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ABSTRACT

New applications of Electroencephalographic recording (EEG)
pose new challenges in terms of artifact removal. In our work
we target applications where the EEG is to be captured by a
single electrode and a number of additional lightweight sen-
sors are allowed. Thus, this paper introduces a new method
for artifact removal for single-channel EEG recordings using
nonnegative matrix factorisation (NMF) in a Gaussian source
separation framework. We focus the study on ocular artifacts
and show that by properly exploiting prior information on the
latter, through the analysis of electrooculographic recordings,
our artifact removal results on single-channel EEG are com-
parable to the results obtained with the classic multi-channel
Independent Component Analysis technique.

Index Terms— EEG, artifact removal, nonnegative ma-
trix factorisation, source separation, Gaussian model.

1. INTRODUCTION

Electroencephalographic (EEG) recordings capture a mixture
of endogenous brain activities and extraneous environmen-
tal and physiological artifacts such as power grid noise, eye
movements, heart beat or muscle activities. These artifacts
make it difficult to analyze and interpret EEG data since they
tend to overlap with the cerebral signals of interest, which
are generally of lower energy than the artifacts [15]. Conse-
quently researchers (in the neuroscience and biomedical en-
gineering communities) have devised EEG artifact removal
techniques that have proven effective for particular sources of
artifacts such as eye movements or heart beats [4, 11]. How-
ever many such techniques can be considered as being mainly
geared towards experimental (especially medical) setups. In-
deed, the sources of artifacts are generally intentionally lim-
ited, especially by requiring that the subject wearing the EEG
device remain as steady as possible, and the processing occurs
offline, possibly requiring a user’s intervention to complete
the artifact decontamination process. The latter is in particu-
lar true for one of the most popular approaches which relies
on Independent Component Analysis (ICA) [12].

Nevertheless new applications of EEG recording, for in-
stance brain-computer interfaces or human-activity monitor-

ing, pose new challenges in terms of artifact removal as they
call for fully automatic techniques, that would be additionally
amenable to real-time processing. A few proposals have been
made along this line in previous works where two types of
methods can be distinguished. The first exploit various sta-
tistical properties of the artifacts in the time- and frequency-
domains [14, 18], the second rely on prior knowledge about
either the artifacts [9, 19] or the signal of interest [21]. The
former are specific to standard artifacts whereas the latter can
integrate different kinds of prior information.

A common major drawback to such techniques, which
is actually common to all ICA-based approaches, is the fact
that they can only handle overdetermined mixtures, which
entails using many EEG electrodes (at least as many as the
sources of artifacts plus one for the useful information). This
is clearly prohibitive for the general public applications that
we are interested in, where the EEG setup is to be maintained
as light as possible and ideally be limited to a single elec-
trode, while allowing the use of other types of lightweight
sensors, for example Electromyographic (EMG), Electrocar-
diographic (ECG), or inertial measurement sensors.

Therefore attempts at single-channel EEG artifact re-
movals have been made [10]. Our work falls in this category.

We propose a novel automatic artifact removal scheme,
inspired by the current state-of-the-art in underdetermined au-
dio source separation [20, 7, 16], exploiting nonnegative ma-
trix/tensor factorization (NMF) in a probabilistic Gaussian
framework.

While NMF has already been used for EEG-feature ex-
traction [13], its use for EEG artifact removal within a Gaus-
sian source separation framework is to our knowledge com-
pletely novel. Our method is further described in Section 2
before an experimental validation is proposed in Section 3
where our approach is compared to the classic ICA method
on real EEG recordings. While these experiments focus on ar-
tifacts related to eye movements and blinks (exploiting Elec-
trooculographic (EOG) recordings) being a strong source of
contamination, it is important to note that the advantage of
our method is its potential to handle many concurrent sources
of artifacts simultaneously even when a single EEG electrode
is used for recording, provided that some auxiliary signals de-
scribing the temporal activations of those sources of artifacts



can be captured, which is often easily realized.
It is worth mentioning that our approach is advanta-

geous compared to regression techniques used in numerous
works on EEG artifact rejection [8] which required the use of
“clean” recordings of sources of artifacts. In particular when
treating ocular artifacts, the EOG recordings used to esti-
mate the artifact signals tend to be contaminated by the EEG
signals which are then subtracted from the brain signals of
interest, hence causing a serious difficulty for such regression
techniques.

2. NMF-BASED ARTIFCAT REJECTION

We hereafter explain how nonnegative matrix factorisation is
used in order to perform EEG artifact rejection following a
probabilistic blind source separation paradigm. We first ex-
pose the theoretical foundations and the general model under-
lying the separation procedure adopted, then we describe how
the latter is specifically applied to our particular data config-
uration, that is single-channel EEG accompanied with auxil-
iary signals describing the sources of artifacts.

2.1. Probabilistic model and general separation proce-
dure

For the sake of generality, we suppose that there are I ob-
servable time-series x̃ (t, i), each x̃ (·, i) corresponding to
one of the EEG sensors. For a given sensor i, we as-
sume that each x̃ (·, i) is the sum of J underlying signals
ỹ (·, i, 1) , . . . , ỹ (·, i, J) which are called latent components
in this study. Hence, we simply have :

∀ (t, i) , x̃ (t, i) =
J∑

j=1

ỹ (t, i, j) . (1)

Thus, model (1) can be understood as stating that the ob-
served I time-series can actually be decomposed as the sum
of J latent sets of I time-series. The objective of the process-
ing under study then becomes to extract those J sets. That
way, each x̃ (·, i) of the observed EEG data will be decom-
posed into its J constituent {ỹ (·, i, j)}j=1,...,J latent compo-
nents. In this paper, a distinction is made between stochas-
tic processes such as ỹ (·, i, j) or x̃ (·, i) and their realizations
ỹ (·, i, j) and x̃ (·, i) which are written in bold type.

In the following, we will make use of a Time-Frequency
(TF) representation of the signals considered. More specifi-
cally, x (·, ·, i) will denote the Short Term Fourier Transform
(STFT) of the mixture x̃ (·, i), so that x (f, n, i) ∈ C is its
spectrum at frequency bin f for frame index n. Similarly,
y (f, n, i, j) denotes the STFT of the ith channel of latent
component j at TF bin (f, n). All signals are supposed to
have the same number F of frequency indices and the same
number N of frames.

Following [16], all {ỹ (·, i, j)}i,j are here supposed to
be independent and Locally Stationary Gaussian Processes
(LSGP, see [16]). The main attractive feature of this model
is that computations can be readily performed in the STFT
representation. Indeed it can be be shown [1, 2, 16] that Min-
imum Mean Squared Error (MMSE) estimates of the latent
components are then given through WIENER filtering by :

ŷ (f, n, i, j) =
P (f, n, i, j)∑J
j=1 P (f, n, i, j)

x (f, n, i) (2)

where P (f, n, i, j) > 0 is the Power Spectral Density
(PSD) of the ith channel of component j at TF bin (f, n).

This separation procedure is very simple to implement.
One just has to compute the STFTs of the observed EEG sig-
nals x̃ (·, i), and then compute (2) for all (f, n, i, j). Sepa-
rated time series are then simply recovered through an inverse
STFT procedure, which consists in inverse Fourier transforms
followed by overlap-add procedures.

The main issue with the proposed model is of course
the important number FNIJ of its parameters P (f, n, i, j).
Still, one of its most interesting features is the way prior
knowledge can be taken into account in order to strongly
reduce the number of its parameters. Indeed, several facts can
be considered for modeling P :

• Even if the I different channels of each latent compo-
nent are modeled as independent, their Power Spectral
Densities may be strongly related. In this study, we will
assume that :

P (f, n, i, j) = QijP (f, n, j) , (3)

with Qij ≥ 0. Equation (3) amounts to writing that all
channels of a given component j share the same PSD
P (f, n, j) up to a nonnegative scaling factor Qij .

• For one given latent component j, we may assume that
its PSD P (f, n, j) as it appears in (3) is further struc-
tured so that it simply consists of one given spectral
template Wj that is modulated by a time-varying acti-
vation gain Hj . This can be written :

P (f, n, j) =
[
WjH

>
j

]
f,n

, (4)

where Wj and Hj are F × 1 and N × 1 nonnegative
vectors.

As can be seen, these two simplifications lead to a
reduction of the number of parameters from FNIJ to
(F +N + I) J , which is quite remarkable. We are then left
with the problem of modeling the PSD of observed signals
x̃ (·, i) using a Nonnegative Tensor Factorization (NTF [3]),
which simplifies to Nonnegative Matrix Factorisation (NMF)
in the single-channel case. Hence, though we here focus on
the latter situation, the method that we present can be also
used for multi-sensor data.



2.2. NMF decomposition

A fact which is now acknowledged in the litterature [5, 16]
is that learning a NMF model such as (4) through maximum
likelihood estimation is equivalent to minimizing the Itakura-
Saito (IS) divergence1 between the power spectrogram of the
observations and the model :

{
Ŵ , Ĥ, Q̂

}
=

argmin
W,H,Q

∑
f,n,i

dIS

|x (f, n, i)|2 ‖
J∑

j=1

WfjHnjQij

 , (5)

where Wj and Hj have been gathered as the J columns of ma-
trices W and H of respective dimensions F × J and N × J .
Very efficient iterative algorithms exist which permit to esti-
mate W , H and Q that minimize (5). The reader is referred to
studies such as [6, 17, 20] for the details of those algorithms.
The NMF problem may also be solved using other cost func-
tions such as the Euclidean distance (i.e. l2 norm) and the
Kullback-Leibler divergence commonly used in the NMF lit-
terature [5]. In our experiments (presented in Section 3) the
use of the Itakura-Saito cost has been assessed by comparison
to results obtained based on Euclidean cost functions.

The main issue with this approach lies in the fact that the
latent components obtained that way, even if they correctly
sum up to the observed mixtures, do not necessarily corre-
spond to the latent components we are looking for. To ad-
dress this issue, we propose an approach based on supervised
initialization of the model parameters.

2.3. Informed NMF initialization

One important feature of the current work is the use of auxil-
iary signals characterizing the sources of artifacts to aid their
rejection in single-channel EEG analysis. This is achieved
by initializing the learning process with results of the NMF
decomposition of such auxiliary signals.

In contrast, single-channel source separation is not pos-
sible with ICA which is constrained to be used in (over)-
determined settings. Still, ICA can equally benefit from the
initialization of components to be extracted with the avail-
able auxiliary signals, which is actually what we do when we
compare our method to ICA. However, the latter requires the
addition of a new EEG channel for each new source of arti-
fact so that the minimum number of EEG channels that need
to be used to handle L sources of artifacts must be L+1 (one
channel per artifact component plus one for EEG useful in-
formation). Using NMF source separation, this restriction is
removed and we are able to integrate multiple known artifact
sources in the learning process with a single EEG channel.

1The Itakura-Saito divergence between two nonnegative scalars a and b
is defined as dIS (a | b) = a

b
− log a

b
− 1.

We proceed as follows. As a first step, we perform a
NMF decomposition on each reference source providing
Kinit spectral components W init and activation gains Hinit.
Then we use these activations, Hinit, to initialize the NMF
decomposition of the EEG data with K components such that
K > Kinit. This strategy has proven more effective than
the alternative consisting in using W init instead, as it better
copes with the variability of the spectral patterns characteriz-
ing the artifacts (captured in W init) across different sensors.
The remaining K −Kinit components of the EEG NMF de-
composition are randomly initialized. Once this NMF model
is learned, the artifact and decontaminated EEG signals can
be easily reconstructed through WIENER filtering.

3. EXPERIMENTS AND RESULTS

We now present results on real EEG signals corrupted by ocu-
lar artifacts. We mainly aim at proving the efficiency of NMF
in removing ocular artifact in single channel EEG analysis
comparing to 2 channel-based ICA source separation.

3.1. Validation procedure

Constrained FastICA and NMF source separation methods
are here used with a given EOG reference channel to automat-
ically remove ocular artifacts. The EEG data are public2 and
were acquired at Martinos Center for Biomedical Imaging on
a single subject with a 60 EEG-electrode cap combined with
a 306-channel MEG Neuromag Vectorview system in a mag-
netically shielded room. Simultaneously, ocular movements
were recorded with a vertical EOG channel. The experiment
consists of audio and visual stimuli. The data was recorded at
a rate of 600 Hz. We worked on 2 particular EEG channels
located to the front of the cap being highly contaminated by
eye movements.

As described in Section 2.3, for both methods initializa-
tion is performed with the given artifact reference signal to
guide the source learning process. For FastICA, this merely
consists in initializing a component of the mixing matrix with
the EOG signal and the other components are generated ran-
domly. For NMF, the initialization is done as described in
2.3.

The validation procedure includes two steps : a training
step during which the hyperparameters of each source sep-
aration method are learned on one half of the dataset and a
test step during which the best hyperparameter is tested on
the other half of the dataset. Both centered EEG and EOG
data are split in two sets to perform the initialization. Five
models with 100 iterations each have been learned on both
EEG- and EOG-based NMF models and only those with the
smallest cost-function value have been selected.

While we necessarily estimated only 2 components for
ICA, we have been able to test a range of hyperparameters for

2http://martinos.org/mne/



NMF by varying the number of components assessed to the
artifact on the one hand (i.e. 2, 4, 6, 8), and to EEG sources
on the other hand (i.e. 4, 6, 8, 16).

To compare ICA and NMF results, we used two similar-
ity measures, the mutual information and the correlation, and
defined two criteria. The first criterion assesses the similar-
ity between the estimated artifact and EOG signals while the
second assesses the EEG denoising quality by computing the
ratio of the similarity measure between the noise-suppressed
and EOG signal to the similarity measure between the orig-
inal and EOG signals. Below, we present the results of this
comparison.

3.2. Results

We only show the NMF results obtained with the Itakura-
Saito cost function (that corresponds to maximum likelihood
inference in our Gaussian framework). Our tests with NMF
using the l2 norm have completely failed. This can be ex-
plained by a nice feature of the Itakura-Saito cost, that is its
scale invariance, which makes it more robust to the varying
dynamics of EEG and EOG signals.

Fig. 1. FastICA signal decomposition on two frontal EEG channels.
In order of appearance, the blue signal is the original signal, the red
signal is the denoised EEG signal and the last signals include the
EOG signal in black dotted line and the estimated artifact signal in
red solid line.

Both methods have succeeded in extracting the eye move-
ment artifact signal and thus in denoising the EEG signal.
The bar graph and the signals visual inspection prove that the
NMF approach with one channel is as efficient as the FastICA
method with two channels.

Fig. 2. NMF signal decomposition on a single EEG channel with
eight EEG components and four artifact components. In order of
appearance, the blue signal is the original signal, the red signal is the
denoised signal and the last signals include the EOG signal in black
dotted line and the estimated artifact signal in red solid line.

Fig. 3. Mutual information-based and correlation-based denoising
measures for each method, ICA in red bars and NMF in green bars.
Denoising measures are averaged over channels for ICA.

4. CONCLUSION

In this study we showed how NMF can address the problem
of EEG artifact removal even in underdetermined settings,
namely when the number of EEG channels is less than the
number of brain sources and noisy signals (heart beat, eye
blinks, etc.). Our experimental results on real data are promis-
ing for modern applications of EEG with lightweight devices
more and more widely available on the market.

Future work will consider many concurrent sources of ar-
tifacts including less-studied ones occurring when the sub-
jects are in motion.
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