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Abstract

Nous assistons aujourd’hui à un développement continu et rapide du Web
Structuré, proposant des pages générées de façon automatique, à l’aide de
formes prédéfinies, et contenant des données partageant les mêmes schémas.
Le passage à des données structurées ouvre de nouvelles perspectives pour la
recherche d’information dans le web et soulève de nouveaux défis auxquels
nous pouvons fournir des réponses. En particulier, la recherche d’information
orientée données, dans laquelle l’utilisateur décrit les objets recherchés devient
possible pour le web structuré. Nous proposons dans cet article ObjectRunner,
un système pour l’extraction et l’interrogation de données du web structuré
qui exploite la redondance du web et la régularité des structures de pages pour
mieux déterminer les données à extraire et fournir un résultat le plus complet
possible. Notre système permet à l’utilisateur de décrire de façon souple et
précise le schéma des objets recherchés. Ensuite, le schéma cible et la struc-
ture des pages sources sont analysés pour déterminer les données répondant
à la requête de l’utilisateur, intégrer les données pouvant correspondre aux
mêmes entités du monde réel, et les extraire. La solution proposée par notre
système est générique, dans le sens ou elle n’est pas spécifique à un domaine
d’application ou un type d’objets en particulier. Nous montrons dans cet arti-
cle son utilité, à l’aide d’exemples concrets, et son efficacité, en la comparant
aux principales approches existantes.

Mots-clefs. Extraction non-supervisée, Web structuré, intégration, anno-
tation sémantique, objets complexes.
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1 Introduction

Extracting structured information from the ocean of Web data is one of the key chal-
lenges in data management research today, and of foremost importance in the larger
effort to bring more semantics to the Web. In short, its aim is to map as accurately
as possible Web page content to relational-style tables. Also, we are witnessing in
recent years a steady growth of the so-called structured Web. This represents doc-
uments (Web pages) that are data-centric, presenting structured content, complex
objects. Such schematized pages are often generated dynamically by means of for-
matting templates over a database, possibly using user input via forms (in hidden
Web pages). Moreover, there is also strong recent development of the collabora-
tive Web, representing efforts to build rich repositories of user-generated structured
content.

Extracting data from pages that (i) share a common schema for the information
they exhibit, and (ii) share a common template to encode this information, is sig-
nificantly different from the extraction tasks that apply to unstructured (textual)
Web pages. While the former harvest (part of) the exhibited data mainly by relying
on “placement” properties w.r.t. the sources’ common features, the latter usually
work by means of textual patterns and require some initial bootstrapping phase (e.g.,
positive instances).

The techniques that apply to schematized Web sources are generally called wrap-
per inference techniques, and have been extensively studied in the literature recently,
ranging from supervised (hard-coded) wrappers to fully unsupervised ones. At the
end of the spectrum, there have been several proposals for automatically wrapping
structured Web sources, such as [2, 11, 28]. Their main approach is usually generic,
in the sense that only the pages’ regularity is exploited, be it at the level of HTML

encoding or of the visual rendering of pages. The extracted data is used to populate
a relational-style table, a priori without any knowledge over its content. Adding
semantics can then be done either by manual labeling or even by automatic post-
processing (a non-trivial problem in its own). In practice, this approach suffers from
two significant shortcomings:

• only part of the resulting data may be of real interest for a given user/application;
hence effort may be spent on valueless information,

• with no insight over its content, data resulting from the extraction process may
mix values corresponding to distinct attributes of the implicit schema, making
the subsequent labeling phase tedious and error-prone.

The usability of the collected data is therefore often restricted in real-life scenarios.
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We address these shortcomings with the ObjectRunner project, based on a paradigm
of two-phase querying of the Web that leverages both the content and structure of
the pages. ObjectRunner is attacking the wrapping problem from the angle of users
looking for a certain kind of information on the Web. More precisely, it starts from
an intentional description of the targeted data, denoted Structured Objet Description
(in short SOD), which is provided by users in a minimal-effort and flexible manner.
The interest of having such a description is twofold: it allows to improve the accu-
racy of the extraction process, in many cases quite significantly, and it makes this
process more efficient and lightweight by enabling the elimination of unnecessary
computations.

System overview. A high-level view of the ObjectRunner system is illustrated
in Figure 1 (it will be discussed in more detail in the following sections). Users are
provided with widely applicable tools that allow them to specify via an SOD (to
be formally defined shortly) what must be obtained from Web pages, in particular
what atomic types (i.e., simple entities) are involved in the intentional description
and how (e.g., occurrence constraints, nesting, value joins). Techniques to handle
both existing (built-in) and new atomic types efficiently are provided. Starting from
a corpus of Web sources, where each source represents a set of pages with common
(implicit) schema and structure, it then builds an extraction template (wrapper)
and harvests the objects - possible instances of the given SOD - from these pages.
Both structured data and textual information related to it are then indexed in the
ObjectRunner repository. In the interrogation phase, users may select one or several
SODs. This triggers the generation of a query interface in the style of Query-By-
Example, in which both structured and unstructured data (keywords) might be con-
sidered. Query results are sorted, among other criteria, based on confidence scores
from the extraction process.

In this paper we will focus mainly on the technical aspects of the extraction phase
and on the features of the SOD specification module. Beyond these aspects, there are
other exciting research problems we are currently investigating in this system. For
instance, how could one discover, process and index in a scalable and effective manner
large corpora of structured Web pages, as potential sources for ObjectRunner? Or
how could one select the most relevant sources for a given SOD? A discussion of
these issues goes beyond the scope of this paper, whose main purpose is to report on
our preliminary results on the extraction of complex objects and, more generally, to
advocate the avantages of the two-phase querying approach.

Our experiments show that by (i) having an explicit target for the extraction
process, and (ii) using diverse and rich enough sources, this approach turns out
to be highly effective in practice. Moreover, preliminary results hint that a fully
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Figure 1: Architecture of the ObjectRunner system.

automatic solution for querying the structured, non-hidden Web - including aspects
such as source indexing and selection - might be within reach, based on carefully
designed heuristics and the redundancy of the Web.

The rest of the paper is organized as follows. In the next section we introduce the
necessary terminology and technical background. We provide in Section 3 a more
detailed description of the system’s internal structure in terms of composing parts
and implementation approaches. We also illustrate how it operates through several
examples. Our experimental evaluation of the system is presented in Section 4. In
Section 5 we discuss the most relevant related works and we conclude in Section 6.

2 Preliminaries

We introduce in this section the necessary terminology and technical background.
Schematized, data-rich pages are built by retrieving information from an under-

lying databases. For the purpose of extraction, we identify two types of such pages.
List pages encode a list of similar records, as the zevents.com page illustrated in
Figure 2(a), which displays details on several concerts. In such pages, both high-
level structure and individual records are formatted using the common template.
Single-record pages focus on a single object (see example of Figure 2(b)) and, while
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structured, are more verbose. Very often, both kinds of pages appear in the same
Web site. The former serves information in a distilled manner (e.g, our example page
gives only the name of an artist, a date and an address), while the latter complement
list pages by giving more details (e.g., a concert description). Even though dealing
with the same data and appearing within the same Web site, the two kinds of pages
will be in general considered as representing different sources, given that they rely
on different templates to encode information. And depending on the targeted SOD
and the level of detail it describes, listed records may suffice or not. For example, in
zevents.com list pages the information on each concert is usually quite brief. How-
ever, if an application also needs the music concert description, one has to extract it
from a detail page.

As an input for the extraction system, we suppose that the user has collected a
number of structured Web sources, denoted {S1, . . . , Sn}, where each source repre-
sents a set of HTML pages that describe real-world objects (e.g., concerts, real-estate
ads, books, etc). Our running example refers to concert objects, which can be seen
as triples date-address-artist. We illustrate in Figure 3 four fragments of template-
based pages that describe such information. We start by defining the typing formal-
ism by which one can specify what data should be extracted from the HTML pages.
We then discuss the extraction problem.

(a) A fragment of a list page with three data records (b) A segment of a detail page

Figure 2: Structured pages from zvents.com

2.1 Types and object description

We consider a set of entity types, where each such type represents an atomic piece
of information, expressed as a string of tokens (words or HTML tags). Each entity type
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ti has an associated recognizer ri which can be simply viewed as a regular expression.
In practice, we will distinguish three kinds of recognizers: (i) user-defined regular
expressions, (ii) system predefined ones (e.g., addresses, dates, phone numbers, etc),
and (iii) open, dictionary-based ones (denoted by isInstanceOf recognizers). We
discuss more the recognizer choices and implementation in the next section.

Based on entity types, we define recursively complex types. A set type is a pair
t = [{ti},mi] where {ti} denotes a set of instances of type ti (atomic or not) and
mi denotes a multiplicity constraint that specifies restrictions on the number of ti
instances in t: n−m for at least n and at most m, ∗ for zero or more, + for one or
more, ? for zero or one, 1 for exactly one. A tuple type denotes an unordered collection
of set or tuple types. A disjunction type denotes a pair of mutually exclusive types.

A Structured Object Description denotes any complex type, possibly comple-
mented by additional restrictions in the form of value, textual or disambiguation
rules. For instance, these would allow one to say that a certain entity type has to
cover the entire textual content of an HTML node or a textual region delimited by con-
secutive HTML tags. Or to require that two date types have to be in a certain order
relationship or that a particular address has to be in a certain range of geographical
coordinates. For brevity, these details are omitted in the model described here.

An instance of an entity type ti is any string that is valid w.r.t. the recognizer ri.
Then, an instance of an SOD is defined straightforwardly in a bottom-up manner. For
example, concert objects could be specified by an SOD as a tuple type composed
of three entity types: one for the address, one for the date and one for the artist
name. The first two entity types would be associated to predefined recognizers (for
adresses and dates respectively), since this kind of information has easily recognizable
representation patterns, while the last one would have an isInstanceOf recognizer.
All the components can have multiplicity 1.

2.2 The extraction problem

For a given SOD s and source Si, a template τ w.r.t. s and Si describes how
instances of s can be extracted from Si pages. More precisely,

• for each set type t = [{ti},mi] appearing in s, τ defines a separator string sept;
it denotes that consecutive instances of ti will be separated by this string.

• for each tuple type t = {t1, . . . , tk}, τ defines a total order over the collection
of types and a sequence of k+1 separator strings sept1, . . . , sep

t
k+1; this denotes

that the k instances of the k types forming t, in the specified order, will be
delimited by these separators.
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<html><body>
<div>1 Coldplay </div>
<div>2 Saturday August 8, 2010 8:00pm </div> 
<div>3

<span><a > Bowery Ballroom </a></span>
<span>  Delancey St </span>
<span> New York City </span>
<span> New York </span>

<html><body>
<div>1 Kristin Chenoweth </div>
<div>2 Saturday May 29 7:00p </div> 
<div>3

<span><a> The Town Hall </a></span>

<span> 131 W 55th St </span>
<span> New York City </span>
<span> New York </span>
<span> 10019 </span>

</div>
</body></html>

<html><body>
<div>1 Metallica </div>
<div>2 Monday May 11, 8:00pm </div> 
<div>3

<span><a> Madison Square Garden</a></span>
<span> 237 West 42nd street </span>
<span> New York City </span>
<span> New York </span>
<span> 10036 </span>

</div>
</body></html>

<html><body>
<div>1 Kings of Leon </div>
<div>2 Friday June 19 7:00p</div> 
<div>3

<span><a>B.B King Blues Club and Grill </a></span>
<span> 4 Penn Plaza </span>
<span> New York City </span>
<span> New York </span>

P1 P2

<span> New York </span>
<span> 10002 </span>

</div>
</body></html>

<span> New York </span>
<span> 10001 </span>

</div>
</body></html>

P3 P4

Figure 3: Sample pages

We are now ready to describe the extraction problem we consider. For a given SOD
s and a set of sources {S1, . . . , Sn},

1. set up type recognizers for all the entity types in s,

2. for each source Si,

(a) find and annotate entity type instances in pages,

(b) select a sample set of pages,

(c) infer a template τi(s, Si) based on the sample,

(d) use τi to extract all the instances of s from Si,

3. refine the recognizers based on the extracted objects.

We give in Figure 4 the extraction template that would be inferred in our example.

As argued in Section 1, existing unsupervised approaches have significant draw-
backs due to their genericity. We believe that the alternative approach of two-phase
querying can often be more suitable in real life scenarios, offering several advantages
such as:
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Artist Date Address

Metallica Monday May 11, 8:00pm Madison Square Garden
237 West 42ndstreet

New York City
New York

10036

Kristin Chenoweth Saturday May 29 7:00p Market Cafe at City Corporation Center 
131 W 55th St

New York City
New York

10019

Coldplay Saturday August 8, 2009 
8:00pm 

Bowery Ballroom 
Delancey St
New York City

New York
10002 

X1

X2

X
3

<html><body>
<div type="Artist"> * </div>
<div type="Date"> * </div>
<div type="Address">

<span><a> * </a></span>
<span> * </span>
<span> * </span>
<span> * </span>
<span> * </span>

</div>
</html></body>10002 

Kings of Leon Friday June 19 7:00p B.B King Blues   Club and  Grill
4 Penn Plaza
New York City

New York
10001

X
4

</html></body>

Figure 4: The correct solution (objects and wrapper) on the running example

• Avoiding to mix different types of information. By relying on type recognizers
to annotate input pages, we can improve the extraction process, hence using
semantics besides the structural features of the data.

• Extracting only useful data. The description of targeted objects allows us to
avoid the extraction of unnecessary data and to preclude any filtering/labelling
post-processing.

• Stopping early the extraction process. In the process of building the template, if
the collection of pages does not seem relevant enough as a source of structured
objects, the process of wrapper inference can be stopped early.

• Avoiding the loss of useful information. Data that may be relevant and should
be selected in result objects may be considered “too regular”, hence part of the
page’s template, by techniques that are oblivious to semantics. By consequence,
useful data may be missed. For instance, in the running example (Figure 3) the
text “New York” appears often, always in the same position in pages, simply
because there are many concerts taking place in this city. However, if the text
is recognized as denoting an address, a component of concert objects, it can be
interpreted as information that might be extracted.

• Using applicable semantic annotations to discover new (potential) annotations.
Unavoidably, the use of dictionaries (gazetteers) to annotate data yields incom-
plete annotations in practice. But we can use current annotations to discover
others based on the extracted data, enriching in this way the dictionaries.
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3 Overview of our approach

We provide in this section a more detailed description of the system’s internal struc-
ture in terms of composing parts and implementation approaches. We also illustrate
how it operates through an example. The underlying principle of ObjectRunner

is that, given the redundancy of Web data, solutions that are computationally less
expensive, yet have high precision and satisfactory recall, should be favored in most
aspects of the system. Though this means that some sources may be handled in
unsatisfactory manner, the objects that are lost could very likely be found in an-
other source as well (even within the same Web site) and, overall, the performance
speed-up is deemed much more important.

Broadly, the extraction process is done in two stages: (1) automatic annotation,
which consists in recognizing instances of the input SOD’s entity types in page con-
tent, and (2) extraction template construction, using the semantic annotations from
the previous stage and the regularity of pages.

We first discuss some pre-processing steps. There are many segments in Web
pages that are not data-centric, such as header information, scripts, styles, com-
ments, images, hidden tags, white spaces, tag properties, empty tags, etc. This
content can make the later processing slower and sometimes might even affect the
end results. Therefore, we perform cleaning of the HTML before the extraction process.
Beyond page cleaning, we apply to the collection of pages of each source a radical
simplification to their “central” segment, the one which likely displays the main con-
tent of the page. For that, we build up an algorithm that performs page segmentation
(similar to VIPS [7]). We use the recognizers of the input SOD and carefully designed
heuristics to chose the best candidate segment. Also, because HTML documents are
often not well-formed, we use the open source software JTidy [17] to transform them
to XML documents. For instance, the simplified pages in our example were obtained
after such pre-processing steps from the site http://upcoming.yahoo.com/.

3.1 Type recognizers

Importantly, in our application, type recognizers are never assumed to be entirely
precise nor complete. This is inherent in the Web context, where different representa-
tion formats might be used for even the most common types of data. We only discuss
here how isInstanceOf types are handled. Intuitively, these are types for which only
a class name can be provided, without direct means to recognize instances thereof.
This could be the case for the Artist entity type. When such a type is input by the
user, ObjectRunner seamlessly constructs on the fly a dictionary-based recognizer
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for it. This can be done by querying the YAGO ontology [26], a vaste knowledge base
built from Wikipedia and Wordnet (Yago has more than 2 million entities and 20
million facts). Despite its richness, useful entity instances may not be found simply
by exploiting Yago’s isInstanceOf relations. For example, Metallica is not an in-
stance of the Artist class. This is why we look at a semantic neighborhood instead:
e.g., Metallica is an instance of the Group class, which is itself related to Artist

one by a isMemberOf relationship. For our purpose, we adapted Yago in order to
access such data with little overhead.

Alternatively, users can choose to look for instances directly on the Web, by
applying Hearst patterns [13] on a corpus of Web pages that is pre-processed for this
purpose. Other kinds of recognizers, e.g., based on Datalog-style rules or conditional-
graphical models could be plugged in ObjectRunner. We are currently studying the
overhead they might introduce in the system performance.

3.2 Annotation and page sample selection

No assumptions are made on the source pages. They may not be relevant for
the input SODs, as they may even not be structured (template-based). The setting
of our entity recognition sub-problem is the following: a certain number (typically
small in practice) of entity types t1, . . . , tn have to be matched with a collection
of pages (what we call a source). If done naively, this step could dominate the
extraction costs, since we deal with a potentially large database of entity instances.
Our approach here starts from the observation that only a subset of these pages have
to be annotated, and from the annotated ones only a further subset (approximately
20 pages) are used as sample in the next stage, for template construction. We use
selectivity estimates, both at the level of types and at the one of type instances,
and look for entity matches in a greedy manner, starting from types with likely
few witness pages and instances (see Algorithm 1). At each step, we continue the
matching process only on the “richest” pages. We also take advantage of the inverted
index, in the case of dictionary-based recognizers. During this loop, the source could
be discarded if unsatisfactory annotation levels are obtained. The result will be a
type-annotated DOM tree.

The top pages w.r.t. annotations are selected and used as training sample to
construct the extraction template. The annotation is done by assigning an attribute
to the DOM node containing the text that matched the given type. Multiple anno-
tations may be assigned to a given node. For instance, in page p1 of our example,
the first <div> tag contains an artist name, so it will be annotated accordingly, as
in <div type=‘‘Artist’’> Metallica </div>.
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Algorithm 1 annotatePages

1: input: parameters (e.g., sample size k), source Si, SOD s
2: sample set S := Si

3: order entity types in s by selectivity estimate
4: for all entity types t in s do
5: look for matches of t in S and annotate
6: for S ′ v S top annotated pages, make S := S ′

7: end for
8: return sample as most annotated k pages in S

The annotations will be propagated upwards in the DOM tree to ancestors as long
as these nodes have only one child (i.e., on a linear path).

3.3 Wrapper generation

This is the core component of the system. For each source Si, its output is the
extraction template τi corresponding to the input SOD s. We adopt in ObjectRunner

an approach that is similar in style to the ExAlg algorithm of [2].
In short, a template is inferred from a sample of source pages based on occurrence

vectors for page tokens and equivalence classes defined by them. An equivalence class
denotes a set of tokens having the same frequency of occurrences in each input page
and a role that is deemed unique among tokens. For example, the token <div> has
three occurrences in each of the four pages of our running example, and this would
correspond (initially) to the following vector of occurrences: < 3, 3, 3, 3 >. Such
descriptions can be seen as equivalence classes for tokens, and equivalence classes
determine the structure that is inferred from Web pages. Hence determining the
roles and distinguishing between different roles for tokens becomes crucial in the
inference of the implicit schema, and in ExAlg this depended on two criteria: the
position in the DOM tree of the page and the position w.r.t. each equivalence class
that was found at the previous iteration. Consecutive iterations refine the equivalence
classes until a fix-point is reached, while at each step the invalid classes (either not
properly ordered or not nested) are discarded.

How roles and equivalence classes are computed distinguishes our approach from [2].
First, we use annotations as an additional criterion for distinguishing token roles.
Second, besides annotations, the SOD itself fulfills a double role during the wrapper
generation step, as it allows us to: (i) stop the process as soon as we can conclude
that the target SOD cannot be met (this might be the case, as the annotations alone
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do not guarantee success), and (ii) accept approximate equivalence classes outside
the ones that might represent to-be-extracted instances.

As annotations are used to further distinguish token roles, we observe that it is
the combination of equivalence class structure and annotations that yields the best
results. Algorithm 2 sketches how token roles are differentiated.

Algorithm 2 diffTokens

1: differentiate roles using HTML features
2: repeat
3: repeat
4: find equivalence classes (EQs)
5: handle invalid EQs
6: differentiate roles using EQs + non-conflicting annotations
7: until fixpoint
8: differentiate roles using EQs + conflicting annotations
9: until fixpoint

Using the annotations is an obvious strategy in our context but, since these
annotations are not complete and can be conflicting over the set of pages, has to be
applied cautiously. We can distinguish two types of annotations:

• Non-conflicting annotations. A token - identified by its DOM position
and its coordinates w.r.t. the existing equivalence classes - has non-conflicting
annotations if each of its occurrences have the same (unique) type annotation
or no annotation at all.

• Conflicting annotations. A token has conflicting annotations different type
annotations have been assigned to its occurrences.

In the first case, tokens with no conflicting annotations are treated in the loop
along with the other criteria. Once all equivalences classes are computed in this way,
we carry out one additional iteration in order to find new occurrence vectors and
equivalence classes. The entire process is then repeated until a fix-point is reached.

Going back to our running example, if annotations are taken into account, we can
detect that the <div> tag occurrences denoted < div >1, < div >2 and < div >3

have different roles. By that, we can correctly determine how to extract the three
components of the input SOD. This would not be possible if only the positions in
the HTML tree and in equivalence classes were taken into account, as the three <div>
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Metallica Monday
May 11, 8:00pm

Madison Square Garden 237 West 42nd street 10036

<div>
<a>Information Technology Control and Audit, Third Edition</a> 
<span>by Frederick Gallegos and Sandra Senft</span> 
<span>(<span>Hardcover</span> - Nov. 18, 2008)</span>

</div>
. . . 

<div>  

b
1

b
2

<div>  
<a>Peopleware: Productive Projects and Teams (Second Edition)</a> 
<span>by Tom DeMarco and  <a>Timothy Lister</a> </span>  
<span>(<span>Paperback</span> - Feb. 1, 1999)</span>

</div>
. . .

<div>  
<a>Adobe Photoshop Restoration &amp; Retouching (3rd Edition)</a>
<span> by  <a>Katrin Eismann</a> and   <a>Wayne Palmer</a>  </span> 
<span>( <span>Paperback</span> - Nov. 17, 2006)</span>

</div>
. . .

b
3

Figure 5: List page with three book records from Amazon

occurrences would have the same role. This would lead for instance to the following
(incorrect for our purposes) extraction result from page P1 shown in the table below.

For further illustration, there are other situations where the annotations improve
the result of the extraction. For example, the amazon.com page fragment in Figure 5
shows a list of 3 books (indicated as b1, b2 and b3). A book can have one or more
authors, and they are represented differently in HTML tree. Taking into account only
the positions of tokens in equivalence classes can result in extracting author names
as values in distinct fields of the template. But with the annotation of the tag
<span> we can determine that this attribute represents author names and extract it
accordingly.

Finally, while annotations allow us to differentiate the roles of tokens that are
in the same position, for a given position, the number of consecutive occurrences
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of tokens can vary from one page to another. In our running example, the token
<div> had the same number of occurrences in all pages, but this is not always the
case. When this happens, we chose to settle on the minimal number of consecutive
occurrences across pages, and differentiate roles within this scope. Once this is
chosen, we deal with incomplete annotations by generalizing the most frequent one
if beyond a given threshold (0.7 in our experiments).

3.4 Querying the extracted data

We designed a query interface that (i) enables users to define SODs, and (ii)
query the extracted data. In the SOD specification phase, users can either build
on existing SODs or specify new types along with means to recognize them (e.g.,
using the Yago ontology). For querying extracted data, one choses which SODs will
be used to query the Web. Then, a QBE-style interface allows one to specify value
restrictions, joins across SODs and keywords restrictions referring to the objects’
source pages. Also, the sources that are to be queried can be chosen at this stage as
well.

4 Experimental Results

The experiments have been performed1 on three different domains, with both
new datasets and datasets that have been already used in other wrapper inference
experiments. They consist of both list and detailed pages collected from surface or
hidden Web sources.

The pages refer to the following three domains: concerts, books and albums.
We randomly selected 100 pages per source from Web sites such as zvents.com and
upcoming.yahoo.com for concerts, amazon.com and bn.com for books2. For each
domain, we have collected 10 sources that were matched with one SOD as described
bellow:

• Concerts. A concert object is composed of three entity types: artist, date
and location. For each type, the multiplicity constraint is set to 1 (mi = 1).

1We used a commodity workstation equipped with a 2.8 GHz CPU, 3GB of main memory and
the Java programming environment.

2Most of the sites used for the books and albums domains were used in the TurboSyncer [10]
experiments
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• Books. A book object is composed of four entity types: title, author, price
and date. The multiplicity constraint has been set to 1 for the first three entity
types, while the fourth one is optional.

• Albums. An album object is composed of four entity types: title, artist,
price and date. The multiplicity constraint has been set to 1 for the first
three entity types, while the fourth one is optional.

We compared our algorithm ObjectRunner (OR) with two of the most cited and
closely related works, namely ExAlg [2] (EA) and RoadRunner [11] (RR). The goal of
these experiments was to (i) evaluate the robustness of our system, and (ii) compare
our results with the ones of the existing algorithms.

The selected 100 pages from each source are assumed to have the same tem-
plate. We show in Table 1 the precision of template construction - i.e., how many
components of the SOD were correctly identified in the pages’ structure - based on
a sample of the top 20 annotated pages. For each source we checked whether the
optional attribute existed or not in the given source (we denote this in the table).
We then manually checked the results and classified them as follows:

• Correct attributes. An attribute is classified as correct if the extracted values
for it are correct.

• Partially correct attributes. An attribute is classified as partially correct if:
(1) the values for two or several attributes are extracted together (as instances
of one field) and they appear in the same manner in pages (for example, a book
title and the author name may in the same text as an atomic piece of informa-
tion), or (2) the source is made of list pages and listed values corresponding to
the same attributed of the SOD are extracted separately.

• Incorrect attributes. An attribute is classified as incorrect if the extracted
values are incorrect, i.e., a mix of values corresponding to distinct attributes
of the implicit schema.

In Figure 6, we compare the results of ObjectRunner with those obtained by
the two other algorithms, in order to quantify the effect of the semantic annotations
(the SOD) on the extraction process. For 10 sources per domain, we provide several
facets for accuracy: (1) the rate of correct, partially correct and incorrect objects
that were extracted (depending on the accuracy of the template that was inferred for
each source), (2) the rate of correct, partially correct and incorrect attributes, and
(3) the rate of sources that were incompletely handled (i.e., with partially correct or
incorrect attributes).
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Domains Sites Attributes Optional Correct Partially Incorrect

concerts zvents.com 3 yes 3 0 0
upcoming.yahoo.com yes 3 0 0

eventful.com yes 1 1 1
bandsintown.com yes 3 0 0

stubhub.com yes 3 0 0

books amazon.com 4 yes 4 0 0
bn.com yes 4 0 0
buy.com no 3 0 0

abebooks.com no 3 0 0
walmart.com yes 3 0 1

albums amazon.com 4 yes 3 0 1
buy.com yes 4 0 0

101cd.com no 1 2 0
towerrecords.com yes 4 0 0

walmart.com yes 3 1 0

Table 1: Extraction results

In Figure 6(b) we detail the results that were summarized in Figure 6(a). More
precisely, for each SOD, we give the rate of correct, partially correct and incorrect
attributes. Note that the results are symmetrical to those observed in Figure 6(a).
In this view of the results as well, our algorithm has better results than the existing
approaches.

Figure 6(c) compares the three algorithms by their ability to handle a source
correctly. We observe that in all the three domains OR outperforms EA and RR.
Indeed, there are 20% incompletely handled sources in the first two domains and
30% in the third one.

As a final remark, as Web data tends to be very redundant, it becomes important
to be able to handle correctly at least some sources from a given domain than to
handle many sources in fair but incomplete (partially) manner. For example, the
concerts one can find in the
yellowpages.com site (a source that was initially candidate for our tests) are pre-
cisely the ones from zvents.com.
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(a) Objects classification (b) Attributes classification

(c) Incompletely managed sources

Figure 6: ObjectRunner comparison

5 Related work

The existing works in data extraction from structured Web pages can be clas-
sified according to their automation degree: manual, supervised, semi-supervised
and unsupervised (for a survey, see [18]). The manual approaches extract only the
data that the user marks explicitly, using either wrapper programming languages,
such as the ones proposed in [14, 25], or visual platforms to construct extraction
programs, like WICCAP [20], Wargo [23] or Lixto [12]. Supervised approaches use
learning techniques, called wrapper induction, to learn extraction rules from a set
of manually labeled pages (WIEN [19], XWrap [21], Softmealy [16], Stalker [22]). A
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significant drawback of these approaches is that they cannot scale to a large number
of sites due to significant manual labeling efforts. Semi-supervised (e.g., OLERA [8],
Thresher [15]) arrive to reduce human intervention by acquiring a rough example
from the user. Some semi-supervised approaches (such as IEPAD [9]) do not require
labeled pages, but find extraction patterns according to extraction rules chosen by
the user.

Unsupervised approaches (automatic extraction systems) identify the to-be-extracted
data using the regularity of the pages. One important issue is how to distinguish
the role of each page component (token), which could be either a piece of data or
a component in the encoding template. Some, as a simplifying assumption, consider
that every HTML tag is generated by the template (as in DeLa [27], DEPTA [28]),
which is often not the case in practice. RoadRunner [11], which uses an approach
based on grammar inference, also assumes that every HTML tag is generated by the
template, but other string tokens could be considered as part of the template as well.
In comparison, ExAlg [2] makes more flexible assumptions, as the template token
are those corresponding to frequently occurring equivalence class. Moreover, it has
the most general approach, as it can handle optional and alternative parts of pages.
TurboSyncer [10] is an integration system which can incorporate many sources and
uses existing extraction results to better calibrate future extractions.

The key advantage of wrapper induction techniques is that they extract only the
data that the user is interested in. Due to manual labeling, the matching problem is
significantly simpler. The advantage of automatic extraction is that it is applicable
at large scale, the tradeoff being that it may extract a large amount of unwanted
data. Our approach aims to obtain the best of both works, by exploiting both the
structure and user-provided semantics in the automatic wrapper generation process.

Most research works in information extraction from unstructured source focus
on extracting semantic relations between entities for a set of patterns of interest.
This is usually done by predefined relation types (as in DIPRE [5], Snowball [1],
KnowItAll [6]), or by discovering relations automatically (TextRunner [4]). Other
systems in this area, like Yago [26] and DBpedia [3], extract relation by rule-based
harvesting of facts from semi-structured sources such as Wikipedia. For a survey on
the management of information extraction systems see [24].

6 Conclusion

This paper considers an alternative approach to automatic information extraction
and integration from structured Web pages. It advocates the advantages of two-phase
querying, in which an intentional description of the target data is provided before the
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extraction phase. More precisely, the user specifies a Structured Object Description,
which models the objects that should be harvested from HTML pages. This process
is domain-independent, in the sense that it applies to any relation, either flat or
nested, describing real-world items. Also, it does not require any manual labeling or
training examples. The interest of having a specified extraction target is twofold: (i)
the quality of the extracted data can be improved, and (ii) unnecessary processing
is avoided.

We validate through extensive experiments the quality of extraction results, by
comparison with two of the most referenced systems for automatic wrapper inference.
By leveraging both the input description (for three different domains) and the source
structure, our system harvests more real-world items, with fewer errors.

Besides the extraction tasks, there are other exciting research problems we are
currently investigating in the ObjectRunner system. For instance, we are studying
techniques for discovering, processing and indexing structured Web sources. Also,
given an input SOD, we would like to be able to automatically select the most relevant
and data rich sources.

Finally, our wrapper inference technique based on equivalence classes for page
tokens is amenable to parallel execution, while the extraction step itself can obviously
be performed in parallel. We are currently investigating the implementation of our
algorithms in a distributed shared-nothing architecture.
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