
Live HTTP Streaming of Video and Subtitles

within a Browser
Cyril Concolato Jean Le Feuvre

Telecom ParisTech
46, rue Barrault

75013 Paris, France

{cyril.concolato, jean.lefeuvre}@telecom-paristech.fr

ABSTRACT

Video streaming has become a very popular application on the

web, with rich player interfaces and subtitle integration.

Additionally, live streaming solutions are deployed based on

HTTP Streaming technologies. However, the integration of video

and subtitles in live streaming solutions still poses some

problems. This paper describes a demonstration of live streaming

of video and subtitle data using the MPEG-DASH technology and

its synchronous playback in a web browser. It presents the

formats, architecture and technical choices made for this

demonstration and shows that it is feasible with upcoming

browsers, paving the way for richer web video applications.

Categories and Subject Descriptors

H.5.1 [Information Interface and Presentation]: Multimedia

Information Systems – video; H.5.4 [Information Interface and

Presentation]: Hypertext/Hypermedia – Architectures.

General Terms

Performance, Experimentation, Standardization.

Keywords

HTML5, Streaming, Subtitling, Web technologies.

1. INTRODUCTION
Web-based video applications are now very popular thanks to the

inclusion in the HTML5 standard of a video element, its support

in all major browsers and the development of easy-to-use

JavaScript libraries around HTML video Application

Programming Interfaces. Additionally, solutions for video

streaming over the Internet are being deployed using proprietary

technologies such as Microsoft Smooth Streaming, Apple HTTP

Live Streaming (HLS), Adobe HTTP Dynamic Streaming (HDS)

or using standard technologies such as MPEG Dynamic Adaptive

Streaming over HTTP (DASH) [1].

The combination of the HTML video environment and of HTTP

streaming technologies opens the way for live and adaptive video

streaming over the Internet, using the existing HTTP

infrastructure of caches and Content Delivery Networks (CDN)

known as Over The Top distribution (OTT), as an alternative or

complement to traditional video broadcasting systems.

Subtitling or closed captioning has been a key component of

video systems for a long time, providing a textual representation,

possibly in a different language, of the audio track (subtitling) or

providing a textual description, possibly extended with graphical

elements, of the audio track associated with the video for the

hearing impaired (captioning). While on the one hand there is a

plethora of formats for subtitling and closed captioning, such as

the Digital Video Broadcasting (DVB) subtitle formats used

mainly in broadcast television, the Subtitle Rip (SRT) format used

in conjunction with Internet video downloads, or the 3GPP Timed

Text format for the mobile, none of these formats had had

adoption on the Web. The recently developed WebVTT format

[5], on the other hand, has been designed for the Internet, in

particular with a tight integration with HTML, JavaScript and

CSS. This format is also selected as a basis in Apple’s adaptive

streaming solution for subtitling [3].

The playback of subtitles together with video content in Web

browsers has been demonstrated already by several sites1.

However, the combined usage of subtitles and video content in a

live scenario delivered using HTTP streaming technologies and

played in a browser has not been demonstrated so far, in particular

because of its underlying technical challenges. This paper

proposes a demonstration of synchronous playback of video and

subtitling content corresponding to a live event delivered over the

Internet using HTTP streaming technologies and a web browser.

This paper first describes in Section 2 the demonstration formats

and architecture, highlighting the challenges in such a demo, and

the chosen approaches. Section 3 presents some results and

discusses interesting aspects of the demo. Finally Section 4

concludes this paper and gives some ideas for future work.

2. DEMONSTRATION ARCHITECTURE
This section presents first the media formats used in the

demonstrations and the specific aspects related to their adaptive

streaming and browser usage; it then describes generic media

segments aspects related to adaptive streaming and the specifics of

the video and subtitle segments. Finally, it describes the usage of

the MPEG-DASH Media Presentation Description (MPD) format

[6] to represent delivery and synchronization information for the

live streaming service.

1 http://www.html5rocks.com/en/tutorials/track/basics/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MMSys’13, February 26-March 1, 2013, Oslo, Norway.

Copyright 2013 ACM 978-1-4503-1894-5/13/02...$15.00.

2.1 Media Formats

2.1.1 Unmultiplexed media segments
One of the main problems in building a dynamic adaptive

streaming system is to properly handle the synchronization at the

client side. Since adaptive streaming is used to switch media

components according to their bandwidth, most systems use

independent media component delivery. Each media, whether

audio, video, subtitle or other, is packaged independently at the

server side. The benefit of this design is that there is no need to

duplicate media among files at the CDN side: the service provider

only needs Nvideos + Naudios + Nsubtitles files where a (partially)

multiplexed approach would need up to Nvideos * Naudios * Nsubtitles

files, N being the number of versions of a media component.

Therefore, the demonstration presented in this paper is based on

the use of the unmultiplexed segment formats described below. In

this demonstration, the video and subtitle segments have the same

duration. This is not required and is just used for convenience.

2.1.1.1 Video segments
The video component in this demonstration is encoded using the

AVC codec, and packaged as segments using the ISO Base Media

File Format [4]. The video segments are made compatible with

the Google Chrome support of the Media Source Extension draft

specification [7]; in particular, each segment is composed of one

and only one movie fragment, and each fragment starts with a

random access point. These restrictions define a compatible subset

of MPEG-DASH segment formats.

2.1.1.2 Subtitle segments

2.1.1.2.1 On segment duration
Audio-visual streams are by nature continuous media, with each

coded frame lasting a short, usually constant time, without any

gap between frames. Subtitles, and more generally many meta-

data streams, differ in nature: each coded frame has an arbitrary

duration and there may be some gaps or empty parts in the

timeline; this makes the format less friendly for HTTP streaming

environment, where media data is usually transferred by chunks of

average constant duration. Using a constant duration for the

segment avoids sending the timing of each segment, making the

manifest file more compact and faster to download/update.

In the case of subtitling, it may happen that a subtitle may span

over several target segment durations. In this case, the following

approach may be used, depending on the media format:

 Copy the frame in each segment it overlaps, and signal

in the media stream that some frames are copy of

previous frames. This signaling informs players that

have received the previous segment that they do not

need to process this new frame, but just extend the

duration of the previous one. This is the approach we

follow for 3GPP timed text streams in ISO Base Media

files.

 Split the subtitle frame in two or more frames to keep

the segment duration constant on average; this is the

approach we follow for WebVTT content.

The first approach provides a generic, media-agnostic solution to

the detriment of bandwidth efficiency. The second approach

seems to be the most appropriate one, as it avoids data

duplication, and is usable with WebVTT content, but may not be

well suited for all media types: it may not always be possible to

split a frame in two or more frames.

Finally, we also use empty subtitle segments when no subtitle data

is provided to cope with the fact that segments still need to be

described in the manifest.

2.1.1.2.2 WebVTT segment
Because of its support in browsers, we chose the WebVTT format

[5] to represent subtitling data. However, there is currently no

standard way to define how a subtitle segment is made. MPEG is

currently standardizing the storage of WebVTT content in the ISO

Base Media file format, but it is neither finalized nor supported by

browsers. Similarly, the WebM format has support for storing

WebVTT tracks2, but it is not yet supported by browsers.

Additionally, in both cases ISO Base Media File Format and

WebM, requiring in the production workflow an additional

packaging of subtitles seems unneeded.

The latest3 version of the documentation of the Apple HLS system

describes the use of entire WebVTT files as segments. This

approach is also what we chose, in particular because the

concatenation of WebVTT files is gracefully handled by browsers:

the header of the second file becomes misplaced and invalid in the

concatenation, but it is simply ignored by the browser.

Hence, given the considerations explained above on subtitle

segments durations, our WebVTT segments are simply WebVTT

files where the cue timestamps are continuous, similarly to video

frames. An example of WebVTT segment is given in Figure 1.

WEBVTT Segment 1

10

00:00:02.000 --> 00:00:02.200 line:0

This is cue 10 (start: 00:00:02.000 -- end:

00:00:02.200)

[...omitted in the paper for brevity ...]

18

00:00:03.600 --> 00:00:03.800 line:0

This is cue 18 (start: 00:00:03.600 -- end:

00:00:03.800)

Figure 1 - Example of WebVTT segment

In this example, the header indicates that it is a WebVTT file

(with the WEBVTT signature) and indicates the segment number.

This latter information is not used by the player and is just put in

the file for debugging purposes. Each cue has an integer identifier

giving its number in the session. This identifier is not used by the

browser for playback timing. Again it is used only for debugging.

Cues have their start and end times such that they don’t overlap in

time. This matches the non-overlapping segment approach in

MPEG-DASH. Finally, each cue has a standard setting indicating

that the text payload should be displayed on the first line from the

top of the video. The text payload of the cue is composed in this

demo of the cue identifier and the timing information.

2 Storage of WebVTT content in WebM:

http://wiki.webmproject.org/webm-metadata/temporal-

metadata/webvtt-in-webm

3 At the time of writing version 10.

2.1.2 Media Presentation Description
To describe the streaming service, we use the MPEG-DASH

standard. In particular, we rely on MPD as given in Figure 2. We

detail in this section some of the rationales for this MPD design.

2.1.2.1 Single, multiple, constant or updated MPD
For this demonstration, we are using two different tools to

generate media data: one tool, MP4Box (see 2.2.1), to generate

the video segments and the video MPD; and another tool to

generate the subtitle segments and subtitle MPD. We then merge

the two MPD to make a single MPD. This causes some problems

related to timing issues that we solve in the next section (see

2.1.2.2). A possible alternative would be to use multiple MPD

linked using the Xlink tools of DASH, but this is left for future

work as the feature does not currently belong to any profile.

Given the way our MPD is produced in this demonstration, i.e. to

avoid multiple MPD merges, we prefer constant MPD. However,

since we need to describe live content, we chose to set the type

attribute of the MPD to “dynamic”, as specified in the MPEG-

DASHs standard, but with a minUpdateTime attribute not

specified, indicating that the MPD will not change. This is a

convenient way to avoid MPD updates. Again, this should be

improved for real deployment to cope with production errors,

where MPD updates can be useful. This should be considered in

future work.

2.1.2.2 MPD timing aspects
As a consequence of selecting unmultiplexed video and text

components, the server/content producer has to make sure that

each media component can be accurately positioned on the

playback timeline at the client side. Timing of each media

component is reconstructed through timestamps within a media

container, but care needs to be taken to align the times in different

containers. We have looked at two approaches to do that:

 Forcing all media components to use the same time

origin for their timestamps. This may not be feasible or

require repackaging of the different media containers, so

we rejected this approach.

 Signaling to the client some offsets to apply to media

timestamps in order to align the time origin of each

media.

This second approach is for example used in HLS [3], with the X-

TIMESTAMP-MAP metadata header placed in WebVTT

segments, to map the timing of WebVTT cues to the audio/video

timestamps in the MPEG-2 TS file. This is also the approach that

we have selected, but using the presentationTimeOffset attribute

specified in MPEG-DASH, as it does not create dependency of

the subtitle segments on the media segments.

<MPD xmlns="urn:mpeg:DASH:schema:MPD:2011"

minBufferTime="PT10S" type="dynamic"

availabilityStartTime="2012-11-

16T16:32:46Z">

<ProgramInformation>

<Title>Live WebVTT/Video streaming</Title>

<Copyright>TelecomParisTech</Copyright>

</ProgramInformation>

<Period start="PT0S">

<AdaptationSet segmentAlignment="true">

<ContentComponent contentType="text"/>

<SegmentTemplate timescale="1000"

duration="1000" media="vtt\live-

segment$Number$.vtt" startNumber="0" />

<Representation mimeType="text/vtt"

bandwidth="100"/>

</AdaptationSet>

<AdaptationSet segmentAlignment="true">

<ContentComponent contentType="video"/>

<SegmentTemplate timescale="1000"

duration="1000" media="video\counter-

live$Number$.m4s" startNumber="0"

initialization="video\counter-

liveinit.mp4"/>

<Representation mimeType="video/mp4"

codecs="avc1.42c01e" width="640"

height="360" startWithSAP="1"

bandwidth="194835"/>

</AdaptationSet>

</Period>

</MPD>

Figure 2 - Example of DASH MPD for Live video and subtitle

streaming

2.2 Software Components
The demonstration uses the following software components:

- The MP4Box tool from the GPAC project, revision

4226 [2], to produce the video segments and the MPD;

- A simple counter generator to produce WebVTT

segments as described in 2.1.1.2;

- And Google Chrome (Canary version 24) to render the

streamed content.

2.2.1 MP4Box usage
We use a specific option in MP4Box to generate live content

called “dash context”. This option enables running MP4Box

several times while keeping some context information between

different runs, so that the generation of media segments and MPD

takes into account the previous runs. For instance, if the first run

generated 10 segments of duration 2 seconds, the next run should

produce segments whose decoding time stamps start at 20

seconds. MP4Box saves this contextual information in a text file

provided in the command line with the “-dash-ctx <file>” option.

This option allows producing a live event by calling MP4Box on

a regular basis, to prepare the new video content for delivery

using DASH. MP4Box also provides a mode in which it

automatically calls the DASH segmentation on regular basis of the

same input media files. These files cannot be updated in this mode

but it provides a convenient way to generate a forever-lasting

DASH live from a set of input media files.

An example of context is given in Figure 3. The file is composed

of a general section [DASH], which holds general context

information such as the first generation time of the MPD or base

name for segment. Then, for each representation, a section

documents the global properties of the representation, such as

bandwidth or initialization segments, as well as the properties to

reload at the next run, such as the next segment number to use or

the next decoding time. Finally, a section documents the media

start time of each segments in the active period.

[DASH]

SessionType=dynamic

TimeShiftBufferDepth=5000

GenerationTime=Tue Nov 13 12:01:41 2012

GenerationNTP=3561796901

SegmentTemplate=counter-live

MaxSegmentDuration=1.000000

[Representation_1]

Source=..\counter10s.mp4

Setup=yes

Bandwidth=302456

InitializationSegment=counter-liveinit.mp4

InitializationSegmentSize=856

TKID_1_NextDecodingTime=249000

NextSegmentIndex=11

NextFragmentIndex=11

CumulatedDuration=9.960000

[SegmentsStartTimes]

counter-live-1.m4s=0

...

counter-live-9.m4s=8

Figure 3 - Example of DASH context information used by

MP4Box

At each call, MP4Box uses the segment timing information and

the time shift buffer depth (5000 ms in the example) to remove all

segments that are no longer in the time shifting buffer, based on

the NTP of the last generation. This enables running the

demonstration a long time without creating too many files.

2.2.2 Rendering with Google Chrome
To render the service described by the MPD, we use the Google

Chrome browser. The browser loads an HTML page and executes

some embedded JavaScript code implementing the following

algorithm:

1. Fetch and parse the MPD, in a manner similar to what is

done by the DASH-JS library [8];

2. Create an HTML <video> element to render the video

component and an HTML <track> element as a child of

the <video> element, to indicate to the browser the

presence of a subtitle track, which should be

synchronized with the video;

3. Create dummy <video> and <track> elements to enable

the parsing of WebVTT segments (see step 4.f)

4. Start a loop and perform the following operations:

a. Determine the current UTC time in the

browser;

b. Compare this time with the availability start

time in the MPD, to determine the Media

Presentation Time;

c. Derive the video and WebVTT segment

number from the Media Presentation Time

d. Issue an HTTP request, using the

XMLHTTPRequest object, to retrieve the

video segment;

e. Forward the media segment to the video

decoding buffer using the Media Source

Extension API [7] following the Youtube

example DASH player4;

f. Change the src attribute of dummy <track>

element to point to the new WebVTT

segment, wait for the event indicating that the

WebVTT file is loaded, and transfer the

parsed cues to the real video element created

in step 2.

g. Wait until subsequent segments need to be

fetched.

3. RESULTS AND DISCUSSION

3.1 Results
Figure 4 shows a snapshot of Google Chrome rendering the video

and subtitle content. The text content displayed at the top of the

video is the subtitle content. As it can be seen in the image, the

text is synchronized with the video: the displayed video frame is

the frame located at time 3.960s in the video while the text cue

being rendered shows the range between 3.800s and 4.000s. In

some initial tests, we saw that some text cues would be dropped.

This was apparently due to a too high frame-rate for cues (200ms)

since when the cue rate is set to 500ms, this problem disappears.

While this may prove to be a problem to deliver some high frame

rate graphical overlays, such as annotations; for subtitles, a cue

rate of 500 ms should be sufficient.

Figure 4 - Rendered result in Google Chrome

3.2 Discussions
We have tested the demonstrator on the long run (several hours).

This test highlighted in particular the impact of non-accurate

segment duration and generation. Indeed, a first version of the

input video file was segmented every second but had a total

duration of 9.96s (a 10s file missing 1 frame at 25 frames per

second). In this case, although the rendering of the video and

subtitle would stay synchronized, after some period of time, the

fetching of the video segments, which is based on the 10s segment

duration indicated in the MPD, would lead to the wrong video

segment number and the video would stop. Similarly, we

experienced some problems after long running sessions, due to a

4 YouTube DASH prototype player, http://dash-mse-

test.appspot.com/dash-player.html

drift between the segment generation and segment fetching

algorithm. We plan to provide a better fetching algorithm in future

work, which would determine the buffer occupancy when fetching

media segments.

Another test was to load the HTML page (and thus start the

playback) at different times after the start of the segment

processing to verify that the browser could indeed start displaying

the live content, i.e. the oldest in the time shift buffer, at any time.

A first problem encountered was if the browser was started at time

T (e.g. an hour) after the segment generation started. According to

the HTML draft standard, upon receiving the first video frames,

the browser inspects the timestamps. If it is non-zero, the browser

will stall, expecting the previous video frames to be displayed.

We’ve found two approaches to avoid this problem:

 The first one using the currentTime attribute of the

HTML video element, to indicate to the browser to

directly start playing the video T seconds into the media

stream. This was successful but had the side effect of

displaying a timeline where only the last small fraction

was usable for seeking, as shown in Figure 5.

Figure 5 - Timeline during a video playback started a long

time after the start of the video segment generation

 The second approach using the timestampOffset

attribute of the Media Source Extensions draft standard.

This tool instructs the media parser to shift all

timestamps by a given value before feeding them to the

media decoder. Thus, if the timestamp offset is equal to

T, the media decoder will process the first frame with a

new timestamp of 0 and will not stall. This means that

the JavaScript layer needs to have access to the

timestamp of the first packet. In our approach, we did

not want the JavaScript code to parse the media data to

determine this timestamp offset5. Instead, we used the

segment duration given in the MPD, but this proved not

really reliable when the segments were only

approximately constant in duration. Finally, we relied

on the presentationTimeOffset attribute given in the

MPD6.

We have also tested the playback in multiple clients, on multiple

machines. The result in this case is that both browsers are

synchronized, playing the same segment or two consecutive

segments.

4. CONCLUSION
This paper presented the details of a demonstration of

synchronized playback of live video and subtitle content in a web

browser based on HTTP streaming technologies. The details

included the selected media formats, software and content

generation and playback approaches. The demonstration shows

that it is feasible with Open-Source Software to stream and play

live video with subtitles on the Internet over long running

5 It could minimally parse the media data, i.e. the "sidx" box of

the ISOBMFF, as done in the YouTube demo player, to

determine the offset.

6 For the timed-text track, we had to adjust manually the times of

each cue since the Media Source Extension timestampOffset

was not available for that track.

sessions. The paper discussed on the complex combination of the

different technologies involved. Given that these technologies are

based draft standards, it is expected that modifications will be

made to these standards to simplify this combination especially to

extend such demonstrations. Extensions, as part of future work,

could be made to provide mechanisms for trick play of live

content, or to support additional media tracks such as live

annotated graphics.

5. ACKNOWLEDGMENTS
This work was supported in part by the French funded project

AUSTRAL (DGCIS FUI13).

6. REFERENCES
[1] Thomas Stockhammer. 2011. Dynamic adaptive streaming

over HTTP --: standards and design principles.

In Proceedings of the second annual ACM conference on

Multimedia systems (MMSys '11). ACM, New York, NY,

USA, 133-144. DOI=10.1145/1943552.1943572

http://doi.acm.org/10.1145/1943552.1943572

[2] Jean Le Feuvre, Cyril Concolato, Jean-Claude Dufourd,

Romain Bouqueau, and Jean-Claude Moissinac. 2011.

Experimenting with multimedia advances using GPAC.

In Proceedings of the 19th ACM international conference on

Multimedia (MM '11). ACM, New York, NY, USA, 715-

718. DOI=10.1145/2072298.2072427

http://doi.acm.org/10.1145/2072298.2072427

[3] R. Pantos, W. May, October 15, 2012. HTTP Live

Streaming, http://tools.ietf.org/id/draft-pantos-http-live-

streaming-10.txt

[4] ISO/IEC 14496-12:2012, Information Technology – Coding

of audio-visual objects – Part 12: ISO Base Media File

Format

[5] Ian Hickson, WebVTT, November 5, 2012.

http://dev.w3.org/html5/webvtt/

[6] ISO/IEC 23009-1:2012, Information Technology – Dynamic

Streaming over HTTP (DASH) – Part 1: Media Presentation

description and segment formats,

http://standards.iso.org/ittf/PubliclyAvailableStandards/c057

623_ISO_IEC_23009-1_2012.zip

[7] A. Colwell, A. Bateman, M. Watson, Media Source

Extensions, W3C Editor’s draft 9 November 2012,

http://dvcs.w3.org/hg/html-media/raw-file/tip/media-

source/media-source.html

[8] Rainer, Benjamin; Lederer, Stefan; Muller, Christopher;

Timmerer, Christian; , "A seamless Web integration of

adaptive HTTP streaming," Signal Processing Conference

(EUSIPCO), 2012 Proceedings of the 20th European , vol.,

no., pp.1519-1523, 27-31 Aug. 2012

