case
of JPEG compression anti-forensic dither, based on the idem-
potency property of quantization. This entails a lower false
positive rate when other kinds of noise are introduced into the
image without malicious purposes.

Note that we assume that the adversary saves the attacked
image according to a lossless compression format, consistently
with the previous literature [ 18]. This is a reasonable standpoint,
since the ultimate goal of the adversary is to conceal the traces of
lossy compression. In some cases, though, the adversary might
want to save the attacked image with JPEG or other lossy com-
pression formats, presumably at quality higher than the one of
the original JPEG compression. Revealing the traces of JPEG

compression anti-forensics in the case of double [13][26] (or
multiple [27]) compression is intuitively harder, and it is left to
future investigation.

The rest of the paper is organized as follows. Section II
reviews the basics of JPEG compression and summarizes the
anti-forensic technique described in [18]. For convenience, in
Section III we illustrate the study appeared in our previous work
[1], where we analyzed the mean-square-error distortion intro-
duced by anti-forensic dithering. This is instrumental in setting
the theoretical basis for the detection of anti-forensic dithering
based on recompression, which is described in Section IV and
experimentally validated in Section V, for the two cases of
known and unknown quantization matrix template. Finally,
Section VI concludes the paper.

II. BACKGROUND

In this section we start reviewing the basics of JPEG compres-
sion and the corresponding footprints. Then, we summarize the
anti-forensic technique described in [18]. Without loss of gen-
erality, we consider JPEG compression for gray-scale images.
However, the very same principles apply to the luminance and
chrominance channels of color images.

A. JPEG Compression and JPEG Compression Footprints

In the JPEG compression standard, the input image is first di-
vided into B nonoverlapping pixel blocks of size 8 x 8. For each
block, the two-dimensional discrete cosine transform (DCT) is
computed. Let X?,1 < b < B, 1 < i < 64, denote the i-th
transform coefficient of the b-th block according to some scan-
ning order (e.g., zig-zag). That is, there is a one-to-one mapping
i < (r, $) between the index ¢ and the position (r, s},1 < r,s <
8, of a coefficient within a DCT block. Let X; = [X} ..., XﬂT
denote the set of DCT coefficients of the ¢-th subband. Each
DCT coefficient X f, 1 <4 <64, is quantized with a quantiza-
tion step size g;. The set of g;’s forms the quantization matrix
Q, which is not specified by the standard. In many JPEG imple-
mentations, it is customary to define Q as a scaled version of a
template matrix, by adjusting a (scalar) quality factor ¢). This is
the case, for instance, of the quantization matrices adopted by
the Independent JPEG Group (IJG) [28], which are obtained by
properly scaling the image-independent quantization matrices
suggested in Annex K of the JPEG standard [29]. The quanti-
zation levels W! are obtained from the original coefficients X?
as W! = round(X!/g:). The quantization levels are entropy
coded and written in the JPEG bitstream. When the bitstream is
decoded, the DCT values are reconstructed from the quantiza-
tion levels as X? = ¢;W?. Then, the inverse DCT is applied to
each block, and the result is rounded and truncated in order to
take integer values on [0,255].

Due to the quantization process, the dequantized coeffi-
cients Xf can only assume values that are integer multiples
of the quantization step size ¢;. Therefore, the histogram
of dequantized coefficients of the ¢-th DCT subband, i.e.,
X; = [X}, X 51, is comb-shaped with peaks spaced apart
by ¢;. This is depicted in Fig. 1, which shows the histogram
of transform coefficients in the (2,1) DCT subband before
(Fig. 1(a)) and after (Fig. 1(b)) JPEG compression. The process
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Fig. 1. (a) Histogram of transform coefficients in the (2,1) DCT subband for the Lenna image. (b) Due to quantization, the coefficients in the JPEG-compressed
image have a comb-shaped distribution. (c) The anti-forensic technique in [18] enables us to approximately restore the original distribution, thus removing JPEG-

compression footprints.

of rounding and truncating the decompressed pixel values per-
turbs the comb-shaped distribution of X .. However, the DCT
coefficient values typically remain tightly clustered around
integer multiples of ¢;. Hereafter, we refer to this characteristic
comb shape of the DCT coefficients’ histogram as JPEG com-
pression footprint, as it reveals that: a) a quantization process
has occurred; and b) which was the original quantization step
size [6].

B. JPEG Compression Anti-Forensics

The work in [18] proposes to conceal the traces of JPEG com-
pression by filling the gaps in the comb-shaped distribution of
X; by adding a dithering, noise-like, signal N; in such a way
that the distribution of the dithered coefficients Y; = X[' + N;
approximates the original distribution of X;. The original AC
coefficients (2 < ¢ < 64) are typically assumed to be dis-
tributed according to the Laplacian distribution [30]:

fxi(x) = A

A=Az

5 € , 1)
where the decay parameter A; typically takes values between
1072 and 1 for natural imagery. In practice, only the JPEG-
compressed version of the image is available, and the original
AC coefficients X; are unknown. Therefore, the parameter A; in
(1) must be computed from the quantized coefficients X, e.g.,
using the maximum-likelihood method in [31], which will result
in an estimated parameter A;.

According to [18], in order to remove the statistical traces of
quantization in X, the dithering signal N; needs to be designed
in such a way that its distribution depends on whether the cor-
responding quantized coefficients X are equal to zero. That is,
for DCT coefficients quantized to zero:

1 ,—Ailn]

.fNi(n|)~(i = 0) = {60

f 4o« i
if 5 S n < 5 (2)
otherwise,

where ¢ = (2/3)(1 — e‘;\l‘h/z). Conversely, for the other
coefficients

1 —sgn{x))\; (n+q; /2 : 4 i
e sgn(z) i (n+q;/2) if—% <n<3

fre (0] X = )= { :

otherwise,

(€))

where ¢; = (1/A;)(1 — e ). Note that the value of the
DCT coefficient X; enters the definition of the p.d.f. in (3) only
through its sign. For some DCT subbands, all the coefficients
may be quantized to zero, and A; cannot be determined. In those
cases, the authors of [18] suggest to leave the reconstructed co-
efficients unmodified, i.e., Y; = X.

As for the DC coefficients, there is no general model for rep-
resenting their distribution. Hence, the anti-forensic dithering
signal for the DC coefficient (¢ = 1) is sampled from the uni-
form distribution

G 4
if 5 § n <3
otherwise.

I () = { f @)

(

Fig. 4 illustrates that the anti-forensic technique enables to
approximately restore the original Laplacian distribution, thus
removing JPEG-compression footprints.

III. ANALYSIS OF THE DISTORTION INTRODUCED BY
ANTI-FORENSIC DITHERING

The addition of the anti-forensic dither illustrated in the pre-
vious section corresponds to injecting a noise-like signal in the
pixel domain. As a result, the dithered image is distorted with
respect to the JPEG-compressed image. In this section, we char-
acterize analytically the distortion in the DCT domain, showing
that it is a function of both the distribution of the original trans-
form coefficients and the quantization step size. We arrive to the
conclusion that the energy of anti-forensic dithering is concen-
trated in the middle DCT frequencies, thus resulting in a grainy
noise in the spatial domain. We leverage this fact in Section [V-B
to select a proper set of DCT coefficients to analyze in order to
detect JPEG anti-forensics. Next, in Section III-B we analyze
the effect of requantizing the dithered coefficients in a DCT sub-
band using different quantization step sizes. We observe that
requantizing the dithered coefficients with the original JPEG
quantization step annihilates completely the anti-forensic noise.
We build on this observation to detect the traces left by JPEG
compression anti-forensics in Section I'V.
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Fig. 2. MSE distortion D; introduced by anti-forensic dithering for (a) different values of the decay parameter i (b) different values of quantization step size g; .

A. Characterization of Anti-Forensic Dithering Energy

The mean-square-error (MSE) distortion D; between the
JPEG-compressed coefficients X; and the dithered coefficients
Y, in the ¢-th subband can be measured directly in the DCT
domain, since the transform is orthonormal. That is,

B

2 = b o)’ 1 ATDY 2
DiZEbZ(Yi —Xi) D1 )
=1

=1

Since the distribution of the dithering signal IN; is known from
(2)—(4), it is possible to obtain an analytical expression of the

expected value D; = E[D;]:
+q:/2
2* fn (| X = kgi)dz, (6)

+ oo

Z Pr(j(i = kq;)

k=—o0

D; =

—q:/2

where Pr(X; = kq;) represents the probability mass function
of the quantized DCT coefficients. For AC coefficients, (6) can
be rewritten according to the definitions given in (2), (3). That
is,

Di=miD}+ (1-m]) D}, for 1<i<64 (7)
where
+4:/2
DY = / 22 fn, (2] X5 = 0)da, (8)
*!}i/Q
+a:/2
D} = 22 g, (2| Xi = kqi)de, 9
—4:/2

and m? = 1 — e=*%/2 is the fraction of coefficients quantized
to zero.

For DC coefficients, the mean square error D; is equal to that
of a uniform scalar quantizer, i.e., Dy = q% /12. Instead, for
AC coefficients, an expression can be found in closed form by
solving the integrals in (8) and (9), as a function of the quanti-
zation step size and the parameter of the Laplacian distribution.
That is:

S\LQqLQ + 4:\qu +8 (1 _ e*v[fv‘,)

DY{gi, ) = -0
432 (1 —e )
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Fig. 3. MSE distortion D for two images characterized by different smooth-
ness. The distortion introduced when removing JPEG footprints from images
characterized by high-frequency textures is in general higher than for smooth
images.

Fig. 2(a) shows the MSE distortion [); as a function of ¢;, for
different values of A;. As a general consideration, the distortion
introduced by the anti-forensic dither gets larger as the quanti-
zation step size increases. Indeed, a larger value of ¢; implies a
wider spacing between the peaks in the comb-shaped distribu-
tion of Xi. Thus, a larger amount of noise needs to be added to
restore the original coefficient distribution.

The growth of the mean square error D; depends also on the
value of \;, as illustrated in F ig. 2(b). A larger A; in the Lapla-
cian model (1) results in DCT coefficients which are more clus-
tered around zero (i.e., with smaller energy). When \; is suffi-
ciently large, all coefficients fall into the zero bin of the quan-
tizer (i.e., m? = 1 in (7)). Therefore, no anti-forensic noise is
added, and the distortion is exactly zero.

As an example, Fig. 3 shows the MSE distortion
D = (1/64) Z?il D; as a function of JPEG compression
quality (), when the 1JG quantization matrices are used. We
consider two images with different content characteristics,
Lenna and Mandril. Visual inspection reveals that Lenna is
smoother than Mandril. In the DCT domain, larger values of
A; are observed for Lenna, especially at high frequency. There-
fore, the MSE distortion introduced in Lenna is smaller than
in Mandril. Fig. 3 also demonstrates that the analytical model
describing the expected distortion D introduced by dithering
provides an accurate match of the measured MSE D.

We characterize the distribution of the MSE distortion
due to the anti-forensic dither in the DCT domain in order
to understand which DCT frequencies are affected more by
dithering. This is useful in order to tune the parameters for
the anti-forensic detector explained in Section IV-B. In order
to exploit frequency masking and increase coding efficiency,
the quantization step sizes ¢;’s are generally larger at higher
frequencies. Hence, we expect larger values of D; in those
DCT subbands corresponding to higher frequencies. On the
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Fig. 5. Scheme of the requantization of a DCT coefficient.

other hand, high-frequency components have lower energy
(higher ;) due to the piecewise smoothness of natural images.
As a result, we typically observe larger values of the MSE
distortion at intermediate frequencies. This is illustrated in
Fig. 4(a), which shows D, averaged over all the 8 x 8 blocks of
the images in the UCID color image database [32], compressed
using JPEG at different quality factors ) € [30,95] with the
1JG quantization matrices. We notice that D; is not uniformly
distributed across the DCT subbands, and it is concentrated at
medium frequencies. Indeed, the distribution depends on both
the image content and the quantization matrix employed. As
a further example, Fig. 4(b) and Fig. 4(c) show the average
MSE distortion when all images in the dataset are compressed
at a quality factor equal to, respectively, @ = 30 and Q@ = 90.
When the quality of JPEG compression increases: i) the overall
amount of distortion decreases (see the different scale being
used); ii) the distribution of the MSE distortion is shifted
towards DCT subbands that correspond to higher frequencies.

B. Effect of Requantization on the Dithered Image

The distribution of the anti-forensic dither in the ¢-th DCT
subband is designed in such a way that it is nonzero only in the
interval [—(q;/2), q;/2), where ¢; is the corresponding quan-
tization step size (cfr. (2)—(4)). Based on this observation, we
show that the anti-forensic noise can be completely canceled if
the dithered image is requantized using the same quantization
matrix used in the original JPEG compression step.

For clarity of illustration, we start considering a single coeffi-
cient in one DCT subband, requantized according to the scheme
illustrated in Fig. 5. In order to simplify the notation, we drop
the subband index, e.g., ¢; = q. Let X denote the value of a
DCT coefficient in the original (uncompressed) image. During
JPEG compression, X is quantized using a uniform quantizer Q
with quantization step size g, thus producing X . In order to re-
move the traces of quantization, an adversary adds the dithering

signal N according to [18], thus producing Y. From the dis-
cussion in Section II-B, the net result is that the p.d.f. fy(y)
is indistinguishable from fx (x). Then, the dithered coefficient
Y is requantized with a uniform quantizer @ 4 with quantization
step size ¢4, producing the new coefficient Y. We are interested
in computing the MSE distortion, D 4(q.4 ), between XandY.
That is,

oo +
= Z Dk /(ik—QA(itk—l—n))Z In(n)dn|, (12)
k=—-o0 g
where 7, = kg, the expectation is taken with respect to the

joint distribution of X and N, fn(n) is the probability density
function of the dithering noise as in (2)—(4), and

kq+ %

Pr = (13)

is the probability of the original coefficient X to fall in the £-th
quantization bin. Notice that the output of Q 4 assumes values at
integer multiples of g4 . Therefore, after a change of variables,
(12) can be written as

“+oc oo
Dalga)= > l > (kg - }L(]A)thua«] ;o (14)
k=—occ h=—oc
where
haa+ 4
Pk = / fn(n = kq)dn (15)
hflA'*q.TA

is the probability of quantizing a dithered sample to the A-th bin
of Q 4, given that the original sample was quantized to the £-th
bin of Q. This is illustrated in Fig. 6. Notice that fi(n — kq) is
nonzero in the interval [kq — (¢/2), kq + (¢/2)).

We observe that when ¢4 — 0, i.e., requantization is al-
most lossless, D4(gq) — ai,, the variance of V. On the other
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Fig. 6. Requantization of a dithered DCT coefficient (originally quantized with
a quantization step size ¢), with a quantization step ¢ .4 . The anti-forensic dither
recovers the original distribution of the coefficient fx (z). When requantized,
the noise in the &-th quantization bin is redistributed into several bins.

hand, when g4 — oo, Y is always quantized to zero. Therefore,
Dalqa) — rf%{, i.e., the variance of X. The dithering noise is
canceled, i.e.,‘DA(qA) = 0, when g4 = (k/h)q for all the
values h, k for which py, ;. > 0. This is achieved when ¢4 = ¢,
such that p ), = 1, when & = h, and pj |, = 0 otherwise. It
can be easily seen from Fig. 6 that this corresponds to the case
when all the noise V added to the coefficients in the %-th bin
is reabsorbed by the quantized values kg4 = kg, resulting in
D4(qa) = 0.

When ¢4 # ¢, requantization does not suppress distortion
completely, i.e., D 4(ga) > 0. Specifically, when ¢4 > g, the
dithering signal is mostly canceled. Conversely, when g4 < g,
new nonempty bins in the histogram of Y are created, due to the
dithering signal IV leaking to neighboring bins (see Fig. 6). In
other words, the noise NV is more accurately reproduced in Y.
Due to the additive nature of MSE distortion, it is possible to
generalize the analysis above from individual DCT subbands to
the whole image.

As an illustrative example, we measured the MSE distortion
between the original JPEG-compressed image and the output
of the second JPEG compression for Lenna. We considered
the widely used JPEG quantization matrices suggested by the
Independent JPEG Group [28]. Hence, quantization is adjusted
by means of a 100-points quality factor 2 = 1,...,100 that
scales a template matrix to obtain the quantization steps g i,
1 = 1,...,64 for each DCT subband. Similarly, recompres-
sion is driven by a quality factor @ 4. Fig. 7 illustrates the
mean-square-error distortion between the recompressed image
(at quality factor 2 4) and the JPEG-compressed one, when the
latter was originally compressed at (¢ = 35, 60, 85. We notice
a trend similar to the one predicted for each DCT coefficient

401

35§

30+ \s

20 30 40 50 60 70 80 90 100

Fig. 7. MSE distortion between the Lenna image, JPEG-compressed at quality
(2, and its recompressed version at quality ¢} 4. The distortion is almost equal
to zero when Q4 = Q.

subband, where the distortion is minimized when Q4 = @
(thus g4 ,; = g; for all #). The distortion is not exactly zero due
to rounding and truncation of pixel values.

Visual inspection of the recompressed images reveals that,
for Q.4 < @ the recompressed image does not contain traces of
the dithering signal, which is mostly suppressed together with
the high frequency components of the underlying image. On
the other hand, for @4 > @, the dithering signal is somewhat
preserved, and transformed back to the spatial domain, thus re-
sulting in an image affected by grainy noise. This observation
triggers the intuition for the detection method illustrated in the
next section.

IV. DETECTION OF JPEG COMPRESSION IN THE PRESENCE
OF ANTI-FORENSICS

The analysis above suggests that it is possible to identify
anti-forensically dithered images by checking whether the noise
introduced is annihilated after requantization. Unfortunately, in
practice we do not have access to the original JPEG-compressed
image in order to compute the MSE distortion after requantiza-
tion. Nevertheless, we observe that the presence of the dithering
signal in the spatial domain can be detected using a blind nois-
iness metrics. revision To this end, any metrics that can ro-
bustly measure the amount of noise present in an image could
be employed. In the following, we adopt the total variation (TV)
metrics [33], which is defined as the DIl; norm of the spatial
first-order derivatives of an image. The total variation is more
sensitive to small and frequent variations of pixel values due to
noise, than to abrupt changes corresponding to edges. Hence,
it is widely adopted as part of the objective function of opti-
mization algorithms used for image denoising. Of course, other
metrics could also be successfully employed. In Section V we
will show that, for example, the mean value of the SPAM fea-
ture vector [25], can also be used. Indeed, its value is directly
proportional to the amount of noise in the image, as it measures
the strength of interpixel correlation.

In the following, we consider two cases. In the first one, dis-
cussed in Section [V-B, we assume that some prior knowledge
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Fig. 8. Total variation (TV) as a function of the recompression quality factor ¢) 4, for two versions of the Lenna image. (a) ( = 60; (b) 2 = 80.

about the original JPEG coding is available, e.g., that the orig-
inal quantization matrix belongs to a family of quantization ma-
trices corresponding to a certain JPEG implementation (e.g., the
1JG implementation). In this setting, the forensic analyst can re-
compress the questioned image using the same quantization ma-
trix template as the original.

In the second case, discussed in Section IV-B, we consider
the more general setting in which the quantization matrix tem-
plate is not available. In this case, we only make very loose as-
sumptions about the symmetry properties that characterize typ-
ical JPEG quantization matrices.

The experimental evaluation of the two detectors on a large
image dataset, including the selection of the relevant detector
parameters, is postponed to Section V.

A. Known Quantization Matrix Template

In many JPEG implementations—including the IJG libjpeg
software [28] and commercial photo-editing programs such as
Adobe Photoshop—it is customary to use predetermined JPEG
quantization matrices. The specific quantization matrix is im-
plicitly identified when the user selects the target quality factor
(). For instance, in the 1JG scheme, quantization matrices are
obtained by properly scaling a template matrix, while in Adobe
Photoshop, each JPEG quality factor corresponds to a specific
quantization matrix stored in a lookup table.

If the forensic analyst is aware of the specific JPEG imple-
mentation that was originally used to encode the image, he can
readily generate 8 X 8 quantization matrices QQ 4 given a (scalar)
quality factor @ 4. Thatis, Q4 = Q4 (Q 1), where the subscript
4 refers to the quality factor used by the analyst. Then, he can
recompress the doubted image using different analysis quality
factors () 4. For each recompressed image, the total variation
TV(Q4) = TV(Qa(Q.)) is computed. Fig. 8 shows the TV
as a function of (7 4 for two versions of the Lenna image, when
the IJG scheme is employed. The dashed line corresponds to
the genuine, uncompressed image. Not surprisingly, the TV in-
creases smoothly when }4 increases. Instead, to generate the
solid line, the Lenna images has been compressed (at quality
factor @ = 60) and subsequently manipulated to add a dithering
signal to restore the original distribution of the DCT coeffi-
cients. The apparent slope change at (2 4 = 60 is due to the fact
that noise starts being visible when @@ 4 > (). We observed that
this behavior is general, and applies also to different kinds of
visual content. Therefore, we propose to analyze the TV(Q 4)

curve in order to devise a detector that identifies when the traces
of JPEG compression have been concealed by an adversary and,
in this case, to find the original quality factor .

In order to decide whether an image has been attacked,
we consider the first order backward finite difference signal
ATV(Q 4), obtained from the total variation curve as:

ATV(Q4) =TV(Q4) - TV(Q4 - 1) (16)

We deem an image to have been anti-forensically attacked if

|:Héax ATV(QA)} > T, (17)

where the threshold 7 is a parameter that can be adjusted by the
detector. In this case, we also estimate the quality factor ¢} of
the JPEG-compressed image as:

Q= (arg%axATV(QA)) -1 (18)
A

The —1 term in (18) is to compensate for the bias introduced by

the approximation of the first order derivative in (16).

B. Unknown Quantization Matrix

In the general case, the forensic analyst might not be aware
of the JPEG implementation used to originally encode the
doubted image. Unlike the case discussed in the previous sec-
tion, TV(Q 4) cannot be conveniently expressed as a function
of only one scalar variable.

Indeed, the most straightforward approach would be to as-
sume a quantization matrix template that contains the same en-
tries for each DCT coefficient. A function TV((Q 4) can be ob-
tained by scaling the values of such constant matrix, based on
a scalar quality factor (2 4. However, our experiments showed
that this method was ineffective in detecting traces of JPEG
compression, as the function TV(Q,) did not present a dis-
tinctive shape as the one illustrated in Fig. 8. This can be justi-
fied by looking at Fig. 9, which shows the dependency between
the quality factor and the quantization step sizes for two pairs
of DCT coefficients and two JPEG implementations. The anal-
ysis of Fig. 9 reveals the following facts: i) the dependency is
almost linear, especially at higher values of the quality factor;
ii) the slope depends on the DCT coefficient subbands. There-
fore, scaling a constant matrix ignores the differences among
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Fig. 10. Total variation surface for the Lenna image, obtained by changing the
sponds to the true value of (¢4 ,(3,4), @a(4,3)). (a) Original; (b) dithered.

DCT coefficient subbands. The original quantization step sizes
used to JPEG compress the doubted image correspond to dif-
ferent values of (2 4. Hence, the slope discontinuity in Fig. 8
would not be clearly localized at a single value of 2 4.

The quantity TV(Q4) can be expressed as a function of
64 variables g4 4,7 = 1,...,64. However, analyzing the char-
acteristics of TV(Q 4) in a 64-dimensional space is clearly un-
feasible. Interestingly, it is possible to restrict the analysis to
a two-dimensional space. Specifically, we consider a recom-
pression scheme where the analysis quantization matrix, Q 4,
is designed in such a way that quantization affects only two
DCT subbands. That is, given a pair of DCT subbands (i1, j1)
and (iz, j2), we vary qa , j,) and qa ¢, ;,), Whereas we set
qa,Gj) = 1 forany (i,5) & {(i1,j1), (2, j2) }.

Fig. 10 illustrates an example of TV(Q.) =
TV(1,...,q4,34),94,43),---,1) obtained by varying
q4,3,4) and qu (4,3). Fig. 10(a) refers to the uncompressed
Lenna image. Conversely, Fig. 10(b) refers to same image,
but compressed with the 1JG libjpeg software at quality factor
2 = 60, and manipulated by an adversary by adding the
anti-forensic dither. We observe that Fig. 10(b) exhibits a
distinctive behavior with respect to Fig. 10(a).

In order to further reduce the dimensionality of the problem,
we notice that JPEG quantization matrices are designed in such

(b)

quantization steps for the DCT coefficients (3,4) and (4,3). The white cross corre-

away that they are approximately symmetric, i.€., q(; ;) = 4(;.4)-
This is illustrated in Fig. 9 for two pairs of DCT coefficients.
We observed this property in most commonly used JPEG quan-
tization matrices, including those employed in IJG libjpeg, in
popular photo-editing software such as Adobe Photoshop, and
in digital cameras of several brands. As a result, we can fur-
ther restrict search space by considering symmetric DCT sub-
bands pairs, i.e., (i2, j2) = (j1,71), and by varying both quan-
tization step sizes simultaneously, i.e., g4 ¢, .;,) = §A,(is,52)
Intuitively, this corresponds to evaluating the TV function in
Fig. 10 only along the diagonal.

Based on the these observations, the proposed anti-forensic
detector works as follows. Each image is recompressed
(¢maz — Gmin + 1) times, by setting, at each round,
FA,(i1,51) = A, (ia,52) = 4A, with dA = dmins---: Imax-
Hence, a (¢mar — Gmin + 1)-dimensional vector TV is
populated as

1)
]

v |

Note that we sort the elements of the vector TV ; ;) in de-
creasing order of ¢ 4, in such a way that the first (last) element

TV(L e s Qmax — 17 Gmax

TV (i) = { (19)

TV(L <o Qmans Qming - - -
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Fig. 11. Total variation TV ; ;) as a function of ¢4 for two JPEG quality factors Q = {60, 80} and two pairs of DCT coefficients (7, ) = {(4,3),(7,2)}.

(@) Q@ = 60; (b) Q@ = 60; (c) Q@ = 80;(d) Q = 80.

correspond to coarser (finer) requantization, to retain the same
convention adopted for the case of known matrix template.

Fig. 11 shows TV ; ;) for two quality factors ) = {60, 80}
(using 1JG implementation) and two pairs of DCT coefficients
(4,7) = {(4,3),(7.2)}. Vectors are normalized to have zero
mean for display purposes. We observe that the coefficient (4,3)
leads to a vector which is noisier than the one obtained using
(7,2), especially at a higher JPEG quality factor. Thus, the latter
leads to a more robust detector when it comes to discriminate
dithered and original images. This confirms the analysis in
Section III, where we showed in Fig. 4 that the MSE introduced
by dithering is significantly higher in DCT coefficient (7,2)
than in (4,3).

In order to distinguish between uncompressed and dithered
images, first, we compute a smoothed vector W(i, ;) by means
of local regression using weighted linear least squares and a
2nd degree polynomial model. This operation removes noisy
variations of the TV ; ;) vector. Then, similarly to the case of
known matrix template, we compute the first order derivative

ATV jy(ga) = TV (aa) = TV laa — 1), (20)

and we deem an image to have been anti-forensically attacked
if

max ATV py(ga)| > 7.5 21

The detector in (20) and (21) exploits only a single pair of

DCT coefficient subbands. We argue that it is possible to im-

prove the accuracy of the detector by merging together the ob-

servations gathered from multiple DCT coefficient subbands.
Therefore, we consider a set C = (i1, 41)...., (ic,jc) of C

subbands and we pursue two different information fusion ap-
proaches, which correspond to, respectively, preclassification
and postclassification according to the taxonomy proposed in
[34]. In the preclassification approach, weTconstruct a vector
ATVe = [ATV(, e ATV oyl of size (gmar —
gmin ) - C obtained concatenating the vectors corresponding to
the individual subbands. The detector is identical to (21), where
Aﬁ(iw is replaced by ATV¢. In the postclassification ap-
proach, for each subband we compute a binary decision ac-
cording to (21), and the final decision is obtained by majority
voting among the set of C' binary decisions. The accuracy of
the different versions of the detector is studied in Section V.

V. EXPERIMENTS

We carried out a large-scale test of the algorithms described
in Section IV-A and Section IV-B on 1338 images of the Un-
compressed Color Image Database (UCID) [32]. All the pic-
tures in this dataset have a resolution of 512 x 384. Without
loss of generality, we considered the luma component only.
Some of the methods described in the literature require training,
for which we adopted a separate dataset. The NRCS dataset
[35] was obtained downloading 978 uncompressed images (raw
scans of film with resolution 2100 x 1500). In order to provide
a fair comparison, we resampled the images at the same resolu-
tion as the UCID dataset used for testing. We split the dataset
in two sets of equal size. The first half contained images that
were JPEG-compressed at a random quality factor ¢ using the
1JG implementation. More specifically, the quality factor is uni-
formly sampled in the set {30, 40, 50, 60, 70, 80, 90, 95} with
probability 1/8. In order to restore the original statistics of the
DCT coefficients, we added an anti-forensic dithering signal ac-
cording to the method in [18]. The remaining half contained un-
compressed original images.
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Fig. 12. ROC curves of the proposed detector. All figures report the curves corresponding to: i) known matrix template; ii) unknown matrix template, concate-
nating ¢’ = 10 DCT subbands; iii) unknown matrix template, fusing the outputs of the individual detectors by majority voting. In addition, we show one curve
for each DCT coefficient subband used by the detector. To avoid cluttering the figure, a set of five coefficients is shown in (a)—(c) and the other set in (b)—(d).

(¢) Zoom of (a); (d) zoom of (b).

A. Known Quantization Matrix Template

In the case of known quantization matrix template, we let the
threshold = vary to trace the receiver operating characteristic
(ROC) curve shown in Fig. 12. There, the true positive (TP) rate
is the fraction of JPEG-compressed images that were correctly
reported to be compressed and the false positive (FP) rate is
the fraction of uncompressed images that were reported to be
compressed. Typically, the forensic analyst is interested to work
at a low target FP rate. Fig. 12(c) illustrates a zoomed version of
the ROC for FP rates in the interval [0, 0.2]. We observe that the
detector reaches a TP rate above 0.89 at a FP rate as low as 0.02.
Fig. 12 is obtained by considering all the images in the dataset.
Thus, it does not reveal the performance of the proposed method
for different values of the (unknown) quality factor ¢}. In order
to study this aspect, Fig. 13 illustrates individual ROC curves
for each value of (. Each curve is obtained by considering a
subset of the original dataset, which is constructed by taking
all the images that were JPEG compressed at quality factor @,
and an equivalent number of uncompressed images selected at
random, so as to obtain a balanced subset. Fig. 13 shows the
excellent performance of the proposed detector when () is in the
range [30, 90]. The only critical situation is obtained when () =

95. However, in the last part of this section we will show that,
building a more sophisticated detector that uses the proposed
TV(Q 4) feature as input to an SVM classifier, very good results
can be achieved also when @@ = 95.

When the matrix template is known, the forensic analyst
might be also interested in determining an estimate Q of the
quality factor Q) originally used to compress the image. Table I
reports the performance of the estimator in terms of:

* Bias
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Fig. 13. ROC curves of the proposed detector, for the case of known matrix template. Each curve corresponds to a different value of the (unknown) quality factor
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TABLE I
DETECTION ACCURACY. KNOWN MATRIX TEMPLATE

@ PSNR  accuracy Epjas  Esd Es

30 29.0 0.99 -12.4 1.1 1.00
40 30.8 0.99 2.4 22 001
50 30.8 1.00 -1.8 1.9 008
60 32.1 1.00 -1.5 1.6 004
70 337 0.99 -1.1 37 003
80 35.0 1.00 -1.0 04  0.00
90 39.2 0.99 -0.3 50 001
95 43.7 0.62 12.3 128 0.82

where & denotes the set of indexes of 7'F images classified as
true positive samples. ) and Q(P) denote, respectively, the
true and estimated quality factor of the p-th image in the set S.
Note that Q) is undefined for negative samples (TN+FP) and
Q(p) is not computed for false negative samples. Both bias and
standard deviation are within a few units when ) € [40, 90],
with larger values at the extremes of the tested range, i.e., Q =
30,95.

B. Unknown Quantization Matrix Template

the case of unknown quantization matrix,
we selected a set of DCT coefficient subbands
c {(57 3)7 (57 4)7 (67 3)7 (() 4)’ (() 5)7 (77 1)7 (77 2)7 (77 3)
(8.1),(8,2)}, based on the analysis in Section III. Indeed,
they correspond to mid-frequency subbands in which the MSE
distortion due to the addition of the dithering noise is largest
(cfr. Fig. 4). We let 7(; ;) vary to trace the ROC curve for each
subband (4, j) € C. To avoid cluttering the figure, a set of five
coefficients is shown in Fig. 12(a) and Fig. 12(c) and the other
set in Fig. 12(b) and Fig. 12(d). In this case, we observe that
the performance of the detector depends on the selected DCT
subband, with the best results achieved for subbands (5,4),
(6,3), (7,2) and (7,3). With respect to the case of known matrix
template, a TP rate above 0.89 is reached at a FP rate equal
to 0.1, confirming the fact that the knowledge of the matrix
template facilitates the work of the forensic analyst.

In

Fig. 12 also shows the results obtained with the two infor-
mation fusion approaches described in Section IV-B. As for fu-
sion based on preclassification, i.e., concatenating the vectors
obtained with all subbands, the TP rate for a target FP rate is
higher than in the case of a detector based on a single subband.
The only exception is at very low FP rates, where a detector
based on (5,4) achieves higher TP rate. We argue that more so-
phisticated fusion methods (e.g., weighting the contribution of
each DCT subband differently) might further improve the re-
sults, and it is left as future work. In the case of fusion based
on postclassification, majority voting provides a binary decision
for each image. As such, instead of the ROC curve we can only
report the corresponding TP rate versus FP rate point.

C. Detection Accuracy and Threshold Selection

The only parameter that need to be adjusted by the forensic
analyst is the value of the threshold 7 (or 7(; ;), for the case of
unknown matrix template). In order to select the optimal value
of the threshold, we evaluated performance in terms of accuracy,
i.e., the fraction of correct decisions taken by the detector. That
is
TP(r)+TN(7)

— 3

N

where T'N denotes the number of true negatives, i.e., the un-
compressed original images that were detected to be so, and N
is the number of images in the dataset. Accuracy is a suitable
metrics when the dataset is balanced, such as the one adopted in
our experiments. For each value of the threshold, we computed
the accuracy of the detector and we selected the threshold that
maximizes accuracy over the whole dataset. Note that the op-
timal value of the thresholds (i.e., 7*, T(*i’j)) has been obtained
over a dataset characterized by diverse coding conditions, as the
forensic analyst is typically unaware of them, so as to provide a
fair evaluation.

Table II shows the overall accuracy, averaged over all JPEG
coding conditions. We observe that leveraging the knowledge
of the matrix template we achieve a level of accuracy equal to
0.93. When the matrix template is unknown and the detector
is based on individual DCT coefficient subbands, accuracy

accuracy (7) (25)
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TABLE 11

DETECTION ACCURACY AVERAGED OVER ALL JPEG CODING
CONDITIONS (IN ORDER OF DECREASING ACCURACY)

detector accuracy
known matrix template 0.93
concatenation 0.90
Q majority voting 0.89
= (6.3) 0.89
£ (71.2) 0.88
= (7,3) 0.88
% (5,4) 0.88
=) (6,4) 0.87
g (7,1) 0.86
g (5.3) 0.85
2 (6,5) 0.85
= 8,1 0.84
(8,2) 0.83

decreases (0.83—0.89). Both information fusion methods help
bridging the gap with the case of known matrix template.

In addition, we evaluated the performance of the detectors
for each value of . In this case, let V¢, denote the number
of images in the dataset that were originally compressed with
JPEG with a quality factor equal to . To evaluate accuracy,
we set N = 2 - N and randomly selected a subset of N un-
compressed original images as negative samples, in order to en-
sure a balanced population between positive (JPEG-compressed
images) and negative (uncompressed original images) samples.
Fig. 14 shows the results obtained when the quantization ma-
trix template is either known or unknown. In the latter case,
we report results obtained with detectors leveraging individual
DCT subbands and by fusing the information of different sub-
bands. The detection accuracy is only mildly dependent on the
JPEG coding conditions in the [30,90] range, and it drops when
2 = 95. Indeed, at higher quality, JPEG compression is nearly
lossless (PSNR is above 46 dB), and the traces left by quantiza-
tion can be easily concealed without introducing significant dis-
tortion. Excluding () = 95, accuracy is above 99% for the case

of known matrix template and above 95% for the case of un-
known matrix template when information fusion based on ma-
jority voting is used.

D. Comparison With Steganalysis

We compared the proposed detectors with other methods
described in the literature, namely detectors based on the
Subtractive Pixel Adjacency Matrix (SPAM) features in [25]
and the calibration features in [23]. The SPAM features were
proposed to detect steganographic methods that embed in the
spatial domain by adding a low-amplitude independent stego
signal. Although originally designed for a different purpose,
these features can be used to build a detector by considering
the uncompressed original image as the cover image, and
the decompressed JPEG image with added the anti-forensic
dithering signal as the stego image. We extracted first order
SPAM features using the default parameters suggested in [25],
which leads to a 162-dimensional vector for each image. This
feature vector describes the amount of interpixel correlation
along different directions, and we refer the reader to [25] for
details on how it is computed. In order to design a detector, a
support vector machine (SVM) classifier was trained on the
NRCS dataset. In order to tune the parameters of the SVM
classifier (C,~y) we followed the procedure described in [25],
which suggests five-fold cross-validation with an exhaustive
search over a multiplicative grid sampling the parameter space.
We did not consider second-order SPAM features as the feature
vector has a dimension comparable to the size of the training
set, thus being at risk for overfitting.

The calibration features were also originally proposed in the
field of steganalysis [24] and recently adapted to detect JPEG
compression anti-forensics [23]. Specifically, a single calibra-
tion feature is used as in [23], which measures the ratio of the
variance of high frequency subbands. The forensic analyst crops
the doubted image Y in the spatial domain by 4 pixels in both
horizontal and vertical direction to obtain a new image Z. Then
the sample variance of 28 high frequency subbands in a set C is



VALENZISE et al.: REVEALING THE TRACES OF JPEG COMPRESSION ANTI-FORENSICS

TABLE III
ACCURACY OF THE DETECTORS VERSUS

known

347

detector 30 40 50 60 70 80 90 95 avg. avg 30-90
template
TV(Qa) y thresh. 099 099 100 100 099 100 1.00 0.62 0.93 1.00
TV (qa,;) - concat. n thresh. 097 098 097 097 094 096 093 0.70 0.90 0.96
TV(qa,;) - voting n thresh. 097 098 097 097 094 096 093 0.70 0.90 0.96
Calibration feat. n thresh. 098 099 099 098 098 099 096 081 0.97 0.98
SPAM feat. n SVM 098 096 098 097 096 098 096 094 0.95 0.97
TV(Qa) y SVM 098 098 097 098 094 097 097 093 0.96 0.97
SPAM(Q4) y SVM 097 093 099 09 098 099 093 0.88 0.95 0.96
PSNR(Q4) y SVM 095 094 093 090 089 077 094 0.83 0.85 0.90
1 ey i SR Ot = - g - - ~
_____ - faron e iy Note that the detector based on SPAM features is prone to
0.9 bt 1. give false positives when other kinds of noise are introduced
& \ . . . . . . . .
' into the image, since it only considers interpixel correlations,
\ thus disregarding the underlying processing chain of JPEG com-
& 08/ ] ression anti-forensics. Using a terminology b d fi ta-
8 p . g gy borrowed from sta
3 A tistics, we could say that SPAM features have a high sensitivity
& 07 . — to JPEG anti-forensic dithering. That is, they can identify ac-
=TV - known template curately the case in which an image has been compressed and
""" TV - concatenation anti-forensically dithered. However, they have a low specificity,
0.6[| = = =TV - majority voting . th 1d classif di indeed ti
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Fig. 15. Accuracy of the detectors versus (). Comparison between the
proposed methods and detectors based on: (i) SPAM features; (ii) Calibration
features.

computed for both images. The calibration feature £ is calcu-
lated as follows:

(26)

The detector compares the value of F' to a threshold 7. If I <
Tr, the image is considered to be an uncompressed original.

The accuracy of the detectors for different values of the JPEG
quality factor (7 is illustrated in Fig. 15. In addition, Table III re-
ports the average accuracy both over all tested values of ) and
in the [30,90] interval. For each detector, we also specify if it
relies on prior knowledge of the quantization template, and if
it requires training. The proposed detector achieves the highest
accuracy over the range [30,90], reaching almost 100%, when
the quantization matrix template is known. The detector based
on calibration features also gives very good results, slightly out-
performing the proposed fusion methods as well as the detector
based on SPAM features. The latter detector outperforms all the
others when () = 95, thus yielding uniform accuracy across the
whole range of tested values of (7. Stimulated by this finding,
we also tested another detector, which is based on the TV(Q 4)
feature vector. Instead of the simple threshold-based detector
described in Section IV, a SVM classifier was trained using the
same procedure used for the detector based on SPAM features.
In this case, results are very similar to those obtained for SPAM,
also when @@ = 95.

ages as input to the detector. As expected, the detector based
on SPAM features always reported that the images were JPEG
compressed and subject to anti-forensic dithering, although they
were never compressed before. Fig. 16 shows the accuracy of
the compared methods for different values of ). Notice that
the accuracy of the detector based on SPAM features is close to
0.5, meaning that there are as many false positives as true posi-
tives. On the other hand, our method correctly classifies images
degraded with Gaussian noise as uncompressed (although with
lower accuracy than for the noiseless case), therefore achieving
both high sensitivity and specificity. This is due to the fact that
the proposed method takes advantage of the knowledge of the
processing chain of JPEG compression and JPEG compression
anti-forensics.

At the beginning of Section IV we argued that other metrics
which can robustly measure the amount of noise present in an
image could be employed. Hence, we tested a detector based on
the SPAM(Q,4) feature vector. That is, instead of computing
the value of the total variation, it extracts the average value of
the SPAM feature vector on the output of JPEG compression at
quality @ 4. Unlike the case of the TV{((2 4), it was not possible
to define a simple detector based on a simple threshold value.
Hence, we designed a detector based on a trained SVM classi-
fier. This detector achieves a level of accuracy which is com-
parable to the one obtained using TV(Q 4), thus supporting the
claim that other noisiness metrics can also be employed.

Finally, we considered a detector that uses PSNR(Q 4) as
feature vector. The vector is obtained computing the PSNR
value between the input and the output of the JPEG compres-
sion step at quality (2 4. The detector is designed by means of
a SVM classifier as before. This is inspired to similar methods
presented in the literature, that exploit the idempotency prop-
erty of quantization to, e.g., estimate the quality factor in JPEG
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Fig. 16. Accuracy of the detectors versus (2, in the case where additive white
Gaussian noise has been added to the uncompressed images. Comparison
between the proposed methods and detectors based on: (i) SPAM features;
(ii) Calibration features.

compressed images [20], exposing forgeries [21] and to iden-
tify the video codec [22]. Table III shows that it is generally
outperformed by the other tested methods.

Overall, it is possible to observe that methods originally de-
veloped for steganalysis, i.e., SPAM and calibration features,
can be effectively adopted to reveal the traces of JPEG compres-
sion anti-forensics, achieving very good results, comparable to
our method, for a wide range of quality factors. However, since
the proposed method is specifically tailored to detect JPEG com-
pression in the presence of anti-forensics, it yields the following
additional advantages: i) unlike the detector based on SPAM
features, the proposed method does not lead to false positives
when the image is degraded by noise other than anti-forensic
dithering; ii) unlike the detectors based on either SPAM or cal-
ibration features, the proposed method is able to estimate the
underlying JPEG quality factor (for a known template quantiza-
tion matrix) or some elements of the quantization matrix, when
JPEG compression is detected.

VI. CONCLUSIONS

JPEG compression leaves characteristic footprints which
can be potentially exploited by the forensic analyst to perform
tampering detection, source identification, etc. Recently, it has
been shown that an adversary might conceal such footprints by
adding a properly designed dithering noise signal in the DCT
domain. The paper investigates the problem of JPEG-com-
pression anti-forensics by showing how the forensic analyst
can effectively counter the anti-forensic method originally pro-
posed in [18]. Our analysis proves that removing traces of JPEG
compression is more difficult than previously thought. Further-
more, our approach differs from conventional steganographic
techniques in that it specifically targets JPEG anti-forensic
dither, thus it is less prone to produce false positives when
the image has been corrupted by other nonmalicious kinds of
noise. In addition, if the quantization matrix is a scaled version
of a known template, it is able to estimate the underlying JPEG
quality factor. Future research will investigate the problem
of compression anti-forensics in the field of video coding.

There, motion-compensation provides a further element both
the forensic analyst and the adversary can play with. In order to
enable reproducible research, a software-based implementation
of the forensics and anti-forensics tools described in this paper
are made publicly available at www.rewindproject.eu and
rewind.como.polimi.it.
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