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Inharmonicity of piano tones is an essential property of their timbre that strongly influences the tuning,

leading to the so-called octave stretching. It is proposed in this paper to jointly model the inharmonicity

and tuning of pianos on the whole compass. While using a small number of parameters, these models are

able to reflect both the specificities of instrument design and tuner’s practice. An estimation algorithm is

derived that can run either on a set of isolated note recordings, but also on chord recordings, assuming

that the played notes are known. It is applied to extract parameters highlighting some tuner’s choices on

different piano types and to propose tuning curves for out-of-tune pianos or piano synthesizers.
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I. INTRODUCTION

Modeling timbre variations of a specific musical instru-

ment across its whole compass is an issue of particular im-

portance to musical acoustics, for instance, in synthesis or

instrument recognition. It could also be useful for many

other tasks related to Music Information Retrieval (MIR)

such as automatic music transcription or source separation.

The case of the piano is particularly relevant, as it has been

central to Western music in the last two centuries, with an

extremely wide solo or orchestral repertoire. In this paper, a

parametric model which accounts for specifics of both the

piano type and tuning is proposed. More specifically, the

variations of the string inharmonicity and tuning are mod-

eled along the whole pitch range and estimated from mono-

phonic or polyphonic recordings.

Despite considerable differences in shape, size, and

design, all pianos share construction elements: Keyboard,

hammers, steel strings, bridges, soundboard—all these con-

tribute to its distinct timbre. In return, these physical charac-

teristics lead to strong constraints on the tuning technique,

which targets equal temperament (ET).1,2 Whereas the trans-

verse vibrations of an ideal string produce spectra with har-

monically related partials, the stiffness of actual piano

strings leads to a slight inharmonicity.3 For instance, the fre-

quency ratio between the second and first partials is slightly

higher than 2, between the third and second it is higher than

3:2, and so on. This effect depends on many physical

parameters of the strings (material, length, diameter, etc.),

and then differs not only from a piano to another, but also

from one note to another. As a consequence, simply adjusting

the first partial of each note on ET would produce unwanted

beatings, in particular for octave intervals. Aural tuning con-

sists of controlling these beatings.4 The final result then

depends not only on the specific design of each piano, but

also on the tuner practice—he usually focuses on particular

beatings, which may not necessarily be the same for different

tuners.5,6 Thus, according to the model of the piano and the

choices/abilities of the tuner, the resulting tuning is unique,

but within some physically-based constraints. From a musical

acoustics perspective its modeling is hence an interesting

challenge that has been tackled by different viewpoints. A

simulation of aural piano tuning has been proposed2 to help

pianists in tuning their own pianos, replicating the tuner’s

work by iteratively tuning different intervals. The method is

based on a mathematical computation of the beat rates, and

requires the frequencies of the first five partials of each note.

More recently, an approach based on psycho-acoustic consid-

erations has been introduced.7 This algorithm adjusts the 88

notes at the same time, by an optimization procedure on modi-

fied spectra of the notes according to psycho-acoustic laws

and tuning updates. Besides these works, a number of authors

have proposed algorithms to estimate inharmonicity from iso-

lated note recordings (cf. state-of-the-art in Sec. III A).

This paper takes a different global approach by jointly

modeling tuning and inharmonicity laws for the whole com-

pass. This global estimate is made possible thanks to recent

advances in optimization techniques, here based on a non-

negative decomposition scheme. The model can be run, with

no hand tuning of the parameters, either on isolated notes or

chord recordings, assuming that we know which notes are

being played. On sets of isolated notes for the whole

88-notes compass, this model compares favorably with some

algorithms of the state of the art. However, to the best of our

knowledge, it is the only approach that can still build a
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global model from a small subset of the notes, or even from

chord recordings. Although such an interpolated model can

only capture the main trends in the inharmonicity and tuning

of a given piano, it should be reminded that one of the objec-

tives of piano manufacturing and tuning is to have a timbre

that is as homogeneous as possible, smoothing out as much

as possible the discontinuities of physical origins: Bass

break, change in the number of strings per note, change of

strings diameter, and winding. Therefore, it is not only real-

istic, but also relevant, to try to globally parametrize the

inharmonicity and tuning with only a few parameters—at

least as a first-order approximation.

The obtained synthetic description of a particular instru-

ment, in terms of its tuning/inharmonicity pattern, can be use-

ful to assess its state and also provides clues on some of the

tuner’s choices. In the field of musical acoustics, the use of

such a model could be helpful, for instance, for the tuning of

physically-based piano synthesizers, where we are otherwise

faced with the problem of having to adjust a large number of

parameters, all of them being inter-dependent. Here a higher-

level control can be obtained, with few physically meaningful

parameters. In the fields of audio signal processing and MIR,

including a priori knowledge is often done when trying to

enhance the performance of the algorithms.8–12 The herein

proposed method is a first step for further use in tasks such as

piano model identification or automatic transcription of poly-

phonic piano recordings.

The joint model of inharmonicity and tuning on the

whole compass is introduced in Sec. II. The estimation of the

parameters is then presented in Sec. III. Section IV describes

the results obtained from experimental data and discusses pos-

sible applications. Finally, conclusions and perspectives are

drawn in Sec. V.

II. PARAMETRIC MODEL OF INHARMONICITY AND
PIANO TUNING

A. Inharmonicity and aural tuning principles

First consider the transverse vibration of a plain stiff

string fixed at end-points. Because of the bending stiffness,

the resulting partial frequencies are given by an inharmonic

relation13

fn ¼ nF0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bn2

p
; n 2 N�; (1)

where n is the partial rank, B is the inharmonicity coefficient,

and F0 is the fundamental frequency of vibration of an ideal

flexible string. F0 is related to the speaking length of the

string L, the tension T, and the linear mass l according to

F0 ¼
1

2L

ffiffiffi
T

l

s
: (2)

The stiffness is taken into account in B

B ¼ p3Ed4

64 TL2
; (3)

where E is the Young’s modulus and d is the diameter of the

plain string. Since the mechanical characteristics of the

strings differ from one note to another, obviously F0 but also

B are varying along the compass (typical values for B are in

the range ½10�5; 10�2�). Hereafter, these quantities will be

indexed by the MIDI note number, m 2 ½21; 108� (from A0

to C8) as ðBðmÞ;F0ðmÞÞ.
It is worth noting that Eq. (1) assumes a string fixed at

both ends and then neglects the bridge motion. The actual

partials deviate14 upwards or downwards from the frequen-

cies given in Eq. (1), mostly in the low frequency domain.

Moreover, the coupling between doublets or triplets of

strings can lead to multiple partials and produce double

decays and beatings in piano tones.15–17 These phenomena

are not considered in the model presented in this paper

although they could slightly affect the estimation results

(this is discussed in Secs. IV B 1 and IV C).

Aural tuning is based on the perception and the control

of beatings between partials of two different tones played

simultaneously,4 and is then affected by inharmonicity. It

always begins by the tuning of a reference note, in most

cases the A4 at 440 Hz (sometimes 442 Hz). To do so, the

tuner adjusts the tension of the strings to cancel the beatings

produced by the difference of frequency of the tuning fork

and the first partial of the note. Thus, f1ðm ¼ 69Þ ¼ 440 Hz.

Even if there are different methods, skilled tuners usually

begin by the scale tuning sequence: the F3 to F4 octave is

set by approximate ET.4,6 The rest of the keyboard is tuned

by adjusting beatings between the partials of two different

notes, typically octave-related.

When tuning an octave interval by canceling the beat-

ings produced by the second partial of a note indexed by

m and the first partial of a note indexed by mþ 12, the

resulting frequency ratio f1ðmþ 12Þ=f1ðmÞ is higher than 2

because f2ðmÞ > 2f1ðmÞ. This phenomenon is called octave

stretching. Depending on where the notes are in the range of

the compass, the amount of stretching can be different. This

fact is linked to the underlying choice of the octave type

(related to perceptual effects and tuner’s personal choices)

during the tuning.5 For instance, in a 4:2 type octave, the

fourth partial of the reference note is matched to the second

partial of its octave. Depending on the position in the com-

pass, the piano can be tuned according to different octave

types: 2:1, 4:2, 6:3, 8:4, etc., or a trade-off between two.

This means that the tuner may not focus only on canceling

beatings between a pair of partials, but that he controls an

average beating generated by a few partials of the two notes.

In order to highlight this stretching, the tuning along the

compass is usually depicted as the deviation, in cents (¢), of

the first partial frequency of each note from ET,

dðmÞ ¼ 1200 � log2

f1ðmÞ
F0;ETðmÞ

; (4)

where F0;ETðmÞ is the theoretical fundamental frequency

given by the ET,

F0;ETðmÞ ¼ 440 � 2ðm�69Þ=12: (5)

Usually1,13 the stretching increases gradually from the

mid-range (deviation about 65¢) to the extreme parts of the
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keyboard, producing deviations down to �30¢ in the low

bass and up to þ30¢ in the high treble. The goal of the pro-

posed model is to explain the main variations of dðmÞ along

the compass (also known as the Railsback curve) by taking

into account the piano string set design characteristics

[model of BðmÞ along the compass] and the tuner’s choices

(model related to the octave type).

B. A parametric model for inharmonicity and tuning

The proposed model which simulates aural tuning on

the whole compass is based on octave interval tunings. Its

successive steps are a simplified version of those actually

performed by a tuner, but the most important global consid-

erations (stretching inherent in the inharmonicity and the

octave type choice) are taken into account. The model starts

by tuning all the octave intervals relative to a reference note

(for example, the A4 at 440 Hz). From these notes, the tuning

is then interpolated on the whole compass. Finally, the possi-

bility of a global deviation is added in order to allow for dif-

ferent tuning frequencies for the reference note.

1. Octave interval tuning

When tuning an “upper” octave interval (for instance A5

from A4), the cancellation of the beatings produced by the

2qth partial (q 2 N�) of a reference note, indexed by m
(A4), and the qth partial of its octave, indexed by mþ 12

(A5), can be done by tuning F0ðmþ 12Þ such as

F0ðmþ 12Þ ¼ 2 F0ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BðmÞ � 4q2

1þ Bðmþ 12Þ � q2

s
: (6)

Equation (6) clearly shows the influence of the note-

dependent inharmonicity coefficient (B) and of the octave

type (related to q) in the stretching of the octave. In the case

of “lower” octave tuning (for instance A3 from A4), the

same relation can be inverted and applied by considering

mþ 12 (A4) as the reference note and m (A3) as the note to

tune. Sections II B 2 and II B 3, respectively, describe para-

metric models for B and q along the whole compass.

2. Whole compass model for B

a. String set design influence on B. In order to keep a

homogeneous timbre along the compass, the strings are

designed in such a way that discontinuities due to physical pa-

rameter variations are smoothed.18–20 Three main design con-

siderations might produce such discontinuities in B along the

keyboard: The bass break between the bass and treble bridges

(jump18 in L), the transitions between adjacent keys having a

different number of strings (jump13,19 in T), and the transition

between plain strings to wrapped strings (jump19 in d).

On the treble bridge, from C8 note downwards, B is

decreasing because of the increase of L. Down to middle C
(C4 note, m ¼ 60), the values of B are roughly the same for

all the pianos and B follows a straight line in logarithmic

scale.3 This result is mainly due to the fact that string design

in this range is standardized, since it is not constrained by

the limitation of the piano size.18

In the low pitch range, the strings use a different bridge

(the bass bridge) to keep a reasonable size of the instrument.

Then, the linear mass of the strings is increased in order to

adjust the value of F0 according to Eq. (2). Instead of

increasing only the diameter d, which increases B, the strings

are wound with a copper string wire, which increases the lin-

ear mass. Thus, on the bass bridge, B is increasing from the

sharpest notes downwards. Note that the number of keys

associated with the bass bridge and the design of their strings

are specific to each piano.

b. Parametric model. According to the string design

considerations, B could be modeled by two distinct functions

corresponding to the two bridges, and could present disconti-

nuities at the bass break or at the changes single-doublets

and doublets-triplets of strings. The difficulty when model-

ing B on the whole compass is to know the position of these

possible discontinuities, because it is specific to each piano

model. Therefore, we propose a “continuous” additive model

on the whole compass, discretized for m 2 ½21; 108�. We

denote it by BnðmÞ, n being the set of modeling parameters.

Usually the evolution of B along the keyboard is

depicted in logarithmic scale and presents two linear asymp-

totes. We denote by bTðmÞ [respectively, bBðmÞ] the treble

bridge (respectively, the bass bridge) asymptote of

log BnðmÞ. Each asymptote is parametrized by its slope and

its Y-intercept,

bTðmÞ ¼ sT � mþ yT ;

bBðmÞ ¼ sB � mþ yB:

�
(7)

According to Young,3 bTðmÞ is similar for all the pianos so

sT and yT are fixed parameters. Then, the set of free (piano

dependent) parameters reduces to n ¼ fsB; yBg. BnðmÞ is set

as the sum of the contributions of these two curves [Eq. (7)]

in the linear scale

BnðmÞ ¼ ebBðmÞ þ ebTðmÞ: (8)

It should be emphasized that this additivity does not arise

from physical considerations, but it is the simplest model

that smoothes discontinuities between the bridges.

Experimental data will show that it actually describes well

the variations of B in the transition region around the two

bridges.

The model is presented in Fig. 1(a) for three different

typical values of the set of parameters: n1, n2, and n3, corre-

sponding to low, medium, and high inharmonic pianos,

respectively. The asymptotes corresponding to the bass and

treble bridges are also drawn for Bn2
ðmÞ.

3. Whole compass model for q

The octave tuning relation, given in Eq. (6), considers

the cancellation of the beatings produced by a single pair of

partials. In practice, the deviation F0ðmþ 12Þ=2F0ðmÞ could

be a weighted sum of the contribution of two pairs of parti-

als, because the amount of stretching may result from a com-

promise between two octave types.5 An alternative model

to take into account this weighting is to allow non-integer
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values for q 2 ½1;þ1½. For example, if the octave tuning is

a compromise between a 2:1 and 4:2 type octave, q will be

in the interval ½1; 2�. This model loses the physical meaning

because q is not anymore related to a partial rank; it will

however be shown in Sec. III B 2 that it allows the inversion

of Eq. (6), in order to estimate q from the data.

We choose arbitrarily to model the evolution of q along

the compass as follows:

q/ðmÞ ¼
j
2
� 1� erf

m� m0

a

� �� �
þ 1; (9)

with erf the error function, and / ¼ fj;m0; ag the set of pa-

rameters. Note that q/ is indexed by the note m, and not by

the note mþ 12 [cf. Eq. (6)]. It is then defined for

m 2 ½21; 96�. j is related to the value of the asymptote in the

low bass range. m0 is a parameter of translation along m, and

a rules the slope of the decrease.

This model expresses the fact that the amount of stretching

inherent in the octave type choice is decreasing from the low

bass to the high treble range and that it is limited by horizontal

asymptotes at each extremity. It may be justified by the fact that

the perception of the pitch of complex tones is not only based

on the first partial of the notes, but on a set of partials contained

in the “dominant region” of the human hearing.21–23 For bass

tones (with fundamental frequencies around 100 to 400 Hz, i.e.,

in the range G2 to G4, m 2 ½43; 67�), this dominant region cov-

ers the third to fifth partials.22 While going up to the treble part

of the compass, the dominant region tends to be localized on the

partials with a lower rank. For tones having a first partial fre-

quency above 1400 Hz (i.e., for a higher note than F6, m ¼ 89)

the perception of the pitch is mainly linked to the first partial.23

Then, in the model high treble asymptote is set to 1. It corre-

sponds to the minimal octave type (2:1), and means that the

tuner focuses on the first partial of the highest note. In the low

bass range, the asymptote is set by the value of jþ 1.

The model is represented in Fig. 1(b) for three different

values of the set of parameters: /1, /2, and /3, respectively,

corresponding to a low, mid, and high octave type choice in

the low bass range.

4. Interpolation on the whole compass

From the estimation of the sets of parameters, n related

to the design of the strings, and / related to the choices of

the tuner, it is possible to tune all the octaves of a reference

note. If A4 is tuned such as f1ðm ¼ 69Þ ¼ 440 Hz, all the A
notes of the keyboard can be iteratively tuned by using

Eq. (6). To complete the tuning on the whole compass, a

Lagrange polynomial interpolation is performed on the

deviation from ET of the tuned notes of the model [com-

puted by using Eq. (4)]. The interest of this method is that

the interpolated curve is constrained to coincide with the

initial data. The interpolated model of deviation from ET is

denoted by dn;/ðmÞ.

5. Global deviation

Finally, in order to take into account the fact that the ref-

erence note is not necessarily an A4 at 440 Hz (other tuning

forks exist, for instance A4 at 442 Hz or C5 at 523.3 Hz) we

add in the model the possibility of a global “detuning.” In

the representation of the deviation from ET in cents, it corre-

sponds to a vertical translation of the curve. Then, the devia-

tion from ET of the model is set to dn;/ðmÞ þ dg, where dg is

an extra parameter of the model, corresponding to the global

deviation.

The whole compass tuning model is depicted in Fig. 2

for different values of the sets of parameters n and / (corre-

sponding to those used in Fig. 1), and for dg ¼ 0. The

tuning of the A notes from an A4 at 440 Hz is indicated with

black dots on the middle curves. Figure 2(a) corresponds

to the influence on the tuning of Bn (for n1, n2, and n3), for

/2 fixed. Since the string design is standardized in the

range C4 to C8, the tuning changes significantly only in

the bass range. Figure 2(b) represents the influence on the

tuning of q/ (for /1, /2, and /3), for n2 fixed. Its influence

is visible on the whole compass but it is mainly important

in the bass range, where it can produce a deviation up

to �20¢.

III. ESTIMATION OF THE PARAMETERS FROM
ISOLATED NOTE AND CHORD RECORDINGS

A. Automatic estimation of ðB;F0Þ

The parameter estimation of the proposed tuning model

requires a prior precise estimation of ðB;F0Þ of several notes

along the compass. This task has been dealt with by several

authors, and often achieved from isolated note recordings.

For instance, Galembo and Askenfelt24 carry it out by means

of an inharmonic comb filtering of the magnitude spectrum.

The output of the comb filter is computed on a grid of

ðB;F0Þ and the maximal value is selected (after a local

FIG. 1. Model for (a) inharmonicity coefficient BnðmÞ and (b) octave type

parameter q/ðmÞ along the compass for different values of the sets of

parameters.
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interpolation) as the best estimate. Rauhala et al.25,26 pro-

pose the Partial Frequencies Deviation (PFD) algorithm that

minimizes, with respect to ðB;F0Þ, the deviation between the

theoretical partial frequencies of the model and the frequen-

cies of high amplitude peaks previously selected in the mag-

nitude spectra. Godsill and Davy9 introduce a Bayesian

framework to model piano sounds in time domain. ðB;F0Þ
are parameters of the model and are estimated by maximiz-

ing the a posteriori probability density function. Besides, in

the case of polyphonic harpsichord music—where the inhar-

monicity effect (B < 10�4) is less important—an iterative

method has been recently proposed by Dixon et al.27 to esti-

mate inharmonicity and temperament, together with a tran-

scription task.

Here, a robust new algorithm based on the Non-negative

Matrix Factorization (NMF) frameworks is proposed in

order to finely estimate ðB;F0Þ from isolated notes, but also

chord recordings.

1. NMF framework

Given a non-negative matrix V of dimension K � T, the

NMF consists of finding an approximate factorization28

V � WH () Vkt � V̂ kt ¼
XR

r¼1

WkrHrt; (10)

where W and H are non-negative matrices of dimensions

ðK � RÞ and ðR� TÞ, respectively. In the case of music tran-

scription,29 V corresponds to the magnitude (or power) spec-

trogram of an audio excerpt, k corresponds to the frequency

bin index, and t corresponds to the frame index. Thus, W
represents a dictionary containing the spectra (or atoms) of

the R sources, and H their time-frame activations. Recently,

harmonic structure,30,31 temporal evolution of spectral

envelopes,32 vibrato,30 beat structure,33 etc., have been intro-

duced as a parametrization of the matrices W and/or H, in

order to take explicitly into account specific properties of

different musical sounds.

The purpose of this section is to introduce the informa-

tion of the inharmonicity of piano tones explicitly into the

dictionary of spectra W. The idea is to take into account the

parameters ðB;F0Þ as constraints on the partial frequencies

of each note, so as to perform a joint estimation. In order to

limit the number of parameters that we need to retrieve,

besides the amplitude and frequency of each partial, we

make the assumption that for every recording we know

which notes are being played, and the corresponding time

activations. Then, short-time spectra are extracted from the

recordings and concatenated to build the observation matrix

V (it is therefore not strictly speaking a spectrogram).

Because for each column of V the played notes are known,

the elements of H are fixed to one whenever a note is played,

and zero when it is not. Thereby, only the dictionary W is

optimized on the data. In that case, we should notice that the

proposed model is not a factorization. However, the model

has been developed in the NMF framework for further inclu-

sion in transcription or source separation algorithms, where

NMF is a very competitive approach.

In order to quantify the quality of the approximation of

Eq. (10), a distance (or divergence) is introduced. For a sepa-

rable metric, it can be expressed as

DðVjWHÞ ¼
XK

k¼1

XT

t¼1

dðVktjV̂ ktÞ: (11)

In audio applications, the family of b-divergences is widely

used,34 because it encompasses three common metrics: b ¼ 2

for the Euclidian distance, b ¼ 1 for the Kullback-Leibler

divergence, and b ¼ 0 for the Itakura-Saito divergence. These

divergences are used to define a cost function which is mini-

mized with respect to W and H, respectively. The mathemati-

cal expressions which are given in this paper are derived

within the general framework of b-divergences. The results

presented in Sec. IV B are obtained for the Kullback-Leibler

divergence

db¼1ðx j yÞ ¼ xðlog x� log yÞ þ ðy� xÞ: (12)

2. Modeling piano sounds in W

The model for the spectra/atoms of the dictionary W is

based on an additive model: The spectrum of a note is com-

posed of a sum of partials, in which the frequencies are con-

strained to follow an inharmonicity relation.

a. General additive model for the spectrum of a note. The

general parametric atom used in this work is based on the

additive model proposed by Hennequin et al.30 Each spectrum

of a note, indexed by r 2 ½1;R�, is composed of the sum of Nr

FIG. 2. Model for the deviation of tuning from ET along the compass. (a)

Influence of n in the tuning for / fixed. (b) Influence of / in the tuning for n
fixed. The different values for n and / correspond to those used to generate

the curves of Fig. 1.
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partials. The partial rank is denoted by n 2 ½1;Nr�. Each par-

tial is parametrized by its amplitude anr and its frequency fnr.

Thus, the set of parameters for a single atom is denoted by

hr ¼ fanr; fnrjn 2 ½1;Nr�g and the set of parameters for the

dictionary is denoted by h ¼ fhrjr 2 ½1;R�g. Finally, the

expression of a parametric atom is given by

Whr

kr ¼
XNr

n¼1

anr � gsðfk � fnrÞ; (13)

where fk is the frequency of the bin with index k and gsðfkÞ is

the magnitude of the Fourier transform of the analysis window

of size s. Here, we limit the spectral support of gsðfkÞ to its

main lobe to obtain a simple expression of the updated rules30

and a faster optimization. The results presented in this paper are

obtained for a Hanning window. Its main lobe magnitude spec-

trum (normalized to a maximal magnitude of 1) is given by

gsðfkÞ ¼ ð1=psÞ:sinðp fksÞ=ðfk � s2f 3
k Þ, for fk 2 ½�2=s; 2=s�.

Finally, the cost function is defined by using the

b-divergence

C0ðh;HÞ ¼
XK

k¼1

XT

t¼1

db

�
Vktj

XR

r¼1

Whr

kr � Hrt

�
: (14)

b. Inclusion of the inharmonicity constraint. A previous

study on parametric NMF (Ref. 10) has already tested an

inharmonicity relation, as given in Eq. (1), for piano music

transcription. This study that constrained the partial frequen-

cies to exactly follow this ideal relation was not conclusive:

Adding inharmonicity in their model did not increase the

transcription performance, compared to a simpler harmonic

constraint. Similarly, in our model, given Eq. (13), this con-

straint would be equivalent to a reduction of the Nr parame-

ters fnr of every note to only 2 parameters fBr;F0rg by

setting fnr ¼ nF0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2
p

. This constraint turns out to be

too stringent, and numerically it leads to ill-convergence of

the B parameter update.

In contrast with these studies, inharmonicity can be

included as a relaxed constraint,35 allowing for a local adap-

tation of the frequency of every partial, while constraining

the entire set of partials to globally follow an inharmonic

relation. At the same time, for each partial it allows a slight

frequency deviation from the inharmonicity relation, as for

instance due to the bridge coupling with the soundboard.

The set of parameters related to the constraint is denoted by

c ¼ fF0r;Brjr 2 ½1;R�g. Finally, a new cost function is built

by adding a regularization term

Cðh; c;HÞ ¼ C0ðh;HÞ þ k � C1ðfnr; cÞ; (15)

where C1ðfnr; cÞ is defined as a sum on each note of the mean

square error between the estimated partial frequencies fnr

and these given by the inharmonicity relation

C1ðfnr; cÞ ¼
XR

r¼1

XNr

n¼1

�
fnr � nF0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2

p �2

: (16)

k is a scalar parameter, empirically tuned, which sets the weight

of the inharmonicity constraint in the global cost function.

3. Optimization algorithm

a. Update of the parameters. As commonly proposed in

NMF modeling, the optimization is performed iteratively, using

multiplicative update rules for anr, fnr, and Br parameters.

These update rules are obtained from the decomposition of the

partial derivatives of the cost function given in Eq. (15), in a

similar way to Hennequin et al.30 (for the interested reader, the

derivation is detailed in the associated supplementary mate-

rial36). For F0r, an exact analytic solution is obtained when can-

celing the partial derivative of the cost function C1. Then, at

each iteration the following update rules are applied:

anr  anr �
Q0ðanrÞ
P0ðanrÞ

; (17)

fnr  fnr �
Q0ðfnrÞ þ k � Q1ðfnrÞ
P0ðfnrÞ þ k � P1ðfnrÞ

; (18)

Br  Br �
Q1ðBrÞ
P1ðBrÞ

; (19)

F0r ¼

XNr

n¼1

fnrn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2

p
XNr

n¼1

n2ð1þ Brn
2Þ

; (20)

where

P0ðanrÞ ¼
XK

k¼1

XT

t¼1

½ðgsðfk � fnrÞ � HrtÞ � V̂
b�1

kt �; (21)

Q0ðanrÞ ¼
XK

k¼1

XT

t¼1

½ðgsðfk � fnrÞ �HrtÞ � V̂
b�2

kt � Vkt�; (22)

P0ðfnrÞ ¼
X

k;t

anr
�fk:g

0
sðfk � fnrÞ

fk � fnr
� Hrt

� �
� V̂b�1

kt

�

þ anr
�fnr � g0sðfk � fnrÞ

fk � fnr
� Hrt

� �
� V̂b�2

kt � Vkt

	
;

(23)

Q0ðfnrÞ ¼
X

k;t

anr
�fk � g0sðfk � fnrÞ

fk � fnr
� Hrt

� �
� V̂b�2

kt � Vkt

�

þ anr
�fnr � g0sðf � fnrÞ

fk � fnr
� Hrt

� �
� V̂b�1

kt

	
;

(24)

P1ðfnrÞ ¼ 2fnr; (25)

Q1ðfnrÞ ¼ 2nF0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2

p
; (26)

P1ðBrÞ ¼ F0r

XNr

n¼1

n4; (27)

Q1ðBrÞ ¼
XNr

n¼1

n3fnrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2
p ; (28)
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are all positive quantities. g0sðfkÞ represents the derivative of

gsðfkÞ with respect to fk on the spectral support of the main

lobe. We remind that V̂ ¼ WhH. Note that for a transcription

task, H could be updated with standard NMF multiplicative

rules.34

b. Initialization. The initialization of ðBr;F0rÞ is done

using the inharmonicity and tuning model along the whole

compass (cf. Sec. II), with typical values of the parameters.

For the applications presented in Sec. IV, we set for the

model of B: sB ¼ 8:9 � 10�2, yB ¼ �7; for the model of

octave type: j ¼ 3:5, a ¼ 25, m0 ¼ 60 and for the global

deviation dg ¼ 5. Then, the fnr’s are initialized according to

the inharmonic relation given in Eq. (1). The anr’s are initial-

ized to 1.

c. Dealing with noise and partials related to longitudi-
nal vibrations. In practice, if too many partials are initialized

in noisy frequency bands, they can get stuck and therefore

lead to bad estimates of the inharmonicity relation parame-

ters. For each iteration of the optimization algorithm, we

cancel their influence in the estimation of c by removing

them from the regularization term given in Eq. (16). For the

proposed application, we compute, during a preprocessing

step, the noise level37 (NL) ðfkÞ on each magnitude spectrum

composing the matrix V, and at each iteration we look for

the estimated partials that have a magnitude greater than the

noise. Thus, we define the set of reliable partials of each note,

being above the NL, by Dr ¼ fnjanr > NLðfnrÞ; n 2 ½1;Nr�g.
This information is taken into account in the updated rules of

Br [Eqs. (27) and (28)] and F0r [Eq. (18)] by replacing the

sums over the entire set of partials
PNr

n¼1 by sums over the

reliable set of partials
P

n 2 Dr
.

Moreover, in order to avoid the partials of the model to

match with the wrong partials of the observed spectra (as for

instance corresponding to longitudinal vibrations of the

strings) the parameter k is set to 1:25 � 10�1. This value cor-

responds to a large weight for the inharmonicity constraint

in the global cost function. In the last iterations the weight of

the constraint is relaxed to a smaller value (k ¼ 5 � 10�3), so

that the partials of the model can exactly match the measured

partials, which are expected to correspond to transverse

vibrations of the strings, and can slightly deviate from the

theoretical inharmonicity relation. Note that these values of

the parameter k, given for the analysis of spectra normalized

to a maximal magnitude of 1, do not have to be finely tuned

on each piano (the same values have been used throughout

our analysis).

Finally, the steps of the algorithm are summarized in

Algorithm 1.

B. Estimation of the whole compass tuning model

1. Bn estimation

We first estimate the fixed parameters fsT ; yTg, corre-

sponding to the string set design on the treble bridge and

being almost equal for all the models of pianos, by using

BðmÞ estimates of six different pianos (the databases are pre-

sented in Sec. IV) in the range C4 to C8. These are obtained

by an L1 regression (in order to reduce the influence of

potential outliers), i.e., by minimizing the least absolute

deviation, between the model and the average of the esti-

mated inharmonicity curves over the six different pianos.

We find sT ’ 9:26 � 10�2, yT ’ �13:64. These results are in

accordance with estimates based on physical considerations3

sT½Yo52� ’ 9:44 � 10�2, yT½Yo52� ’ �13:68.

Each piano is then studied independently to estimate the

particular parameters n ¼ fsB; yBg on a set of notes M. n is

estimated minimizing the least absolute deviation between

log BðmÞ and log BnðmÞ,

n̂ ¼ arg min
n

X
m 2 M

jlog BðmÞ � log BnðmÞj: (29)

2. q/ estimation

For each piano, the data qðmÞ is estimated for

m 2 ½21; 96� from ðBðmÞ;F0ðmÞÞ values by inverting Eq. (6),

qðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F0ðmÞ2 � F0ðmþ 12Þ2

F0ðmþ 12Þ2Bðmþ 12Þ � 16F0ðmÞ2BðmÞ

s
:

(30)

Then, the set of parameters / is estimated by minimizing the

least absolute deviation distance between q/ðmÞ and qðmÞ
on a set M of notes

/̂ ¼ arg min
/

X
m 2 M

jqðmÞ � q/ðmÞj: (31)

Algorithm 1: NMF with inharmo. constraint

Input:

V set of magnitude (normalized to a max. of 1) spectra

H filled with 0 and 1

Preprocessing:

for each column of V compute NL(fk) the NL

see the Appendix of Rigaud et al.37

Initialization:8 r 2 ½1;R�, n 2 ½1;Nr�,
ðBr;F0rÞ according to the model of Sec. II

fnr ¼ nF0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Brn2
p

, anr ¼ 1

Wh computation [cf. Eq. (13)]

b ¼ 1 / k ¼ 0:125

Optimization:

for it ¼ 1 to 150 do

(1) anr update 8 r 2 ½1;R�, n 2 ½1;Nr� [Eq. (17)]

Wh update [Eq. (13)]

deduce Dr by comparing anr with NLðfnrÞ
(2) fnr update 8 r 2 ½1;R�, n 2 ½1;Nr� [Eq. (18)]

Wh update [Eq. (13)]

for u ¼ 1 to 30 do

8r, n 2 Dr

F0r update [cf. Eq. (20)]

Br update (20 times) [cf. Eq. (19)]

end for

if it � 100 then
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k ¼ 5 � 10�3

end if

end for

Output: anr, fnr, Br, F0r

3. dg estimation

Once the n and / sets of parameter have been estimated,

the octaves of the reference note are tuned according to Eq.

(6). Then, the deviation from ET of the model dn;/ is

obtained on the whole compass after the Lagrange interpola-

tion stage. Finally, dg is estimated by minimizing the least

absolute deviation, on the reference octave F3 to F4

(m 2 ½53; 65�) between dðmÞ, the deviation from ET esti-

mated on the data [see Eq. (4)], and dn;/ðmÞ þ dg;

d̂g ¼ arg min
dg

X65

m¼53

jdðmÞ � ðdn;/ðmÞ þ dgÞj: (32)

IV. EXPERIMENTAL RESULTS

A. Experimental data

The results presented in this section are obtained from

three separate databases, covering a total of six pianos: Iowa

(Ref. 38) (one grand piano), RWC (Ref. 39) (three grand pia-

nos), and MAPS (Ref. 40) (one upright piano and one grand

piano synthesizer using high quality samples).

In the paper, only selected examples are shown. For a

more extensive set of results, one can refer to the associated

supplementary material.36

B. ðB;F0Þ estimation results

1. Isolated note analysis

The proposed algorithm has been applied to the estima-

tion of ðB;F0Þ from isolated note recordings played with

mezzo-forte dynamics and re-sampled to Fs¼ 22 050 Hz. In

order to obtain a sufficient spectral resolution, the observation

spectra have been extracted from 500 ms Hanning windows,

applied to the decay part of the sounds. Then, the matrix V
has been built by concatenating the 88 spectra (each column

corresponding to the magnitude spectrum of a note, from A0

to C8) and here H is fixed to the identity matrix. For each

note, Nr has been set to arg minNr
ð30; fNr ;r < Fs=2Þ. Figure 3

shows (a) the initialization and (b) the result of the optimiza-

tion for the analysis of the F]1 note of RWC grand piano #1

database. At the initialization 14 partials of the model are

overlapping the partials of the data corresponding to trans-

verse vibrations of the strings. After the optimization proce-

dure, the amplitudes and frequencies of the first 30 partials

have been correctly estimated and it can be seen that the

selection of longitudinal vibration partials (visible from

approximately 700 to 1500 Hz) has been avoided, although

the initialization was close to some of the corresponding

peaks. The result is also displayed for the G[6 note in Fig. 4.

In this case, the validity of the estimation cannot be assessed

so easily for some partials (as for instance around 5000, 6500,

and 8000 Hz), mainly because these partials aggregate multi-

ple peaks when the model only assumes a single component.

This issue typically happens in the treble range, where the

notes are associated with triplets of slightly detuned strings.

Then, the algorithm selects one peak per group that has the

best balance between peak strength and model fitting, and

might return slightly biased estimates for ðB;F0Þ.
The results for the estimation of the inharmonicity coef-

ficient have been compared to the PFD algorithm25,26 on

both synthetic and real piano tones (corresponding to these

used by Rauhala et al.25). As suggested,25 the evaluation is

performed on the A0 to G3 range (m 2 ½21; 55�). NMF

achieves an average relative deviation from ground truth of

0.33% on synthetic samples and 0.76% on real samples,

whereas PFD returns 0.78% and 3.3%, respectively. The

interested reader can find a more in depth description of the

evaluation and results in the supplementary material.36 A

benefit of using the NMF algorithm is that it still performs

well in the high pitch range, while PFD (not optimized there)

has some robustness issues.

2. Chord analysis

The same protocol has been applied to the analysis of

four chords (from MAPS grand piano synthesizer), respec-

tively taken in the extreme bass, bass, middle, and treble

range of the compass. Each chord is composed of five notes.

In order to have a sufficient spectral resolution, the analysis

window length was set to 1 s for the chords played in the

FIG. 3. (a) Initialization and (b) result of the algorithm for the analysis of

the F]1 note from the RWC grand piano #1 database.

FIG. 4. Result of the algorithm for the analysis of the G[6 note from the

RWC grand piano #1 database.
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extreme bass/bass ranges and 500 ms in the medium/treble

ranges. In Fig. 5, the results of ðB;F0Þ estimates obtained

from isolated notes (in thin gray lines) are compared with

the ones obtained from chords (one type of marker for each

chord). The initialization is drawn as a dashed line. It can be

observed that both types of estimations lead to remarkably

similar results. The slight deviations in the estimation from

chord recordings could be explained by the overlapping of

the partials belonging to different notes that could corrupt

the estimation of the frequencies. Moreover, it has been

shown in Sec. IV B 1 on isolated note analysis that, in the tre-

ble range, the precise estimation of ðB;F0Þ cannot be always

guaranteed since the model of inharmonicity with one fre-

quency peak per partial, as given by Eq. (1), is not sufficient

to explain the spectrum of the notes. The estimated spectrum

corresponding to chord #1 is given in Fig. 6, where one can

see that, despite a considerable spectral overlap between the

notes, the partials are well identified for every note up to a

high order around 30.

C. Whole compass tuning model results

1. Modeling the tuning of well-tuned pianos

The results of the estimation of the whole compass tun-

ing model for two different pianos are presented in Figs. 7

and 8. Figures 7(a)–7(c) and 8(a)–8(c) correspond to the

inharmonicity coefficient B, the octave type parameter q,

and the deviation from ET curves along the whole compass,

respectively. The data corresponding to the estimation of

FIG. 5. Isolated note vs chord analysis for the grand piano synthesizer of

MAPS database. (a) Inharmonicity coefficient and (b) deviation from ET

along the compass.

FIG. 6. Result of the algorithm for the analysis of chord #1 (G1-A1-C2-E2-G2) of MAPS grand piano synthesizer.

FIG. 7. RWC grand piano #3. (a) Inharmonicity coefficient B, (b) octave

type parameter q, and (c) deviation from ET along the whole compass. The

data are depicted as gray þ markers and the model as black lines.
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ðB;F0Þ from isolated note recordings is depicted as “þ”

markers, and the model as black lines.

B along the compass [Figs. 7(a) and 8(a)]. The estimation

of the parameters has been performed from a limited set of

four notes (black dots markers), taken in the bass range and

equally spaced by fifth intervals. As the string set design on

each bridge is quite regular, a few notes can be used to

correctly estimate the model. In the case where an important

discontinuity is present in the variations of BðmÞ [for instance,

between C2, m ¼ 37, and D2, m ¼ 38, notes in Fig. 8(a)]

the 2-bridge additive model produces a smoothed curve. It

is worth noting from RWC grand piano #2 design characteris-

tics that the slight jump between m ¼ 27 (D]1) and m ¼ 28

(E1) might be explained by the single to doublet of strings

transition, and the important jump between m ¼ 37 (C2) and

m ¼ 38 (D2) by the bridge change joint to the doublet to tri-

plet of strings transition.

q along the compass [Figs. 7(b) and 8(b)]. The curves of

qðmÞ can present an important dispersion around the mean

model q/ðmÞ, but the global variations are well reproduced.

In the medium range, the estimated octave types are a trade-

off between 6:3 and 4:2, which is common in piano tuning.5

The variations, more important in the bass range, could be

explained by the fact that the model of the partial frequencies

[cf. Eq. (1)] does not take into account the frequency shifts

caused by the bridge coupling, mainly appearing in the low

frequency domain. Moreover, the proposed tuning model is a

simplification of a real tuning procedure, it is based on octave

interval tuning, while an expert tuner would jointly control

different intervals along the keyboard and can do local read-

justments after a global tuning. Note that some values of qðmÞ
can be missing when the quantity under the square root of

Eq. (30) is negative. This happens if the corresponding octave

interval is compressed instead of being stretched.

Deviation from ET along the compass [Figs. 7(c) and

8(c)]. The curves demonstrate that the model reproduces the

main variations of the tuning in a satisfactory manner. This

confirms that, besides the well-known influence of the inhar-

monicity on the tuning, perceptual effects (taken into

account through the octave type consideration) can take part

in the stretching, mainly in the bass range. Note that the tun-

ing of A notes is marked with black dot markers.

2. Tuning pianos

Because the model of octave type choice q/ðmÞ is

defined for well-tuned pianos (the stretching of the octaves is

implicitly assumed to be higher than 2), it cannot be used to

study the tuning of strongly out-of-tune pianos. In this case,

we propose to generate tuning curves deduced from a mean

model of octave type choice. The model is obtained by aver-

aging the curves qðmÞ over three pianos (RWC #2, #3, and

Iowa grand pianos), that were assumed to be well-tuned, by

looking at the shape of their deviation from ET curves. From

this averaged data, a mean model �q/ðmÞ is estimated. In

order to give a range of fundamental frequencies in which

the pianos could be reasonably re-tuned, we arbitrarily define

a high (respectively, low) octave type choice as �q/;HðmÞ
¼ �q/ðmÞ þ 1 (respectively, �q/;LðmÞ ¼ minð�q/ðmÞ � 1; 1ÞÞ.
These curves are shown in Fig. 9.

Tuning curves are then computed from the estimation of

n and �q/ðmÞ. The global deviation parameter dg is set to 0.

The results are presented in Fig. 10 for RWC grand piano

#1. The current tuning is depicted as þ gray markers and

clearly shows that the piano is not well-tuned, mainly in the

bass range where the tuning is “compressed.” The space

FIG. 8. RWC grand piano #2. (a) Inharmonicity coefficient B, (b) octave

type parameter q, and (c) deviation from ET along the whole compass. The

data are depicted as gray þ markers and the model as black lines.

FIG. 9. Mean octave type choice for tuning application. þ gray markers cor-

respond to an average of qðmÞ over three different pianos. The black line cor-

responds to the estimated model. Circle markers (respectively, in dashed line)

represent the high (respectively, low) octave type choice model.
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between the tuning curves obtained from �q/;HðmÞ and

�q/;LðmÞ corresponds to a range in which we assume the

piano could be well-tuned. For a quantitative interpretation,

it will be interesting to compare our curves with those

obtained after a re-tuning done by a professional tuner.

V. CONCLUSION

A parametric model of piano tuning has been proposed

in this paper. It takes into account a model on the whole

compass for the inharmonicity coefficient, and the octave

type choices of the tuner. The complete algorithm takes as

input either isolated notes, or chords recordings. From this,

ðB;F0Þ is finely estimated and used as data to estimate the

parameters of the tuning model. It has been successfully

applied to model the main variations of the tuning along the

compass of different types of pianos, and it provides re-

tuning curves for out-of-tuned pianos.

The current algorithm assumes a prior knowledge of

which notes are being played, and when, in the input record-

ings. A long-term goal of this study is to be able to parametrize

the piano inharmonicity and tuning, from any arbitrary piano

recording, in a musical context. Toward this achievement,

future work will focus on the interplay between a transcription

algorithm, and the estimation of the physical parameters—the

topic of this article—possibly in an iterative way.
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