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ABSTRACT

In this paper, we present a generic methodology to de-
tect nonlinguistic vocalizations using ALISP (Automatic
Language Independent Speech Processing), which is a data-
driven audio segmentation approach. Using Maximum Like-
lihood Linear Regression (MLLR) and Maximum A Posterior
(MAP) techniques, the proposed method adapts ALISP mod-
els, which then facilitate detection of local regions of non-
linguistic vocalizations with the standard Viterbi decoding
algorithm. We also illustrate how a simple majority voting
scheme, using a sliding window on ALISP sequences, can
be helpful in eliminating outliers from the Viterbi-predicted
sequence automatically. We evaluate the performance of our
method on detection of laughter, a nonlinguistic vocalization,
in comparison with global acoustic models such as GMMs,
left-to-right HMMs and ergodic HMMs. The results indi-
cate that adapted ALISP acoustic models perform better than
global acoustic models in terms of F-measure. Moreover,
our majority voting scheme on ALISP-sequences further
improves the performance yielding, in total, an increase of
19.6%, 8.1% and 5.6% on the F'-measure against the global
acoustic models GMMs, left-to-right HMMs, and ergodic
HMMs respectively.

Index Terms— ALISP sequencing, acoustic models, au-
dio segmentation, model adaptation

1. INTRODUCTION

Despite the best efforts made over past two decades in speech
recognition systems, detection of nonlinguistic vocalizations
such as laughter, sighs, breathing, hesitation sounds is still
a challenging task [1]. Such vocalizations are most frequent
vocalizations in our daily conversational speech. Detection of
the presence of these vocalizations is useful in several disci-
plines, for example, Affective computation. Moreover, Au-
tomatic Speech Recognition (ASR) systems also require de-
tection of nonlinguistic vocalizations to improve the perfor-
mance. Traditional speech recognition frameworks have not
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been adequately focussed on detecting nonlinguistic vocal-
izations such as laughs, sighs, hesitation sounds under a com-
mon and generic framework. One of the main reasons could
be the complexity behind obtaining phonetic representation
or a pronunciation dictionary (i.e. phonetic lexicon) for such
vocalizations, an incredibly difficult task.

Laughter is one of the complex nonlinguistic vocaliza-
tions [2] that communicates a wide range of messages with
different meanings. Most of the previous work (e.g. [3, 4,
5]) on automatic laughter detection from audio uses frame-
level acoustic features as parameters to train machine learn-
ing techniques, such as Gaussian Mixture Models (GMMs),
Support Vector Machines (SVMs) etc. Recent work [1, 6]
shows that integrating likelihood features derived from Non-
negative Matrix Factorization (NMF) into Bidirectional Long
Short-Term Memory Recurrent Neural Networks (BLSTM-
RNN) provides better results in terms of discriminating non-
linguistic vocalizations from speech. However, segmental ap-
proaches that capture higher-level events have not been ade-
quately focussed due to the nonlinguistic nature of laughter.

In this paper, we present on a generic framework to
detect nonlinguistic vocalizations using ALISP-based ap-
proaches [7], which have been successfully applied on
speaker verification [8], low bit-rate coding [9]. The main
advantages of these approaches are not only purely data-
driven, but also they can segment any audio signal into
pseudo-phonetic units and provide corresponding segment
labels, referred to as ‘ALISP sequencing’. Our method first
adapts ALISP segmental models using Maximum Likelihood
Linear Regression (MLLR)[10] and Maximum A Posterior
(MAP)[11, 12] techniques. The resulting adapted models can
then be used to detect local regions of nonlinguistic vocaliza-
tions, using the standard Viterbi algorithm. Experiments on
a laughter-annotated audio corpus show the usefulness of the
proposed method.

The paper is organized as follows: Section 2 explains the
proposed methodology to detect any type of nonlinguistic vo-
calizations, while in Section 3, empirical evaluation of the
proposed method, on an laughter-annotated corpus, is pre-
sented.
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Fig. 1. Workflow of the proposed methodology for ALISP-
based acoustic model adaptation to detect nonlinguistic vo-
calizations ("Laughter’ is used as an example for a specific
set of nonlinguistic vocalizations)

2. METHODOLOGY

This section describes our generic framework on detection of
nonlinguistic vocalizations using ALISP sequencing. The ba-
sic idea behind the proposed methodology is to adapt AL-
ISP segmental HMMs, in order to facilitate Viterbi decoding
algorithm to detect similar regions from audio. The work-
flow of the framework can be broadly divided into two stages:
(1) training ALISP models on huge unlabeled audio corpus;
(ii) adaptation of ALISP models using MLLR and MAP ap-
proaches. This is illustrated in Figure 1, which shows the
workflow of the proposed methodology for the specific exam-
ple of detecting laughter vocalizations from audio. Laughter
vocalizations are used as adaptation data to model laughter
specific segmental HMMs, while non-laughter audio (i.e. au-
dio excluding laughter vocalizations) is used for getting non-
laughter specific segmental HMMs. Finally, a combined set
of segmental HMMs are used to discriminate laughter from
audio with the help of Viterbi decoding algorithm.

2.1. ALISP training

ALISP training is an established technique to train seg-
mental HMMs in an unsupervised approach. As explained
in [7, 8, 9], the set of ALISP models is automatically ac-
quired from unlabeled audio corpus through parameteriza-
tion, temporal decomposition, vector quantization, and Hid-
den Markov Modeling. This set of ALISP models can be
used to transform a new incoming audio data in a sequence
of ALISP symbols.

After the parameterization step, temporal decomposition
is used to obtain an initial segmentation of the audio data into

quasi-stationary segments. This method was introduced orig-
inally by Atal [13] as a non-uniform sampling and interpo-
lation procedure for efficient parameter coding. The detailed
algorithm to find interpolation functions can be found in [14].

The next step in the ALISP process is the unsupervised
clustering procedure performed via Vector Quantization [15].
This method maps the P-dimensional vector of each segment
provided by the temporal decomposition into a finite set of L
vectors. Each vector is called a code vector or a codeword
and the set of all the codewords is called a codebook. The
codebook size L defines the number of ALISP units.

The final step is performed with the Hidden Markov Mod-
eling procedure. The objective here is to train robust mod-
els of ALISP units on the basis of the initial segments re-
sulting from the Temporal Decomposition and Vector Quan-
tization steps. HMM training is performed using the HTK
toolkit [16]. It is mainly based on Baum-Welch reestimations
and on an iterative procedure of refinement of the models. A
dynamic split of the state mixtures is used to fix the number
of Gaussians of each ALISP model. After this training step is
over, one obtains a set of ALISP segmental HMMs.

2.2. ALISP segmentation and model adaptation

The acquired ALISP models, in the previous step, can be
used for pseudo-phonetic sequencing. In the current step,
we adapt ALISP models for detecting local regions of non-
linguistic vocalizations by providing some supervised adapta-
tion data. Firstly, ALISP models segment the adaptation data
and acquire segment labels as shown in Figure 1. Next, us-
ing the segment labels and adaptation data, MLLR adaptation
approach is applied to estimate a set of linear transformations
for the mean and variance parameters for reducing mismatch
between the initial ALISP models and the adaptation set. Fi-
nally, the model is further adapted using MAP approach con-
sidering MLLR adapted model as a prior knowledge. There-
fore, adaptation of ALISP models uses MLLR followed by
MAP approaches.

We propose to adapt ALISP models for specific nonlin-
guistic vocalizations that need to be detected as well as for the
remaining data excluding the vocalizations. In this way, the
models are expected to deviate from each other in discrimi-
nating nonlinguistic vocalizations from speech. Figure 1 con-
siders laughter as one of the nonlinguistic vocalizations. As
shown in the figure, the adaptation is performed on laughter
vocalizations as well as non-laughter part of audio excluding
laughter vocalizations.

2.3. Viterbi decoding and symbolic-level smoothing

Viterbi algorithm [17], a well-established technique for de-
coding HMM sequence of states, has been used the ALISP
sequencing given ALISP HMM models and observation se-
quence of features. In this work, a combined set of adapted



ALISP models are used to discriminate nonlinguistic vocal-
izations from speech. Therefore, the labels of ALISP se-
quence that are generated from Viterbi decoding are expected
to follow a naming convention in order to support symbolic
level post processing.

The other main advantage of segmental HMMs is a pos-
sibility to operate in the level of symbols and sequences. The
outliers in Viterbi decoded sequence can be post-processed
using contextual label information. This method proposes a
simple voting scheme that uses a sliding window on ALISP
sequence to eliminate outliers in Viterbi-predicted sequence
automatically. The sliding window counts ‘yes/no’ votes de-
pending on whether or not a symbol belongs to target vocal-
ization. The window length is always expected to be a odd
number and the result of majority votes decides if the middle
segment is a part of nonlinguistic vocalization.

3. EVALUATION

In this section, we describe an empirical evaluation of the
proposed method when compared to global acoustic models
in discriminating laughter from speech. Firstly, we describe
laughter-annotated experimental corpus and features used for
the experimentation. Secondly, we model global HMMs (i.e.
laughter versus non-laughter models) as well as segmental
HMMs by adaption of ALISP models, as described in Section
2, on laughter and non-laughter training datasets. In addition,
a combined set of laughter and non-laughter ALISP segmen-
tal HMMs are used together to segment test data set using
Viterbi algorithm. Consequently, the symbolic-level smooth-
ing is applied to eliminate outliers from the predicted ALISP
sequences. Finally, the results of our method are analyzed.

3.1. Experimental corpus and features

As explained in Section 2, this method is a two-stage method-
ology that requires two different corpuses. In the first stage,
ALISP model training uses approximately 240 hours of
speech corpus selected from 26 days of complete broadcast
audio of 13 French radio streams. The second stage requires
supervised training material for nonlinguistic vocalizations
that has gold-standard labels. We used a combined audio
corpus that contains gold-standard laughter annotations from
three different sources SEMAINE-DB [18], AVLaughterCy-
cle [19], and Mahnob laughter databases [20]. The corpus is
an appropriate mix of hilarious and conversational laughter

[sec] Laughter | Non-laughter
Training 3943 4957
Test set 853 1206
Total 4796 6163

Table 1. Training and test data sets used for experimentation

Fig. 2. Global HMM topologies: (a) Simple GMM; (b) Serial
(left-to-right) HMM,; (c) Ergodic (fully-connected) HMM.

vocalizations. Table 1 shows the laughter and non-laughter
part of corpus used for training and testing corpuses.

A standard set of features that are typical for ASR sys-
tems have been used throughout this work in order to facilitate
a fair comparison among different approaches. The parame-
terization of audio data is done with Mel Frequency Cepstral
Coefficients (MFCC), calculated on 20 ms windows, with a
10 ms shift. For each frame, a Hamming window is applied
and a cepstral vector of dimension 15 is computed and ap-
pended with first order deltas.

3.2. Global acoustic models vs. Adapted ALISP models

In order to detect laughter vocalizations from speech, we have
trained global acoustic models such as GMMs, serial HMMs
and ergodic HMMs with different HMM topologies, as shown
in Figure 2. All of the above global acoustic models include
an additional silence model.

ALISP segmentation models were trained with 240 hours
of unlabeled radio corpus. In this work, the unlabeled audio
corpus is modeled by 32 ALISP segmental HMMs along with
a silence model. This model can be considered as an univer-
sal acoustic model because of its training database includes all
possible sounds like music, laughter, advertisements etc. This
model can be used for segmenting any audio, which includes
an appropriate symbolic annotation for each of the segments.
In order to represent ALISP segments, the segmentation sys-
tem uses 32 ALISP symbols (such as HA, HB and H4), re-
ferring each of the segmental HMMs, in addition to a silence
label (Hs1i1). Figure 3 shows an example of the segmentation
task performed by the ALISP segmental HMMs on an unseen
laughter vocalization.

In the next step, we adapt the generic ALISP segmental
HMMs into: (i) laughter specific ALISP segmental HMMs
by using laughter vocalizations as adaptation data; (ii) non-
laughter specific ALISP segmental HMMs considering non-
laughter vocalizations (audio excluding laughter vocaliza-
tions) as adaptation data. In order to facilitate combining the
two sets, laughter-specific adapted models are renamed such
that HA to LHA, H4 to LH4, and so on. On the other hand,
non-laughter specific adapted models keeps the same names
such as HA, H4, HB, etc. The combined set of the models
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Fig. 3. Segmentation task performed on an unseen laughter vocalization by: (i) ALISP models before model adaptation (labels
that are in Red); (ii) Segmental HMMs after MLLR+MAP adaptation (i.e. ALISP-adapt) (1abels that are in Blue). The marked
symbol with a circle is an outlier which can be automatically found using proposed smoothing scheme on ALISP sequences.

(say ALISP-adapt) were used to discriminate local regions
of laughter. As shown in Figure 3, laughter specific regions
seemed to be detected by the model except some outliers. In
order to eliminate these outliers a majority voting scheme has
been proposed in Section 2.3. We experimented the smooth-
ing scheme using sliding window size 3 (ALISP-adapt-sm3)
and 5 (ALISP-adapt-sm5). According to the scheme, for ex-
ample, the outlier (H4) in Figure 3 get majority ‘yes’ votes in
case of laughter detection if sliding window size is either 3 or
5. Such a way, we can automatically detect and eliminate the
outliers.

3.3. Results and discussion

Table 2 shows the precision, recall and F'-measures ob-
tained from different approaches to detect laughter on test
set. Among the global acoustic models, ergodic HMMs per-
formed better than GMMs and serial (left-to-right) HMMs;
ergodic HMMs showed high precision (92.8%) in locating
laughter regions, whereas serial HMMs were relatively good
in recall (86.3%) rates. When compared with adapted AL-
ISP segmental HMMs (ALISP-adapt), global ergodic HMMs
are still 4.2% better in precision. However, the segmental
HMMs (ALISP-adapt) still performed better in terms of the
F-measure when compared to global HMMs.

ALISP segmental HMMs provided an additional flexibil-
ity to find outliers with the help of a simple majority voting
scheme based symbolic smoothing. Therefore, ALISP-adapt-
sm3 and ALISP-adapt-sm5 showed improvement in terms
of F-measure when compared to ALISP-adapt by 2.9% and
4.4% of respectively. Overall, ALISP-adapt-sm5 showed
94.3% precision and 93.9% recall rates and performed rela-
tively better than all other approaches experimented in this
work.

[%] Precision | Recall | F'-measure
GMMs 70.8 78.6 74.5
Serial HMMs 85.7 86.3 86.0
Ergodic HMMs 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 93.9 94.1

Table 2. Frame-wise laughter detection results on test set

4. CONCLUSION

In this paper, we proposed a generic approach for detect-
ing nonlinguistic vocalizations using ALISP sequencing. In
fact, this is the first method that uses segmental approaches
for the detection of nonlinguistic vocalizations. We evalu-
ated the proposed methodology against global acoustic mod-
els such as GMMs, left-to-right HMMs and ergodic HMMs
on a laughter-annotated audio corpus. We also used a stan-
dard set of features (i.e. MFCCs and deltas of MFCCs) that
are typical in traditional ASR systems. The results show that
the proposed methodology yields an increase of 19.6%, 8.1%
and 5.6% on F'-measure against the three methods compared
respectively.

With this work, we argue that the adaptation of ALISP
segmental HMMs is useful in detecting local regions of non-
linguistic vocalizations. The segmental approach has further
facilitated us to improve the performance using symbolic-
level smoothing such as majority voting scheme with sliding
window approach.
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