Behavioral Modeling and Simulation of Cascade Multibit ΣΔ Modulator for Multistandard Radio Receiver

Sonia Zouari, Houda Daoud, Mourad Loulou, Patrick Loumeau, Nouri Masmoudi

1Information Technologies and Electronics Laboratory National Engineering School of Sfax, Sfax, Tunisia
2Electronics and Communications Department, Telecom ParisTech, Paris, France
Email: sonia.zouari@enis.rnu.tn, daoud.houda@tunet.tn, mourad.loulou@ieee.org, Patrick.loumeau@enst.fr

Received July 25, 2012; revised September 19, 2012; accepted September 27, 2012

ABSTRACT

In this paper, a cascade Sigma-Delta (ΣΔ) Analog to Digital Converter (ADC) for multistandard radio receiver was presented. This converter is supposed to be able to support GSM, UMTS, WiFi and WiMAX communication standards. The Sigma-Delta modulator makes use of 4 bit quantizer and Data-Weighted-Averaging (DWA) technique to attain high linearity over a wide bandwidth. A top-down design methodology was adopted to provide a reliable tool for the design of reconfigurable high-speed ΣΔMs. VHDL-AMS language was used to model the analog and mixed parts of the selected 2-1-1 cascade ΣΔ converter and to verify their reconfiguration parameters based on behavioural simulation. This multistandard architecture was high level sized to adapt the modulator performance to the different standards requirements. The effects of circuit non-idealities on the modulator performance were modeled and analyzed in VHDL-AMS to extract the required circuit parameters.

Keywords: ΔΣ ADC; Multistandard; VHDL-AMS Language; Behavioural Simulation

1. Introduction

The most significant design challenge in current and future wireless devices is to support several wireless and cellular standards in the same handheld device. The goal was to design multistandard RF terminals that are very flexible and reconfigurable with neither a decrease in the circuit performance nor an increase in power consumption or silicon area [1-4]. A high resolution high speed ADC will only allow the shifting of several RF and analog processing to the digital domain in order to provide more flexibility and increase the design complexity [5]. The use of ΔΣ modulators in multistandard receivers is suitable for several reasons among which we can cite, firstly, that ΣΔ modulators are very linear and are also less sensitive to circuit non-idealities than other types of data converters [6]. Secondly, the noise shaping and the oversampling performed by ΣΔ modulators allow to achieve high Dynamic Range (DR) for narrow bandwidths and lower DR for higher bandwidths. This characteristic is coherent with wireless standards requirements and their RF specifications which makes ΣΔ ADC suitable to perform the Analog/Digital (A/D) conversion function in a multi-standard capable RF receiver [7]. Another important advantage of ΣΔ ADC is it consumes less power than full Nyquist ADCs [8]. In this paper, the reconfigurable ΣΔ was modelled to be designed for a GSM/UMTS/WiFi/WiMAX radio receiver. Figure 1 shows the adopted multistandard receiver architecture. The proposed architecture is a multistandard Zéro-IF receiver. It uses a multiband antenna, four RF filters for GSM/UMTS/WLAN/WiMAX selection, a multistandard low noise amplifier (LNA) and multistandard mixers for I and Q components. The A/D conversion is performed with multistandard anti Alias filter and multistandard ΣΔ Modulator (ΣΔM). The digital processing is supported by a DSP circuit. Zero_IF architecture was chosen for its high level of integration, associated with excellent multistandard capabilities [9]. Contrary to several multistandard Zero-IF architectures proposed in literature which use channel selection in analog domain and use an automatic Gain Control (AGC) to decrease ADC dynamic requirement [10,11], in our selected multistandard receiver, channel selection is performed in the digital domain and a very high dynamic ADC is used to eliminate the need for AGC. It uses a multistandard oversampled ΔΣM followed by a digital decimation filter as shown in Figure 2. This approach achieves a more programmable solution rather than an analog approach thereby, enabling such receivers to upgrade easy to multi-mode operation. Digital channel select filtering can be made easily programmable by changing the filter coefficients in the decimation filter. However, the dynamic range of the ADC must also be made programmable to fit the RF specifica-
tions. Fortunately, Sigma-Delta modulators allow the designer to trade off bandwidth and dynamic range which make them suitable to perform the A/D conversion function in a multi-standard capable RF receiver. Relying on system specifications for various addressed RF communications standards and on chosen receiver characteristics, ADC specifications were established for each standard (Table 1).

The remaining of the paper is organized as follows: Section 2 shows the multistandard cascaded Sigma-Delta modulator architecture and discusses its reconfiguration. Section 3 describes the system level design of the proposed modulator using VHDL-AMS language. The simulation results modeling are presented in Section 4. Finally, we draw our conclusion in Section 5.

2. Reconfigurable $\Sigma\Delta$ Modulator Architecture

Given that reconfigurability must be considered to find out the optimal multistandard $\Sigma\Delta$ modulator architecture, the cascade $\Sigma\Delta$ ADC was selected as the best suited architecture (Figure 3) [12-14]. This fourth order cascade topology is a 2-1-1 architecture implemented using a cascade of second order sigma–delta loop and two first-order loops. The cascade architecture recombines the outputs of each stage in the digital domain to achieve fourth-order noise shaping. Inherently linear single-bit Digital/Analog (D/A) converters are employed in the first two stages while a four-level D/A converter is employed in the lower resolution third stage to improve the dynamic range. The proposed topology overcomes the influence of mismatch-induced errors in the multibit DAC on the 2-1-1 modulator performance of [15] by introducing a DEM algorithm; Data Weighted Averaging (DWA) to correct the DAC mismatch non-linearity. Based on [15], the coefficients were optimized in such a way that analog coefficients could be constructed with small integer ratios in order to achieve a compact layout and good matching in the switched-capacitor (SC) implementation. The value of the integrator weights are given in Table 2. The presented $\Sigma\Delta$ modulator provides a flexible solution to the support of a large variety of specifications. It is able to operate in three distinguishable modes as in the cases of GSM, UMTS and WLAN/WiMAX. It was considered that WLAN and WiMAX standards require the same ADC dynamic at the same bandwidth. Each mode consists of a $\Sigma\Delta$ topology and an oversampling ratio (OSR) as shown in Table 3. A three order cascaded single bit 2-1 $\Sigma\Delta$M has been selected as the two first stages in order to meet the specifications of the GSM mode. The unused block in the third stage is switched off while working in the GSM mode, taking into account the design considerations like power consumption. In all the others modes, the fourth order modulator 2-1-1$_{\text{abits}}$ cascaded is switched to operation by putting off the switch thus making it programmable. In the UMTS, this architecture operates at OSR of 16. In the WLAN/WiMAX mode, we use the same topology but at an OSR of 8. In order to validate its performance, the chosen multistandard topology was simulated using Sim- plorer schematic Software based on VHDL-AMS language. The obtained results are detailed in Table 3. Figure 4 presents the simulated Signal-to-Noise Ratio (SNR)

![Figure 1. Proposed multistandard receiver architecture.](image1)

![Figure 2. Channel selection with a $\Sigma\Delta$M and digital filter.](image2)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Channel Bandwidth</th>
<th>DR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>200 KHz</td>
<td>90 - 108</td>
</tr>
<tr>
<td>UMTS</td>
<td>3.84 MHz</td>
<td>70 - 90</td>
</tr>
<tr>
<td>Wifi</td>
<td>20 MHz</td>
<td>60 - 70</td>
</tr>
<tr>
<td>WiMAX</td>
<td>20 MHz</td>
<td>50 - 65</td>
</tr>
</tbody>
</table>

![Figure 3. 2-1-1$_{\text{abits}}$$\Sigma\Delta$M linearized by DWA.](image3)
versus input signal amplitude, for GSM/UMTS/Wifi/WiMAX standards. Simulation results show a peak SNR of 107 dB in GSM mode, a peak SNR of 91 dB in UMTS mode, and a peak SNR of 68 dB in the Wifi/WiMAX mode. In Zero IF multiband GSM/UMTS/Wifi/WiMAX architecture, the ADC signal bandwidth is 100 KHz/1.92 MHz/10 MHz respectively.

3. **ΣΔ Modulator Noise Modeling**

 The estimation effect of the non-ideality on the performance of the ΣΔ modulators is the main problem faced in their design. Since they have an inherent non-linearity of the modulator loop, the optimization of their performance must be done with behavioral time domain simulations. Needless to remind that the circuit level simulation is the most precise. Nevertheless, the evaluation of the effect of the circuit non-idealities and the optimization of the modulator’s building blocks are quite difficult to execute because of the long simulation time required. An intermediate stage of behavioral simulations is therefore necessary. Through multi-level abstraction models, VHDL-AMS enables us to overcome the problems. Besides, it allows a top-down design methodology. In fact, VHDL-AMS reduce simulation time and reflect circuit non-idealities phenomena through an efficient behavioral model. It also determines possible ranges of circuit specifications with reasonable design margins before the implementation of circuit components. Each block of the multistandard 2-1-1, ΣΔ modulator was modeled using Simpler schematic models. The obtained blocks were connected in Simpler Software environment to obtain a behavioural description of the 2-1-1 multibit architecture. The previous simulation results assume the use of ideal components and only consider the quantization noise. Nevertheless, this is not the case in practice. Then, the behavioural approach has been used to investigate the overall circuit non-idealities effects, to optimize the system parameters and establish the specifications of the analog blocks. A description level using Simpler schematic allowing parameter setting according to the non-idealities has been performed [16]. The main non-idealities considered in this paper are finite DC gain, slew rate and gain-bandwidth limitations, capacitor mismatch, $\frac{K}{T/C}$ noise, clock jitter and DAC capacitor mismatch.

Table 2. Coefficients Values.

<table>
<thead>
<tr>
<th>a1</th>
<th>0.25</th>
<th>b2</th>
<th>0.5</th>
<th>d0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2</td>
<td>0.25</td>
<td>b3</td>
<td>0.5</td>
<td>d1</td>
<td>2</td>
</tr>
<tr>
<td>a3</td>
<td>1</td>
<td>c1</td>
<td>2</td>
<td>d2</td>
<td>0</td>
</tr>
<tr>
<td>a4</td>
<td>0.5</td>
<td>c2</td>
<td>1</td>
<td>d3</td>
<td>2</td>
</tr>
<tr>
<td>b1</td>
<td>1</td>
<td>c3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Performance of the multi-standard ΣΔM.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Architecture</th>
<th>OSR</th>
<th>Band (MHz)</th>
<th>Sampling frequency</th>
<th>SNRmax (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>2-1</td>
<td>64</td>
<td>0.1</td>
<td>12.8 MHz</td>
<td>107</td>
</tr>
<tr>
<td>UMTS</td>
<td>2-1-1_4bit</td>
<td>16</td>
<td>1.92</td>
<td>64 MHz</td>
<td>91</td>
</tr>
<tr>
<td>Wifi/</td>
<td></td>
<td>8</td>
<td>10</td>
<td>176 MHz</td>
<td>68</td>
</tr>
</tbody>
</table>

Figure 4. SNR as function of the input power.

3.1. **Operational Transconductance Amplifier (OTA) parameters**

The Switched Capacitor (SC) integrator is the most building block of ΣΔ converters and the OTA is the basic building block in a SC integrator. Therefore, behavioral simulations were carried out using VHDL-AMS environment in order to determine the specifications of the OTA for the different standards. The SC integrator model is developed using schematic level description as shown in Figure 5. Several non-idealities of the integrator have been included in the behavioral model: finite OTA DC gain, slew rate and gain-bandwidth limitations. Using the behavioral simulations, the peak SNR was calculated as a function of each of the finite gain OTA, the gain-bandwidth OTA and of slew rate OTA for the various modes. The results obtained are plotted in Figures 6-8, respectively. These VHDL-AMS Simulation results show that added to the proposed multistandard modulator which can tolerate an OTA dc gain of 60dB, the OTA bandwidth needs to be at least 200 MHz and the slew rate at least 200 V/µs. These specifications have been used to select an appropriate OTA circuit topology that can meet the integrator performance requirements at minimum power dissipation. The fully differential folded cascade OTA, whose schematic is shown in Figure 9, has been chosen for the four integrators. This enabled us to reach the most suitable operating speed over power consumption ratio. The OTA parameters were set according to a design sample developed in [17]. The simulated parame-
 ters of the OTA are summarized in Table 4 and reported on Simplorer OTA model.

3.2. Thermal Noise and Jitter Noise

In addition to noise from OTA, the thermal and jitter noises can also degrade the performance of the $\Sigma\Delta$ modulator. Thermal noise is mainly produced by the SC integrator finite switch resistance during the sampling and integration phases [18]. In a SC Sigma-Delta modulator, the sampling capacitor C_s is in series with a switch, which has a finite resistance R_{on}, that periodically opens.

Table 4. Proposed telescopic OTA performance.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC gain (dB)</td>
<td>78</td>
</tr>
<tr>
<td>GBW ($C_s = 2$ pF) (MHz)</td>
<td>306</td>
</tr>
<tr>
<td>Phase margin (degrees)</td>
<td>67</td>
</tr>
<tr>
<td>Slew rate (V/µs)</td>
<td>187</td>
</tr>
<tr>
<td>Power consumption (mW)</td>
<td>9.3</td>
</tr>
<tr>
<td>Process node/supply voltage (µm/V)</td>
<td>0.35 ± 1.3</td>
</tr>
</tbody>
</table>

Therefore it samples a noise voltage onto C_s. The total noise power can be calculated to evaluate the integral in Equation (1):
\[
e_{T}^{2} = \frac{4KTR_{on}}{1 + (2\pi fR_{on}C_{S})^{2}} df = \frac{KT}{C_{S}} \tag{1}
\]

where \(K \) is the Boltzmann’s constant, \(T \) the absolute temperature, and \(4KTR_{on} \) the noise PSD associated with the switch on-resistance. The switch thermal noise voltage \(e_{th} \) (usually called \(KT/C \) noise) appears as an additive noise to the input voltage \(x(t) \) leading to:

\[
y(t) = \left[x(t) + e_{r}(t) \right] c = \left[x(t) + \frac{KT}{cC_{i}} n(t) \right] c \tag{2}
\]

where \(n(t) \) denotes a Gaussian random process with unity standard deviation, and \(c \) is the integrator gain and \(c = C_{o}/C_{i} \). The behavior model of the switched thermal noise is shown in Figure 10. The clock jitter of an SC circuit can be defined as a short-term, non-cumulative variation of the switching instant of a digital clock form its ideal position in time. It produces a non-uniform sampling time sequence and results in an error that increases the total error power quantizer output. It should be noted that when the analog signal is sampled, the clock period variation doesn’t have any direct effect on the performance of the circuit. Thus, the clock jitter is introduced only by the input signal sampling, and its effect on the \(\Sigma \Delta \) modulator is independent of the modulator structure or order [19]. When a sinusoidal input signal \(x(t) \) with amplitude \(A_{x} \) and frequency \(f_{x} \) is sampled at an instant, which is in error by a statistical non-uniform uncertainty \(\Delta t \), the magnitude of this error is given by:

\[
e\left(nT_{s} + \Delta t\right) = x\left(nT_{s} + \Delta t\right) - x\left(nT_{s}\right) = \Delta t \frac{dx}{dt}\bigg|_{nT_{s}} \tag{3}
\]

Thermal and jitter noises effects have been modeled with VHDL-AMS at the behavioral level as described in Figure 10. Where \(x(t) \) is the input signal and \(r(t) \) is a random noise signal implemented with a random block, which generates a sequence of random numbers with Gaussian distribution, zero mean, and unity standard deviation. Thermal noise, called also \(KT/C \) noise, is modeled as an additive white noise source of variance \(KT/C \) to the input signal. Jitter noise, however, is included as an additive Gaussian random process with standard deviation \(\Delta T \) [20,21]. The sampling and thermal noises effect is simulated at the system level for the largest bandwidth mode WLAN/WiMAX. As shown in Figure 11, such noises increase the inband noise floor, which seems to degrade the modulator performance. Such degradation is not significant in the presence of jitter noise \(\Delta T < 10 \text{ ps} \) and thermal noise \(C_{i} > 0.2 \text{ pF} \) as it was proved by several simulations. Actually the total SNR of the modulator is set to be almost unchanged when each of these noises is introduced into the modulator model.

3.3. Mismatch of the Capacitor Values

In SC integrators, the gain factors are implemented using capacitors ratios. Although fabrication process can produce matching and gains that differ from their nominal values affecting the performance of the circuit. Moreover, this capacitance mismatch alters the integrator transfer function, consequently affecting the signal and quantization noise [22]. In the behavioral model integrators we assume that the mismatch error of integrator weights (capacitors) has Gaussian distribution with Standard deviation “sigma”. For the behavioral simulation results in Figure 12, a significant degradation of SNR can be caused by a sigma value up to 0.5%.

3.4. Mismatch in Multibit DAC

The four-bit DAC in the feedback of the last stage of our multistandard 2-1-1 \(\Sigma \Delta \) modulator can be built with 15 capacitors to determine the analog feedback signal. Due to process tolerances and variations, the values of these unit elements will deviate from the ideal weight \(C_{u} \), resulting in errors in the DAC. The DWA was used to reduce the effect of such errors. Simulations were run for the UMTS

![Figure 10. Thermal noise and jitter noise model.](image)

![Figure 11. Power spectral density of 2-1-1\(_{\text{diths}}\) \(\Sigma \Delta \) modulator with an ideal modulator and addition of thermal noise and jitter noise model (\(\Delta T = 200 \text{ ps} \) and \(C_{i} = 0.1 \text{ pF} \)).](image)
mode of the multistandard 2-1-1 bits $\Sigma \Delta$M including DAC Integral Non Linearity (INL) of 0.5% Full Scale (FS) and 1.0% FS when the DWA was inactive and active. **Figure 13** shows the PSD for the 2-1-1 bits $\Sigma \Delta$M in UMTS mode when the DAC error is 0.0%, 0.1% and 1.0% when the DWA is inactive and active, respectively. **Figure 14** shows how the DAC mismatch decreases significantly the SNR. Moreover, it is noticeable in the same figure how the DWA algorithm eliminated the SNR degradation.

4. Simulation Results

The chosen topology was simulated using Ansoft Simplorer Software to perform a system level simulation of the proposed architecture, verifying its performance and behavior when facing analog imperfections. Based on SIMPLORER models, it was possible to include several non-idealities, such as thermal noise, jitter noise, DC gain, finite bandwidth and slew rate. **Figure 15** shows...
the modulator output spectrum for
GSM/UMTS/WiFi/WiMAX modes for a 0.1/1.92/10 MHz
input signal at a sampling frequency of 12.8/64/176 MHz
under the condition of 0.2% random capacitor mismatch,
0.5% DAC INL mismatch. Jitter and thermal noises are
the other limitations assumed in this simulation with
clock jitter of 10 ps and C_T equal to 0.25 pF. Taking into
account the use of the real selected folded cascode OTA
in the four integrators of the reconfigurable $\Sigma\Delta M$, these
simulation results show that a high linearity can be
achieved thanks to the low-distortion of the Sigma-Delta
modulator. Behavioral simulation results indicate that the
proposed multistandard topology achieves a peak SNR of
105/98/65 dB for GSM/WCDMA/WLAN standards re-
spectively in the presence of these circuit non-idealities.

5. Conclusion

The major contribution of this work is the development of
an accurate behavioral model of multistandard $\Sigma\Delta M$
fors/GSM/UMTS/WiFi/WiMAX zero-IF receiver using
VHDL-AMS as the modeling language. It takes into ac-
count the behaviour level most of SC $\Sigma\Delta$ modulator non-idealities, such as DAC non-linearity, OTA para-
ters (finite DC gain, finite bandwidth, slew rate), thermal
noise and capacitor mismatch, thus it permits to obtain a
good estimation of the $\Sigma\Delta$ modulator performance with a
short simulation time. Future works would involve the im-
plementation of the 2-1-1 cascade $\Sigma\Delta$ converter using
device-level simulations.

REFERENCES

Architecture Selection: Review, State-of-the-Art Survey
and Case Study,” IEEE Circuits and Systems Magazine,

A/D Converters for Software Radio Applications,” IEEE
Transactions on Vehicular Technology, Vol. 49, No. 2,
2000, pp. 643-650. doi:10.1109/25.832996

[3] Z. Ru, N. A. Moseley, E. Klumperink and B. Nauta,
“Digitally Enhanced Software-Defined Radio Receiver
Robust to Out-of-Band Interference”, IEEE Journal of
Solid-State Circuits, Vol. 44, No. 12, 2009, pp. 3359-
3375. doi:10.1109/JSSC.2009.2032272

Techniques”, IEEE Journal of Solid-State Circuits,
Vol. 45, No. 8, 2010, pp. 1542-1553. doi:10.1109/JSSC.2010.2049790

[5] R. Bagheri, A. Mirzaei, M. E. Heidari, S. Chehrazi, M.
Lee, M. Mikhemar, W. K. Tang and A. A. Abidi, “Soft-
ware-Defined Radio Receiver: Dream to Reality,” IEEE
111-118. doi:10.1109/MCOM.2006.1678118

Multi-Mode Sigma-Delta Modulator for 4G Mobile Termi-
nals,” Integration, the VLSI Journal, Vol. 42, No. 1,
2009, pp. 34-46.

for Multimode Receivers,” IEEE Journal of Solid State
doi:10.1109/JSSC.2002.808321

[8] F. Medeiro, B. Pérez-Verdú and A. Rodríguez-Vázquez,
“Top-Down Design of High-Performance Sigma-Delta
Modulators,” Kluwer Academic Publishers, Boston, 1999,
p. 312.

Receiver,” IEEE Journal of Solid-State Circuits, Vol. 42,
No. 5, 2007, pp. 954-966. doi:10.1109/JSSC.2007.894307

Baschirotto, “Analogbaseband Channel for Reconfig-
urable Multistandard (GSM/UMTS/WLAN/Bluetooth)
Receivers,” Proceedings of the WIATW, Rome, April 2006,
pp. 88-92.

“Toward Multistandard Mobile Terminals—Fully Inte-
rated Receivers Requirements and Architectures,” IEEE
Transactions on Microwave Theory and Techniques,

and A. Rodríguez-Vázquez, “A 2.5 V CMOS Wideband
Sigma-Delta Modulator,” IEEE Instrumentation and
Measurement Technology Conference, Vail Colorado,
May 2003, pp. 224-228.

[13] A. Silva, J. Guilherme and N. HortaCir, “A Reconfig-
urable Sigma-Delta Modulator Reconfiguration of Cascade
Sigma Delta Modulators for Multistandard GSM/Blu-
tooth/UMTS/WLAN Transceivers,” IEEE International
Symposium on Integration Circuits and Systems, ISCAS,

alysis of Multi-Stage Quadrature Sigma-Delta A/D
Converter for Cognitive Radio Receivers,” Proceedings
of the 16th IEEE International Workshop on Computer-
Aided Modeling Analysis and Design of Communication
Links and Networks, Kyoto, 10-11 June 2011, pp. 10-11.

a 130-nm CMOS Reconfigurable Cascade ΣA
Modulator for GSM/UMTS/Bluetooth,” IEEE Interna-
tional Symposium on Circuits and Systems, ISCAS,

Delta Modulator for Wide Bandwidth Applications,” In-
ternational Journal of Electronic Commerce Studies,

[17] H. Daoud, S. Bennour, S. Ben Salem and M. Loulou,
“Low Power SC CMFB Folded Cascade OTA Optimiz-
tion,” The IEEE International Conference on Electronics,
Circuits, and Systems, St. Julien, 31 August-3 September

“Design-Oriented Estimation of Thermal Noise in Swit-
ched-Capacitor Circuits,” IEEE Transactions on Circuits

