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ABSTRACT

Demixing consists in recovering the sounds that compose a multi-
channel mix. Important applications include karaoke or respatializa-
tion. Several approaches to this problem have been proposed in a
coding/decoding framework, which are denoted either as spatial au-
dio object coding or informed source separation. They assume that
the constituent sounds are available at an encoding stage and used
to compute a side-information transmitted to the end-user. At a de-
coding stage, only the mixtures and the side information are used
to recover the sources. Here, we propose an advanced model, which
encompasses many practical scenarios and permits to reach bitrates
as low as 0.5kbps/source. First, the sources may be mono or multi-
channel. Second, the mixing process is assumed to be diffuse, gener-
alizing the usual linear-instantaneous or convolutive cases and per-
mitting professional mixes to be processed. Third, the signals to be
recovered may either be the original sources or their spatial images.

Index Terms— audio upmixing, Wiener filtering, spatial audio
object coding, informed source separation

1. INTRODUCTION

The ability to recover the constituent audio signals from their
multichannel mixtures is at the core of many applications of au-
dio signal processing. Among them, we can mention karaoke, which
consists in muting one of the instruments, usually the voice signal.
Another important application is respatialization, which consists in
dynamically modifying the spatial positions of the different audio
signals within the mixtures. This processing is important in recent
entertainment applications such as videogames or 3D-movies, where
the positions of the sources constantly vary over time.

A first naive way to achieve such applications is to separately
encode all constituent sounds at the coder and transmit them as such
to the decoder. In that case, the desired mixtures are automatically
constructed at the decoder using the available separated sounds. This
strategy faces three major drawbacks. First, it requires a high bitrate.
Indeed, the separate encoding of all the audio sources requires bi-
trates of at least, say, 24kbps/source using recent audio codecs like
MPEG4 HE-AAC v2 [3] to be of reasonable quality, leading to high
bitrates if the number of sources is important. Second, this strategy
does not permit to benefit from a professional mixing. Indeed, pro-
viding mixed audio signals of professional quality is difficult and
requires expert knowledge, which cannot easily be imitated by an au-
tomated process. Finally, transmitting separated signals is often not
considered as a viable option by copyrights owners, who are very
reluctant to broadcast the separated tracks from famous songs.
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partly supported by the European Commission under contract FP7-287723
REVERIE.

J sources I mixtures

side-information

Coder Decoder

side-information

mixtures

mixtures

sources

Fig. 1. High-level ISS/SAOC scheme

Hence, much research has focused on how to efficiently en-
code the constituent sources present in an audio mixture in a cod-
ing/decoding framework. At the coder, both the constituent tracks
and the mixtures are known and a side-information is produced.
At the decoder, only the mixtures and the side-information are pro-
cessed to recover the sources. In the literature, this problem has been
independently addressed by two distinct communities. First, Spatial
Audio Object Coding (SAOC, [11, 5, 6]) techniques have been pro-
posed to recover separated audio objects, extending classical Spatial
Audio Coding methods (SAC [10, 1]), whose purpose is to obtain
a good respatialization of some transmitted downmix. Independently
from SAOC, researchers from the source separation community have
addressed the same exact problem using sophisticated source sepa-
ration techniques [20, 17, 15, 18]. The resulting methods are com-
monly referred to as Informed Source Separation (ISS) in this com-
munity. Interestingly enough, bridges between source separation and
audio coding have recently emerged [22] and theoretical analysis of
ISS in terms of source coding have been proposed in [19, 16].

Both SAOC and ISS share the same general framework depicted
in figure 1 : the signals to be recovered at the decoder are only ob-
served through a downmix. The operations performed to obtain the
original signals vary from one technique to the other, but the com-
mon strategy of all those techniques is to assume that the sources can
be efficiently recovered through a filtering of the mixtures. While
some methods [20] perform a local inversion of the mixing process
in the time-frequency domain, others make use of an optimal fil-
tering strategy [6, 5, 18, 15]. The mixing process to be inverted is
either modeled as linear instantaneous [11, 5, 21, 20, 18] or convolu-
tive [17, 15]. In any case, the side-information which is transmitted
from the coder to the decoder usually consists of the optimal param-
eters to be used for the filtering.

Existing informed separation methods exhibit several common
drawbacks. First, they are restrictive with respect to the mixing
process considered. Most of them rely on the assumptions that the
observed mixtures are either linear instantaneous or convolutive and
that the mixing parameters are known. These assumptions prevent
the processing of real professional mixtures, which may exhibit
some non-linearities or some spatial spreading of the sources, due to
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the use of advanced audio effects. A second restriction of existing
ISS methods is that they either focus on the recovery of the original
mono sources [20, 15, 9] (hence permitting high-quality respatial-
ization) or on the mere separation of source images [13, 17], which
is sufficient for karaoke applications. To the best of our knowledge,
there is no available ISS method that can handle both cases in a
principled way. Concerning SAOC, it can benefit from important
advances made in audio coding to efficiently account for spatial
images [3]. Still, we are not aware of a study which merges SAOC
decoding with advanced spatial rendering. Finally, there is no avail-
able ISS method that can efficiently cope with multichannel sources :
all techniques assume that the sources are mono signals, which may
not be true in the case of music production (think of the output of a
synthesizer).

In this paper, we propose a general Gaussian framework to ad-
dress all these issues. The sources are modelled as locally stationary
Gaussian processes and the mixing process is assumed diffuse —
or full-rank — as recently introduced in [4]. In this framework, the
sources can be observed at the coder either as mono or multichannel,
and can be recovered at the decoder either as observed at the coder
or as images, i.e. as they appear within the mixtures. The parameters
of this model can be encoded very efficiently through a Nonnegative
Tensor Factorization [17, 18] or through image compression algo-
rithms [17]. Resulting bitrates can be as low as 0.5kbps/source, for
perceptually good separation quality.

This paper is organized as follows. First, we present the nota-
tion and models in section 2. Then, we detail all the algorithms
required by the corresponding coding/decoding framework in sec-
tion 3. Finally, we provide some experimental results in section 4
which demonstrate the efficiency of the approach and we conclude
in section 5.

2. NOTATION AND MODEL

2.1. Notation

At the coder, the observed signals are the waveforms of the
sources s̃ and the mixtures x̃. We assume that there are J sources
and I mixtures to consider. A typical case is I = 2 for stereo mix-
tures. All waveforms are assumed to be of the same length L.

Some of the sources may be observed as mono sources. Let
Sp ⊂ NJ be the indices of those sources 1 and let Sd = NJ \ Sp be
the indices of the sources which are observed as multichannel sig-
nals. We assume for simplicity that all multichannel sources have I
channels, just like the mixtures (e.g. stereo sources for stereo mix-
tures). Let s̃ (·, ·, j) denote the observed waveforms for source j. Its
dimension is either L × 1 if j ∈ Sp, noting s̃ (t, j) in that case, or
L× I if j ∈ Sd, hence noting s̃ (t, i, j). Similarly, let x̃ (t, i) be the
observed value of the mixture i at time t.

Whereas an observed source s̃ (·, ·, j) may be mono or multi-
channel, its spatial image ỹ (·, ·, j) within the mixtures necessarily
has I channels. The spatial image of a source is defined as how it ap-
pears within the mixtures. For example, if a stereophonic mixture is
built from three monophonic sources such as voice, bass and piano,
it is not the monophonic sum of these sources which is observed but
the sum of their spatial images :

∀ (t, i) , x̃ (t, i) =

J∑
j=1

ỹ (t, i, j) .

1. NJ = [1, . . . , J ] is the set comprising the J first strictly positive
integers.

This notation being given, we will not process the signals in the
time domain, but rather in a Time-Frequency representation. In this
paper, we will consider the Short-Term Fourier Transform (STFT),
which consists in splitting each signal considered into small over-
lapping frames before applying a Fourier transform on each of them.
The resulting STFTs will be denoted without the tilde notation.
Hence :

– s (f, n, ·, j) denotes the — complex — observed values of
the STFTs of source j at Time-Frequency (TF) bin (f, n). If
j ∈ Sp, it is a complex single (1 × 1) value, because that
source is monophonic. If j ∈ Sd, it is a I × 1 vector, because
that source is multichannel.

– x (f, n, ·) = [x (f, n, 1) , . . . ,x (f, n, I)]> is the I×1 vector
gathering the I coefficients of the STFTs of the mixtures at TF
bin (f, n). Notation ·> denotes transposition.

– y (f, n, ·, j) = [y (f, n, 1, j) , . . . ,y (f, n, I, j)]> is the I ×
1 vector gathering the I coefficients of the STFTs of the im-
age of source j into the mixtures at TF bin (f, n).

Waveforms can be efficiently recovered through overlap-add proce-
dures. All STFTs are assumed to have the same number F of fre-
quency bins and the same number N of frames.

2.2. Models

2.2.1. Sources model

In the STFT domain and for each source j, the observed signal
s (f, n, ·, j) is supposed to be the outcome of an underlying stochas-
tic process s (f, n, ·, j). In this study, we will simply assume that
all non redundant TF bins (f, n) are independent and Gaussian. As
we have demonstrated in [14], this assumption amounts to consider
that all the frames are independent and that within each frame, the
signals are stationary and Gaussian, which is often a good approxi-
mation for audio signals. Skipping the details that will be presented
in a longer study, the model amounts to assuming that :

∀j ∈ Sp s (f, n, j) ∼ Nc (0, P (f, n, j)) (1)

∀j ∈ Sd s (f, n, ·, j) ∼ Nc
(
0, P (f, n, j)Robs (f, j)

)
, (2)

where :
– P (f, n, j) ≥ 0 is the power of source j at bin (f, n). It is a

nonnegative quantity.
– Nc

(
z | 0, σ2

)
= 1

πσ² exp
(
− |z|

2

σ2

)
is the complex circular

centered Gaussian distribution of variance σ2.
– For multichannel sources, Robs (f, j) is a I × I positive def-

inite observation spatial covariance matrix.
Equation (1) simply means that the STFT coefficients for one given
mono source j ∈ Sp are independent and distributed with respect to
a complex and centered Gaussian distribution, whose variance is the
power of the source at that bin.

In the case of multichannel sources (j ∈ Sd), we assume through
equation (2) that the different channels of a source signal at TF bin
(f, n) are Gaussian and correlated. This model is reminiscent of the
work by DUONG et al. in [4]. Basically, the covariance is given by
the Robs (f, j) matrix and scaled according to P (f, n, j).

Since P (f, n, j) are to be transmitted from the coder to the
decoder, it is important to reduce the corresponding number of co-
efficients. As in [17], we propose two techniques to approximate
P (f, n, j). The first one is a Nonnegative Tensor Factorization
model (NTF) :

P̂ (f, n, j) =

K∑
k=1

WfkHnkQjk (3)
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where K ∈ N is called the number of components and where W ,
H and Q are F × K, N × K and J × K nonnegative matri-
ces, respectively. The main feature of this model in our context
is to reduce the number of parameters required to encode P from
FNJ to (F +N + J)K. The second source model we propose is
based on image compression techniques such as JPEG [23]. Since
P (f, n, j) is a nonnegative quantity, P can be seen as a set of J
images P (·, ·, j) of dimension F ×N that can be compressed using
dedicated techniques. The learning of the model parameters will be
detailed in section 3.

2.2.2. Mixing model

Following the work by DUONG et al. in [4], we adopt the dif-
fuse mixing model (also called full-rank in the literature) to account
for the relation between the sources and their images. This model
generalizes both the linear instantaneous and the convolutive mixing
models and notably permits to account for a stochastic dependence
between the sources and their images instead of the deterministic
relationship assumed by convolutive or instantaneous mixing. It is
characterized by :

∀j, y (f, n, ·, j) ∼ Nc
(
0, P̂ (f, n, j)R (f, j)

)
, (4)

where R (f, j) is the image spatial covariance matrix of source j
at frequency band f . It is a I × I positive definite matrix that en-
codes the covariances between the different channels of the image
of source j at frequency f . Whereas convolutive or instantaneous
mixing boils down to assuming a rank-1 image spatial covariance
matrix, this general formulation permits to model sources that have
a spatial spread, hence the “diffuse” adjective. Spatial covariance
matrices R (j) which are constant throughout the frequency indices
as in [7] are possible. This further assumption permits to strongly
reduce the number of mixing parameters from FI2J to I2J .

3. ALGORITHMS

3.1. Coder

The first task at the coding side is to provide a good estimate
for the powers P of the sources. Here, we consider both the NTF
model (3) and Image Compression methods (IC). To this purpose,
we propose to first estimate the real powers P (f, n, j) of the sources
and then to approximate them using either NTF or IC.

Concerning mono sources, their powers are easily estimated
through maximum likelihood by the power spectrograms of the
observations :

∀j ∈ Sp, P (f, n, j) = |s (f, n, j)|2 .

Concerning multichannel sources, their powers P are not so easily
derived. However, if Robs (f, j) is available, P (f, n, j) can be es-
timated from s (f, n, ·, j). Conversely, Robs (f, j) can be estimated
if all P (f, n, j) are available. This suggests an iterative procedure
which is summarized in Algorithm 1. In practice, only a few itera-
tions are sufficient and a regularization is needed in step 1 to handle
silent sources.

When all the P (f, n, j) are estimated, the parameters for the
NTF model are estimated using the classical Algorithm 2 [2, 8, 17]
which minimizes the Itakura-Saito divergence between P and the
model P̂ (3) 2. Once the NTF parameters have been learned, it can

2. Exponentiation is understood element-wise, a · b and a
b

denote
element-wise multiplication and division. If v is a vector, diagv denotes the
diagonal matrix whose diagonal is v. If v is a matrix, it denotes its diagonal.

Algorithm 1 Estimation of P (f, n, j) for multichannel sources.
– Input : STFT s (f, n, i, j) of multichannel source j ∈ Sd, F ×
N × I tensor

– Initialization : set P (f, n, j) = 1
I

∑I
i=1 |s (f, n, i, j)|

2

Repeat :

1. for each f , Robs (f, j)← 1
N

∑N
n=1

s(f,n,·,j)s(f,n,·,j)H
P (f,n,j)

2. for each (f, n),
P (f, n, j)← 1

I
s (f, n, ·, j)H Robs (f, j)−1 s (f, n, ·, j)

Algorithm 2 Learning the NTF model from P by minimization of
the Itakura-Saito divergence between P̂ and P .
– Inputs : P (f, n, j), F ×N × J tensor and K ∈ N
– Initialization : set W , H and Q as random F × K, N × K and
J ×K nonnegative matrices.

Repeat :

1. W ←W ·
∑

j(P̂ (·,·,j)−2·P (·,·,j))Hdiag(Qj·)∑
j(P̂ (·,·,j)−1)Hdiag(Qj·)

2. H ← H ·
∑

j(P̂ (·,·,j)−2·P (·,·,j))>Wdiag(Qj·)∑
j(P̂ (·,·,j)−2)>Wdiag(Qj·)

3. ∀j,Qj· ← diag
(

diag (Qj·) ·
W>(P̂ (·,·,j)−2·P (·,·,j))H

W>(P̂ (·,·,j)−1)H

)

be shown [19] that an efficient way to encode them is first to use a
logarithmic compressor followed by uniform quantization of logW ,
logH and logQ and entropy coding. The main parameter to control
the bitrate in the NTF model is thus the number K of components.

In the Image Compression (IC) model, encoding is simply
achieved as in [17] by applying an image compression algorithm
such as JPEG [23] on all {logP (·, ·, j)}j . The bitrate in the case of
IC is thus controlled by the quality parameter of the image compres-
sion algorithm considered.

The second task at the coding side is to provide good esti-
mates for the mixing parameters R (f, j) 3. Those parameters can
be learned efficiently through the Expectation-Maximization Algo-
rithm 3, already presented in [4], with the noticeable difference that
P̂ are assumed known and fixed here, which leads in practice to
fast convergence. Only a few iterations of Algorithm 3 are usually
sufficient. If computational efficiency at the decoder is not an issue,
one can note that Algorithm 3 can actually be run at the decoder,
since it does not require knowledge of the sources s, but only of x
and P̂ . This permits to avoid transmitting R̂.

3.2. Decoder

At the decoder, the side-information is recovered and decoded.
This permits to obtain both the model P̂ (f, n, j), either through (3)
for NTF or through image reconstruction for IC and the mixing
parameters R̂ (f, j). When the mixing parameters R (f, j) have
been estimated, the images can be very simply estimated through
minimum mean-squared error minimization by WIENER-like filter-

3. In case of a constant spatial covariance matrix R (j), these parameters
reduce to J matrices of dimension I × I .
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Algorithm 3 Estimation of the mixing parameters R (f, j) given x

and P̂ .
– Inputs STFT x (f, n, i) of the mixtures, estimated pow-

ers P̂ (f, n, j)
– Initialization: define all R (f, j) as diagonal I × I matrices
Repeat:
– Expectation step: for each (f, n, j):

1. Kxx =
∑J
j=1 P̂ (f, n, j)R (f, j)

2. Gj = P̂ (f, n, j)R (f, j)K−1
xx

3. ŷ (f, n, ·, j) = Gjx (f, n, ·)
4. K̂yy (f, n, j) = ŷ (f, n, ·, j) ŷ (f, n, ·, j)H +

(II −Gj)P (f, n, j)R (f, j)

– Maximization step:∀j, R (j)← 1
NF

∑
n,f

K̂yy(f,n,j)

P̂ (f,n,j)
if R (f, j) = R (j)

∀ (f, j) , R (f, j)← 1
N

∑N
n=1

K̂yy(f,n,j)

P̂ (f,n,j)
otherwise

ing [4]:

ŷ (f, n, ·, j) =

P̂ (f, n, j)R (f, j)

 J∑
j′=1

P̂
(
f, n, j′

)
R
(
f, j′

)−1

x (f, n, ·)

(5)

If the original mono sources are to be recovered instead of the
images, they can be estimated through a beamforming strategy as:

ŝ (f, n, ·, j) = Uj (f) ŷ (f, n, ·, j)

where Uj (f) is a 1×I vector if j ∈ Sp and a I×I matrix if j ∈ Sd.
Since the coder is able to compute the estimated images (5), it can
also compute the Uj (f) that minimize the mean-squared error be-
tween Uj (f) ŷ (f, n, ·, j) and s (f, n, ·, j) and send it as additional
side-information.

4. EVALUATION

We have performed an extensive evaluation of the proposed
demixing method on the QUASI database 4, which is composed of
12 full-length stereo (I = 2) songs sampled at 44.1kHz, along with
all their constitutive tracks (with an average J = 10). For each
song, several mixtures are available, as obtained by a professional
sound engineer. The simplest mixture consists of a mere panning
for the sources (bal-pan mix), while the most complex one involves
dynamic compressions and audio effects (comp-fx mix). For all of
the excerpts, we have considered the first minute only and performed
an encoding of the sources using both the NTF and the IC models,
and we have tested the performance of the method for both the bal-
pan and the comp-fx mixes. The metric we used is the Perceptual
Similarity Measure (PSM) from PEMO-Q [12], which provides a
measure of the perceptual similarity between the original tracks and
their estimates. PSM lies between 0 (mediocre) and 1 (identical).
Results can be found in figure 2 and some audio examples can be
listened to on the webpage dedicated to this paper 5.

4. www.tsi.telecom-paristech.fr/aao/?p=605
5. www.tsi.telecom-paristech.fr/aao/?p=821
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Fig. 2. Perceptual similarity between the original images and their
estimates for both the NTF and IC models and different mixing con-
ditions. Each line stands for a different excerpt.

As can be seen on figure 2 and listened to online, the proposed
technique for ISS permits to reach good performance at very low
bitrates. At 1kbps per source, performance is already remarkably
good and sufficient for applications that do not require high fidelity.
Perceptual similarity gets higher at 5kbps and artifacts get marginal.
The performance of the NTF model at very low bitrates is seen as
slightly higher than that of IC, at the cost of a higher computational
complexity. Still, informal listening tests seem to favour IC. Finally,
both linear instantaneous and professional mixtures are seen to be
well supported.

The proposed technique can thus be used for broad audience en-
tertainment applications that require a good quality at low bitrates.
For applications that come with a very high-fidelity constraint, para-
metric ISS as presented here suffers from bounds on achievable per-
formance. This limitation can be overcome using CISS [16, 19],
which is based on source coding and is an extension of the ideas pre-
sented here, or using an encoding of the residuals as in SAOC [6] or
hybrid ISS [22].

5. CONCLUSION

We have proposed a general Gaussian framework for the in-
formed demixing of real-world multichannel mixtures and we have
detailed all the corresponding algorithms. The proposed method has
several interesting features. First, the source models considered are
particularly compact, leading to bitrates as low as 1−10kbps/source.
Second, the powerful diffuse model used to account for the mixing
process permits to handle realistic professional mixtures as opposed
to the classical linear instantaneous or convolutive models. Third,
the mixing parameters are estimated automatically at the decoder
and need not be transmitted, leading to lower bitrates. Finally, the
observed sources at the decoder can be either mono or multichan-
nel and the signals to be recovered at the decoder may be either the
signals observed at the coder or their images within the mixtures.
Future work will include integrating the proposed model in Coding-
based Informed Source Separation, which is compatible with per-
ceptual coding and rate-distortion tradeoffs.
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