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Abstract

Popular sparse estimation methods based on
`1-relaxation, such as the Lasso and the
Dantzig selector, require the knowledge of
the variance of the noise in order to prop-
erly tune the regularization parameter. This
constitutes a major obstacle in applying these
methods in several frameworks—such as time
series, random fields, inverse problems—for
which the noise is rarely homoscedastic and
its level is hard to know in advance. In
this paper, we propose a new approach
to the joint estimation of the conditional
mean and the conditional variance in a high-
dimensional (auto-) regression setting. An
attractive feature of the proposed estimator
is that it is efficiently computable even for
very large scale problems by solving a second-
order cone program (SOCP). We present the-
oretical analysis and numerical results assess-
ing the performance of the proposed proce-
dure.

1. Introduction

Over the last fifteen years, sparse estimation methods
based on `1-relaxation, among which the Lasso (Tib-
shirani, 1996) and the Dantzig selector (Candès and
Tao, 2007) are the most famous examples, have be-
come a popular tool for estimating high dimensional
linear models. So far, their wider use in several fields
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of applications (e.g., finance and econometrics) has
been constrained by the difficulty of adapting to het-
eroscedasticity, i.e., when the noise level varies across
the components of the signal.

Let T be a finite set of cardinality T . For every t ∈ T
we observe a sequence (xt, yt) ∈ Rd × R obeying:

yt = b∗(xt) + s∗(xt)ξt, (1)

where b∗ : Rd → R and s∗2 : Rd → R+ are respec-
tively the unknown conditional mean and conditional
variance1 of yt given xt. Then, the errors ξt satisfy
E[ξt|xt] = 0 and Var[ξt|xt] = 1. Depending on the
targeted applications, elements of T may be time in-
stances (financial engineering), pixels or voxels (image
and video processing) or spatial coordinates (astron-
omy, communication networks).

In this general formulation, the problem of estimat-
ing unknown functions b∗ and s∗ is ill-posed: the di-
mensionality of unknowns is too large as compared to
the number of equations T , therefore, the model is
unidentifiable. To cope with this issue, the parameters
(b∗, s∗) are often constrained to belong to low dimen-
sional spaces. For instance, a common assumption is
that for some given dictionary f1, . . . , fp of functions
from Rd to R and for an unknown vector (β∗, σ∗) ∈
Rp × R, the relations b∗(x) = [f1(x), . . . , fp(x)]β∗

and s∗(x) ≡ σ∗ hold for every x. Even for very
large values of p, much larger than the sample size
T , such a model can be efficiently learned in the spar-
sity scenario using recently introduced scaled versions

1 This formulation of the problem includes “time-
dependent” mean and variance, i.e., the case of E[yt|xt] =
b∗t (xt) and Var[yt|xt] = s∗t (xt), since it is sufficient then
to consider as explanatory variable [t;x>t ]> instead of xt.



Learning Heteroscedastic Models by Convex Programming under Group Sparsity

of `1-relaxations: the square-root Lasso (Antoniadis,
2010; Belloni et al., 2011; Sun and Zhang, 2012; Gau-
tier and Tsybakov, 2011), the scaled Lasso (Städler
et al., 2010) and the scaled Dantzig selector (Dalalyan
and Chen, 2012). These methods are tailored to
the context of a fixed noise level across observations
(homoscedasticity), which reduces their attractiveness
for applications in the aforementioned fields. In the
present work, we propose a new method of estimation
for model (1) that has the appealing properties of re-
quiring neither homoscedasticity nor any prior knowl-
edge of the noise level. The only restriction we impose
is that the variance function s∗2 is of reduced dimen-
sionality, which in our terms means that its inverse
1/s∗ is of a linear parametric form.

Our contributions and related work We propose
a principled approach to the problem of joint estima-
tion of the conditional mean function b∗ and the condi-
tional variance s∗2, which boils down to a second-order
cone programming (SOCP) problem. We refer to our
procedure as the Scaled Heteroscedastic Dantzig selec-
tor (ScHeDs) since it can be seen an extension of the
Dantzig selector to the case of heteroscedastic noise
and group sparsity. Note that so far, inference under
group-sparsity pioneered by (Yuan and Lin, 2006; Lin
and Zhang, 2006), has only focused on the simple case
of known and constant noise level both in the early ref-
erences (Nardi and Rinaldo, 2008; Bach, 2008; Ches-
neau and Hebiri, 2008; Meier et al., 2009), and in the
more recent ones (Lounici et al., 2011; Huang et al.,
2012). In this work we provide a theoretical analysis
and some numerical experiments assessing the quality
of the proposed ScHeDs procedure.

More recently, regression estimation under the com-
bination of sparsity and heteroscedasticity was ad-
dressed by (Daye et al., 2012; Wagener and Dette,
2012; Kolar and Sharpnack, 2012). Because of the
inherent nonconvexity of the penalized (pseudo-)log-
likelihood considered in these works, the methods pro-
posed therein do not estimate the conditional mean
and the variance in a joint manner. They rather rely
on iterative estimation of those quantities: they alter-
nate between the two variables, estimating one while
keeping the other one fixed. Furthermore, the theo-
retical results of these papers are asymptotic. In con-
trast, we propose a method that estimates the condi-
tional mean and the variance by solving a jointly con-
vex minimization problem and derive nonasymptotic
risk bounds for the proposed estimators.

Notation We use boldface letters to denote vec-
tors and matrices. For an integer d > 0, we set

[d] = {1, . . . , d}. If v ∈ Rd and J ⊂ [d], then vJ
denotes the sub-vector of v obtained by removing all
the coordinates having indexes outside J . If J = {j},
we write vJ = vj . The `q-norms of v are defined by:

|v|0 =
∑d
j=1 1(vj 6= 0), |v|∞ = maxj∈{1,...,d} |vj |,

|v|qq =
∑d
j=1 |vj |q, 1 ≤ q <∞.

For a matrix A, Ai,: and A:,j stand respectively for
its i-th row and its j-th column. For a vector Y =
[y1, . . . , yT ]> ∈ RT , we define diag(Y ) as the T × T
diagonal matrix having the entries of Y on its main
diagonal.

2. Background and assumptions

We start by reparameterizing the problem as follows:

r∗(x) = 1/s∗(x), f∗(x) = b∗(x)/s∗(x). (2)

Clearly, under the condition that s∗ is bounded away
from zero, the mapping (s∗, b∗) 7→ (r∗, f∗) is bijective.
As shown later, learning the pair (r∗, f∗) appears to
be more convenient than learning the original mean-
variance pair, in the sense that it can be performed by
solving a convex problem.

We now introduce two assumptions underlying our ap-
proach. The first one is a group sparsity assumption
on the underlying function f∗. It states that there ex-
ists a given dictionary of functions f1, . . . , fp from Rd
to R such that f∗ is well approximated by a linear com-
bination

∑p
j=1 φ

∗
j fj with a (fixed) group-sparse vector

φ∗ = [φ∗1, . . . , φ
∗
p]
>. The precise formulation is:

Assumption (A1) We denote by X the T×p matrix
having [f1(xt), . . . , fp(xt)] as t-th row. Then, for a
given partition G1, . . . , GK of {1, . . . , p}, there is a
vector φ∗ ∈ Rp such that [ f∗(x1), . . . , f∗(xT )]> ≈
Xφ∗ and Card({k : |φ∗Gk

|
2
6= 0})� K.

Assumption (A1) is a restriction on f∗ only; the func-
tion r∗ does not appear in its formulation. Let us de-
scribe two practical situations which fit into the frame-
work delineated by Assumption (A1), some other ex-
amples can be found in (Lounici et al., 2011; Mairal
et al., 2011; Huang et al., 2012).

Sparse linear model with qualitative covariates
Consider the case of linear regression with a large
number of covariates, an important portion of which
are qualitative. Each qualitative covariate having m
modalities is then transformed into a group of m bi-
nary quantitative covariates. Therefore, the irrele-
vance of one qualitative covariate implies the irrele-
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vance of a group of quantitative covariates, leading to
the group-sparsity condition.

Sparse additive model (Ravikumar et al., 2009;
Koltchinskii and Yuan, 2010; Raskutti et al., 2012) If
f∗ is a nonlinear function of a moderately large number
of quantitative covariates, then—to alleviate the curse
of dimensionality—a sparse additive model is often
considered for fitting the response. This means that f∗

is assumed to be of the simple form f∗1 (x1)+. . .+f∗d(xd),
with most functions f∗j being identically equal to zero.
Projecting each of these functions onto a fixed number

of elements of a basis, f∗j (x) ≈
∑Kj

`=1 φ`,jψ`(x), we get
a linear formulation in terms of the unknown vector
φ = (φ`,j). The sparsity of the additive representa-
tion implies the group-sparsity of the vector φ.

Our second assumption requires that there is a linear
space of dimension q, much smaller than the sample
size T , that contains the function r∗. More precisely:

Assumption (A2) For q given functions r1, . . . , rq
mapping Rd into R+, there is a vector α ∈ Rq
such that r∗(x) =

∑q
`=1 α`r`(x) for every x ∈ Rd.

Here are two examples of functions r∗ satisfying this
assumption.

Blockwise homoscedastic noise In time series
modeling, one can assume that the variance of the in-
novations varies smoothly over time, and, therefore,
can be well approximated by a piecewise constant func-
tion. This situation also arises in image processing
where neighboring pixels are often corrupted by noise
of similar magnitude. This corresponds to choosing a
partition of T into q cells and to defining each r` as
the indicator function of one cell of the partition.

Periodic noise-level In meteorology or image pro-
cessing, observations may be contaminated by a pe-
riodic noise. In meteorology, this can be caused by
seasonal variations, whereas in image processing, this
may occur if the imaging system is subject to elec-
tronic disturbance of repeating nature. Periodic noise
can be handled by (A2) stating that r∗ belongs to the
linear span of a few trigonometric functions.

There are essentially three methods in the literature
providing estimators of (b∗, s∗) in a context close to
the one described above. All of them assume that s∗ is
constant and equal to σ∗ and [b∗(x1), . . . , b∗(xT )]

>
=

Xβ∗ with some sparse vector β∗ ∈ Rp. The first
method, termed the scaled Lasso (Städler et al., 2010),
suggests to recover (β∗, σ∗) by computing a solution

(β̂Sc-L, σ̂Sc-L) to the optimization problem

min
β,σ

{
T log(σ) +

|Y −Xβ|22
2σ2

+
λ

σ

p∑
j=1

|X :,j |2|βj |
}
, (3)

where λ > 0 is a scale-free tuning parameter control-
ling the trade-off between data fitting and sparsity
level. After a change of variables, this can be cast
as a convex program. Hence, it is possible to find the
global minimum relatively efficiently even for large p.

A second method for joint estimation of β∗ and σ∗

by convex programming, the Square-Root Lasso (An-
toniadis, 2010; Belloni et al., 2011), estimates β∗ by

β̂SqR-L which solves

min
β

{∣∣Y −Xβ
∣∣
2

+ λ

p∑
j=1

|X :,j |2|βj |
}

(4)

and then defines σ̂SqR-L = 1√
T

∣∣Y −Xβ̂SqR-L
∣∣
2

as an

estimator of σ∗. Both in theory and in practice, these
two methods perform quite similarly (Sun and Zhang,
2012).

A third method, termed scaled Dantzig selector, was
studied by (Dalalyan and Chen, 2012) under a more
general type of sparsity assumption (called fused or
indirect sparsity). Inspired by these works, we propose
a new procedure for joint estimation of the conditional
mean and the conditional variance in the context of
heteroscedasticity and group-sparsity.

3. Definition of the procedure

Our methodology originates from the penalized log-
likelihood minimization. Assuming errors ξt are i.i.d.
Gaussian N (0, 1) and setting f(x) =

∑p
j=1 φjfj(x),

the penalized log-likelihood used for defining the
group-Lasso estimator is (up to summands indepen-
dent of (f, r)):

PL(f, r) =
∑
t∈T

{
−log(r(xt)) +

1

2

(
r(xt)yt −Xt,:φ

)2}

+

K∑
k=1

λk

∣∣∣∑
j∈Gk

X :,jφj

∣∣∣
2
, (5)

where λ = (λ1, . . . , λK) ∈ RK+ is a tuning parameter.
A first strategy for estimating (f∗, r∗) is to minimize
PL(f, r) with respect to φ ∈ Rp and r ∈ {g : Rd →
R : g(x) ≥ 0, for almost all x ∈ Rd}. In view of
assumption (A2), we can replace r by

∑q
`=1 α`r` with

an unknown q-vector α.

If we introduce the T × q matrix R having as generic
entry r`(xt), (5) translates into a convex program with
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respect to the p + q dimensional parameter (φ,α) ∈
Rp × Rq, in which the cost function is:

PL(φ,α) =
∑
t∈T

{
−log(Rt,:α) +

1

2

(
ytRt,:α−Xt,:φ

)2}

+

K∑
k=1

λk
∣∣X :,Gk

φGk

∣∣
2
, (6)

and the constraint mintRt,:α ≥ 0 should be im-
posed to guarantee that the logarithm is well defined.
This is a convex optimization problem, but it does
not fit well the framework under which the conver-
gence guarantees of the state-of-the-art optimization
algorithms are established. Indeed, it is usually re-
quired that the smooth components of the cost func-
tion have Lipschitz-smooth derivative, which is not the
case for (6) because of the presence of the logarithmic
terms. One can circumvent this drawback by smooth-
ing these terms2, but we opted for another solution
that relies on an argument introduced in (Candès and
Tao, 2007) for justifying the Dantzig selector. Let
ΠGk

= X:,Gk
(X>:,Gk

X:,Gk
)+X>:,Gk

be the orthogonal

projector onto the range of X:,Gk
in RT.

Definition 3.1. Let λ ∈ RK+ be a vector of tuning pa-
rameters. We call the Scaled Heteroscedastic Dantzig
selector (ScHeDs) the pair (φ̂, α̂), where (φ̂, α̂, v̂) is a
minimizer w.r.t. (φ,α,v) ∈ Rp × Rq × RT+ of the cost
function ∑K

k=1
λk
∣∣X:,Gk

φGk

∣∣
2

subject to the constraints∣∣∣ΠGk

(
diag(Y )Rα−Xφ

)∣∣
2
≤ λk, ∀k ∈ [K]; (7)

R>v ≤ R>diag(Y )(diag(Y )Rα−Xφ); (8)

1/vt ≤ Rt,:α; ∀t ∈ T . (9)

Constraints (7)-(9) are obtained as convex relaxations
of the first-order conditions corresponding to minimiz-
ing (6). In fact, Eq. (7) is a standard relaxation for
the condition 0 ∈ ∂φPL(φ,α), whereas constraints
(8) and (9) are convex relaxations of the equation
∂αPL(φ,α) = 0. Further details on this point are
provided in the supplementary material. At this stage
and before presenting theoretical guarantees on the
statistical performance of the ScHeDs, we state a result
telling us the estimator we introduced is meaningful.

Theorem 3.2. The ScHeDs is always well defined in
the sense that the feasible set of the corresponding op-
timization problem is not empty: it contains the min-
imizer of (6). Furthermore, the ScHeDs can be com-
puted by any SOCP solver.

2This will result in introducing new parameters the tun-
ing of which may increase the difficulty of the problem.

The proof is placed in the supplementary material. As
we will see later, thanks to this theorem, we carried out
two implementations of the ScHeDs based on an inte-
rior point algorithm and an optimal first-order proxi-
mal method.

4. Comments on the procedure

Tuning parameters One apparent drawback of the
ScHeDs is the large number of tuning parameters. For-
tunately, some theoretical results provided in the sup-
plementary material suggest to choose λk = λ0

√
rk,

where λ0 > 0 is a one-dimensional tuning parame-
ter and rk = rank(X:,Gk

). In particular, when all
the predictors within each group are linearly indepen-
dent, then one may choose λ proportional to the vector
(
√

Card(G1), . . . ,
√

Card(GK)).

Additional constraints In many practical situa-
tions one can add some additional constraints to the
aforementioned optimization problem without leaving
the SOCP framework. For example, if the response
y is bounded by some known constant Ly, then it is
natural to look for conditional mean and conditional
variance bounded respectively by Ly and L2

y. This
amounts to introducing the (linearizable) constraints
|Xt,:φ| ≤ LyRt,:α and Rt,:α ≥ 1/Ly for every t ∈ T .

Bias correction It is well known that the Lasso and
the Dantzig selector estimate the nonzero coefficients
of the regression vector with a bias toward zero. It was
also remarked in (Sun and Zhang, 2010), that the es-
timator of the noise level provided by the scaled Lasso
is systematically over-estimating the true noise level.
Our experiments showed the same shortcomings for
the ScHeDs. To attenuate these effects, we propose a
two-step procedure that applies the ScHeDs with the
penalties λk = λ0

√
rk at the first step and discards

from X the columns that correspond to vanishing coef-
ficients of φ̂. At the second step, the ScHeDs is applied
with the new matrix X and with λ = 0.

Gaussian assumption Although the proposed al-
gorithm takes its roots from the log-likelihood of the
Gaussian regression, it is by no means necessary that
the noise distribution should be Gaussian. In the case
of deterministic design xt, it is sufficient to assume
that the noise distribution is sub-Gaussian. For ran-
dom i.i.d. design, arguments similar to those of (Bel-
loni et al., 2011; Gautier and Tsybakov, 2011) can be
applied to show oracle inequalities for even more gen-
eral noise distributions.
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Equivariance Given the historical data (y1:T ,x1:T )
of the response and the covariates, let us denote by
ŷT+1(y1:T ) =

[∑p
`=1 φ̂j fj(xT+1)

]
/
[∑q

`=1 α̂` r`(xT+1)
]

the prediction provided by the ScHeDs for a new ob-
servation xT+1. This prediction is equivariant with
respect to scale change in the following sense. If all
the response values y1, . . . , yT are multiplied by some
constant c, then it can easily be proved that the new
prediction can be deduced from the previous one by
merely multiplying it by c: ŷT+1(cy1:T ) = cŷT+1(y1:T ).

Most papers dealing with group-sparsity (Lounici
et al., 2011; Liu et al., 2010; Huang and Zhang, 2010)
use penalties of the form

∑
k |DkφGk

|2 with some di-
agonal matrices Dk. In general, this differs from the
penalty we use since in our case Dk = (X>:,Gk

X:,Gk
)1/2

is not necessarily diagonal. Our choice has the ad-
vantage of being equivariant w.r.t. (invertible) linear
transformations of predictors within groups.

Interestingly, this difference in the penalty definition
has an impact on the calibration of the parameters λk:
while the recommended choice is λ2k ∝ Card(Gk) when
diagonal matrices3 Dk are used, it is λ2k ∝ rank(X:,Gk

)
for the ScHeDs. Thus, the penalty chosen for the
ScHeDs is slightly smaller than that of the usual group-
Lasso, which also leads to a tighter risk bound.

5. Risk bounds

We present a finite sample risk bound showing that,
under some assumptions, the risk of our procedure is of
the same order of magnitude as the risk of a procedure
based on the complete knowledge of the noise-level.

Recall that the model introduced in the foregoing sec-
tions can be rewritten in its matrix form

diag(Y )Rα∗ = Xφ∗ + ξ, (10)

with ξ1, . . . , ξT i.i.d. zero mean random variables. To
state the theoretical results providing guarantees on
the accuracy of the ScHeDs estimator (φ̂, α̂), we need
some notation and assumptions.

For φ∗ ∈ Rp, we define the set of relevant groups K∗
and the sparsity index S

∗ by

K∗ =
{
k :
∣∣φ∗Gk

∣∣
1
6= 0
}
, S
∗ =

∑
k∈K∗

rk, (11)

Note that these quantities depend on φ∗. To establish
tight risk bounds, we need the following assumption

3Even if the matrices Dk are not diagonal and are cho-
sen exactly as in our case, recent references like (Simon and
Tibshirani, 2012) suggest to use λ2

k ∝ Card(Gk) without
theoretical support.

on the Gram matrix X>X, termed Group-Restricted
Eigenvalues (GRE).

Assumption GRE(N,κ): For every K ⊂ [p] of car-
dinality not larger than N and for every δ ∈ Rp satis-
fying∑

Kc
λk
∣∣X:,Gk

δGk

∣∣
2
≤
∑
K
λk
∣∣X:,Gk

δGk

∣∣
2
, (12)

it holds that
∣∣Xδ∣∣2

2
≥ κ2

∑
k∈K

∣∣X:,Gk
δGk

∣∣2
2
.

We also set

C1 = max
`=1,...,q

1

T

∑
t∈T

r2t`(Xt,:φ
∗)2

(Rt,:α∗)2
, (13)

C2 = max
`=1,...,q

1

T

∑
t∈T

r2t`
(Rt,:α∗)2

, (14)

C3 = min
`=1,...,q

1

T

∑
t∈T

rt`
(Rt,:α∗)

, (15)

and define C4 = (
√
C2 +

√
2C1)/C3.

To establish nonasymptotic risk bounds in the het-
eroscedastic regression model with sparsity assump-
tion, we first tried to adapt the standard techniques
(Candès and Tao, 2007; Bickel et al., 2009) used in
the case of known noise-level. The result, presented
in Theorem 5.1 below, is not satisfactory, since it pro-
vides a risk bound for estimating φ∗ that involves the
risk of estimating α∗. Nevertheless, we opted for stat-
ing this result since it provides guidance for choosing
the parameters λk and also because it constitutes an
important ingredient of the proof of our main result
stated in Theorem 5.2 below.

Theorem 5.1. Consider model (10) with determinis-
tic matrices X and R. Assume that the distribution
of ξ is Gaussian with zero mean and an identity co-
variance matrix and that Assumption GRE(K∗, κ) is
fulfilled with K∗ = Card(K∗). Let ε ∈ (0, 1) be a tol-
erance level and set

λk = 2
(
rk + 2

√
rk log(K/ε) + 2 log(K/ε)

)1/2
.

If T ≥ 8C4 log( 2q
ε ) then, with probability at least 1−2ε,∣∣X(φ̂− φ∗)

∣∣
2
≤ C4

√
(8/T ) log(2q/ε)(2|Xφ∗|2 + |ξ|2)

+
8

κ

√
2S
∗ + 3K∗ log(K/ε)

+ |diag(Y )R(α̂−α∗)|2. (16)

In order to gain understanding on the theoretical limits
delineated by the previous theorem, let us give more
details on the order of magnitude of the three terms
appearing in (16). First, one should keep in mind that
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ScHeDs Square-root Lasso

|β̂ − β∗|2 |̂S− S
∗| 10|σ̂ − σ∗| |β̂ − β∗|2 |̂S− S

∗| 10|σ̂ − σ∗|
(T, p, S

∗, σ∗) Ave StD Ave StD Ave StD Ave StD Ave StD Ave StD

(100, 100, 2, 0.5) .06 .03 .00 .00 .29 .21 .08 .05 .19 .42 .31 .23
(100, 100, 5, 0.5) .11 .06 .00 .00 .29 .31 .12 .05 .16 .41 .30 .24
(100, 100, 2, 1.0) .13 .07 .02 .14 .53 .40 .16 .11 .19 .44 .56 .42
(100, 100, 5, 1.0) .28 .24 .08 .32 .76 .78 .25 .13 .19 .44 .66 .57
(200, 100, 5, 0.5) .08 .03 .00 .00 .20 .16 .09 .03 .20 .46 .22 .16
(200, 100, 5, 1.0) .15 .05 .01 .09 .40 .30 .17 .07 .20 .44 .42 .31
(200, 500, 8, 0.5) .10 .03 .00 .04 .23 .16 .11 .03 .17 .40 .24 .17
(200, 500, 8, 1.0) .21 .13 .02 .17 .50 .58 .22 .08 .19 .43 .46 .38
(200, 1000, 5, 1.0) .15 .05 .01 .08 .40 .31 .17 .07 .17 .40 .42 .33

Table 1. Performance of the (bias corrected) ScHeDs compared with the (bias corrected) Square-root Lasso on a synthetic

dataset. The average values and the standard deviations of the quantities |β̂ − β∗|2, |̂S − S
∗| and 10|σ̂ − σ∗| over 500

trials are reported. They represent respectively the accuracy in estimating the regression vector, the number of relevant
covariates and the level of noise.

the correct normalization of the error consists in divid-
ing

∣∣X(φ̂−φ∗)
∣∣
2

by
√
T . Assuming that the function

b∗ is bounded and using standard tail bounds on the
χ2
T distribution, we can see that the first term in the

right-hand side of (16) is negligible w.r.t. the second
one. Thus if we ignore for a moment the third term,
Theorem 5.1 tells us that the normalized squared error

T−1
∣∣X(φ̂−φ∗)

∣∣2
2

of estimating φ∗ by φ̂ is of the order
of S

∗/T , up to logarithmic terms. This is the (opti-
mal) fast rate of estimating an S

∗-sparse signal with T
observations in linear regression.

To complete the theoretical analysis, we need a bound
on the error of estimating the parameter α∗. This is
done in the following theorem.

Theorem 5.2. Let all the conditions of Theorem 5.1
be fulfilled. Let q and T be two integers such that 1 ≤
q ≤ T and let ε ∈ (0, 1/5). Assume that for some con-

stant D̂1 ≥ 1 the inequality maxt∈T
Rt,:α̂
Rt,:α∗

≤ D̂1 holds

true and denote DT,ε = D̂1(2|Xφ∗|2∞ + 5log(2T/ε)).
Then, on an event of probability at least 1 − 5ε, the
following inequality is true:∣∣X(φ̂− φ∗)

∣∣
2
≤ 4(C4 + 1)D

3/2
T,ε

√
2q log(2q/ε)

+
8DT,ε

κ

√
2S
∗ + 3K∗ log(K/ε). (17)

Furthermore, on the same event,∣∣R(α∗ − α̂)
∣∣
2

D̂
1/2
1 |Rα∗|∞

≤ 4(C4 + 2)D
3/2
T,ε

√
2q log(2q/ε)

+
8DT,ε

κ

√
2S
∗ + 3K∗ log(K/ε). (18)

The first important feature of this result is that it pro-
vides fast rates of convergence for the ScHeDs esti-
mator. This compares favorably with the analogous

result in (Kolar and Sharpnack, 2012), where asymp-
totic bounds are presented under the stringent condi-
tion that the local minimum to which the procedure
converges coincides with the global one. The joint con-
vexity in φ and α of our minimization problem allows
us to avoid such an assumption without any loss in the
quality of prediction.

One potential weakness of the risk bounds of Theorem
5.2 is the presence of the quantity D̂1, which controls,
roughly speaking, the `∞ norm of the vector Rα̂. One
way to circumvent this drawback is to add the con-
straint maxtRt,:α ≤ µ∗ to those presented in (7)-(9),
for some tuning parameter µ∗. In this case, the op-
timization problem remains an SOCP and in all the
previous results one can replace the random term D̂1

by µ∗/µ∗, where µ∗ is a lower bound on the elements
of the vector Rα∗. This being said, we hope that
with more sophisticated arguments one can deduce
the boundedness of D̂1 by some deterministic constant
without adding new constraints to the ScHeDs.

One may also wonder how restrictive the assumptions
(13)-(15) are and in which kind of contexts they are
expected to be satisfied. At a heuristic level, one may
remark that the expressions in (13)-(15) are all em-
pirical means: for instance, (1/T )

∑
t r

2
t`/(Rt,:α

∗)2 =
(1/T )

∑
t r`(xt)

2/r∗(xt)
2. Assuming that the time se-

ries {xt} is stationary or periodic, these empirical
means will converge to some expectations. There-
fore, under these types of assumptions, (13)-(15) are
boundedness assumptions on some integral functionals
of r∗, f∗ and r`’s. In particular, if r`’s are bounded and
bounded away from 0, f∗ is bounded and r∗ is bounded
away from zero, then the finiteness of the constant C4

is straightforward.

To close this section, let us emphasize that the GRE
condition is sufficient for getting fast rates for the
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performance of the ScHeDs measured in prediction
loss, but is by no means necessary for the consistency.
In other terms, even if the GRE condition fails, the
ScHeDs still provides provably accurate estimates that
converge at a slower rate. This slow rate is, roughly
speaking, of the order [T−1(S∗+K∗ logK)]1/4 instead
of [T−1(S∗ +K∗ logK)]1/2.

6. Experiments

To assess the estimation accuracy of our method and
to compare it with the state-of-the-art alternatives,
we performed an experiment on a synthetic dataset.
Then, the prediction ability of the procedure is evalu-
ated on a real-world dataset containing the tempera-
tures in Paris over several years.

6.1. Implementation

To effectively compute the ScHeDs estimator we rely
on Theorem 3.2 that reduces the computation to solv-
ing a second-order cone program. To this end, we
implemented a primal-dual interior point method us-
ing the SeDuMi package (Sturm, 1999) of Matlab
as well as several optimal first-order methods (Nes-
terov, 1983; Auslender and Teboulle, 2006; Beck and
Teboulle, 2009) using the TFOCS (Becker et al., 2011).
We intend to make our code publicly available if the
paper is accepted. Each of these implementations
has its strengths and limitations. The interior point
method provides a highly accurate solution for mod-
erately large datasets (Fig. 1, top), but this accuracy
is achieved at the expense of increased computational
complexity (Fig. 1, bottom). Although less accurate,
optimal first-order methods have cheaper iterations
and can deal with very large scale datasets (see Ta-
ble 2). All the experiments were conducted on an In-
tel(R) Xeon(R) CPU @2.80GHz.

6.2. Synthetic data

In order to be able to compare our approach to other
state-of-the-art algorithms, we place ourselves in a set-
ting of homoscedastic noise with known ground truth.
We randomly generate a matrix X ∈ RT×p with i.i.d.
standard Gaussian entries and a standard Gaussian
noise vector ξ ∈ RT independent of X. The noise vari-
ance is defined by σt ≡ σ∗ with varying values σ∗ > 0.
We set β0 = [1S∗ , 0p−S∗ ]

> and define φ∗ = β∗/σ∗,
where β∗ is obtained by randomly permuting the en-
tries of β0. Finally, we set Y = σ∗(Xφ∗ + ξ).

Nine different settings depending on the values of
(T, p, S∗, σ∗) are considered. In each setting the exper-
iment is repeated 500 times; the average errors of esti-
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Figure 1. Comparing implementations of the ScHeDs: in-
terior point (IP) vs. optimal first-order (OFO) method. We
used the experiment described in Section 6.2 with T = 200,
S
∗ = 3, σ = 0.5. Top: square-root of the MSE on the

nonzero coefficients of β∗. Middle: square-root of the MSE
on the zero coefficients of β∗. Bottom: running times.

p 200 400 600 800 1000

IP (sec/iter) 0.14 0.70 2.15 4.68 9.46
OFO (100*sec/iter) 0.91 1.07 1.33 1.64 1.91

Table 2. Comparing implementations of the ScHeDs: inte-
rior point (IP) vs. optimal first-order (OFO) method. We
report the time per iteration (in seconds) for varying p
in the experiment described in Section 6.2 with T = 200,
S
∗ = 2, σ = 0.1. Note that the iterations of the OFO are

very cheap and their complexity increases linearly in p.

mation of β∗, S
∗ and σ∗ for our procedure and for the

Square-root Lasso are reported in Table 1 along with
the standard deviations. For both procedures, the uni-
versal choice of tuning parameter λ =

√
2 log(p) is

used (after properly normalizing the columns of X)
and a second step consisting in bias correction is ap-
plied (cf. (Sun and Zhang, 2012) and the discussion in
Section 4 on bias correction). Here, we did not use any
group structure so the penalty is merely proportional
to the `1-norm of β. One can observe that the ScHeDs
is competitive with the Square-root Lasso, especially
for performing variable selection. Indeed, in all consid-
ered settings the ScHeDs outperforms the Square-root
Lasso in estimating S

∗.

6.3. Application to the prediction of the
temperature in Paris

For experimental validation on a real-world dataset,
we have used data on the daily temperature in Paris
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Figure 2. Top row: increments of temperatures (in Fahrenheit) from one day to the next observed in Paris in 2008. Middle
row: predictions provided by our ScHeDs procedure; we observe that the sign is often predicted correctly. Bottom row:
estimated noise level.

from 2003 to 2008. It was produced by the National
Climatic Data Center (NCDC), (Asheville, NC, USA)
and is publicly available at ftp://ftp.ncdc.noaa.

gov/pub/data/gsod/. Performing good predictions
for these data is a challenging task since, as shown
in Fig. 2, the observations look like white noise. The
dataset contains the daily average temperatures, as
well as some other measurements like wind speed,
maximal and minimal temperatures, etc.

We selected as response variable yt the difference of
temperatures between two successive days. The goal
was to predict the temperature of the next daybased on
historical data. We selected as covariates xt the time
t, the increments of temperature over past 7 days, the
maximal intraday variation of the temperature over
past 7 days and the wind speed of the day before. In-
cluding the intercept, this resulted in a 17 dimensional
vector xt. Based on it, we created 136 groups of func-
tions f, each group containing 16 elements. Thus, the
dimension of φ∗ was 136×16 = 2176. We chose q = 11
with functions r` depending on time t only. The precise
definitions of fj and r` are presented below.

To specify X, we need to define the functions fj gen-
erating its columns. We denote by ut the subvector of
xt obtained by removing the time t. Thus, ut is a 16-
dimensional vector. Using this vector ut ∈ R16, we de-

fine all the second-order monomes: χi,i′(ut) = u
(i)
t u

(i′)
t

with i ≤ i′. We look for fitting the unknown func-
tion f∗ by a second-order polynomial in ut with coef-
ficients varying in time. To this end, we set ψ1(t) = 1,
ψ`(t) = t1/(`−1), for ` = 2, 3, 4 and

ψ`(t) = cos(2π(`− 4)t/365); ` = 5, . . . , 10;

ψ`(t) = sin(2π(`− 10)t/365); ` = 11, . . . , 16.

Once these functions χi,i′ and ψ` defined, we denote

by fj the functions of the form ψ`(t)χi,i′(ut). In other
terms, we compute the tensor product of these two
sets of functions, which leads to a set of functions {fj}
of cardinality 16× 16× 17/2 = 2176. These functions
are split into 136 groups of 16 functions, each group
defined by Gi,i′ = {ψ`(t)× χi,i′(ut) : ` = 1, . . . , 16}.

We defined R as a T × 11 matrix, each of its eleven
columns was obtained by applying some function r`
to the covariate xt for t = 1, . . . , T . The functions r`
were chosen as follows: r1(xt) = 1, r2(xt) = t, r3(xt) =

1/(t+ 2× 365)
1
2 and

r`(xt) = 1 + cos(2π(`− 3)t/365); ` = 4, . . . , 7;

r`(xt) = 1 + cos(2π(`− 7)t/365); ` = 8, . . . , 11.

Note that these definitions of X and R are somewhat
arbitrary. Presumably, better results in terms of pre-
diction would be achieved by combining this purely
statistical approach with some expert advice.

We used the temperatures from 2003 to 2007 for train-
ing (2172 values) and those of 2008 (366 values) for
testing. Applying our procedure allowed us to reduce
the dimensionality of φ from 2176 to 26. The result
of the prediction for the increments of temperatures
in 2008 is depicted in Fig. 2. The most important
point is that in 62% of the cases the sign of the in-
crements is predicted correctly. It is also interesting
to look at the estimated variance: it suggests that the
oscillation of the temperature during the period be-
tween May and July is significantly higher than in
March, September and October. Interestingly, when
we apply a Kolmogorov-Smirnov test to the residuals
ytRt,:α̂−Xt,:φ̂ for t belonging to the testing set, the
null hypothesis of Gaussianity is not rejected and the
p value is 0.72.

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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7. Conclusion and outlook

We have introduced a new procedure, the ScHeDs,
that allows us to simultaneously estimate the condi-
tional mean and the conditional variance functions
in the model of regression with heteroscedastic noise.
The ScHeDs relies on minimizing a group-sparsity pro-
moting norm under some constraints corresponding to
suitably relaxed first-order conditions for maximum
penalized likelihood estimation. We have proposed
several implementations of the ScHeDs based on vari-
ous algorithms of second-order cone programming. We
have tested our procedure on synthetic and real world
datasets and have observed that it is competitive with
the state-of-the-art algorithms, while being applicable
in a much more general framework. Theoretical guar-
antees for this procedure have also been proved.

In a future work, we intend to generalize this approach
to the case where the inverse of the conditional stan-
dard deviation belongs to a reproducing kernel Hilbert
space, or admits a sparse linear representation in a
large, possibly over-complete, dictionary. The exten-
sion of our methodology to the case of nonoverlapping
groups (Obozinski et al., 2011; Mairal et al., 2011) and
the substitution of the `1/`2-norm penalty by more
general `1/`q-norms in our framework are challenging
avenues for future research.
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8. Supplement to the paper: Learning Heteroscedastic Models by Convex
Programming under Group Sparsity

8.1. Proof of Theorem 3.2

The fact that the feasible set is not empty follows from the fact that it contains the minimizers of (6). This
immediately follows from the first-order conditions and their relaxations. Indeed, for a minimizer (φ◦,α◦) of
(6), the first-order conditions take the following form: there exists ν◦ ∈ RT+ such that for all k ∈ [K] and ` ∈ [q],

∂

∂φGk

PL(φ◦,α◦) = −X>:,Gk

(
diag(Y )Rα◦ −Xφ◦

)
+ λkX

>
:,Gk

X:,Gk
φ◦Gk∣∣X:,Gk
φ◦Gk

∣∣
2

= 0, (19)

∂

∂α◦`
PL(φ◦,α◦) = −

∑
t∈T

rt`
Rt,:α◦

+
∑

t∈T

(
ytRt,:α

◦ −Xt,:φ
◦)ytrt` − (ν◦)>R:,` = 0, (20)

and ν◦tRt,:α
◦ = 0 for every t. It should be emphasized that relation (19) holds true only in the case where the

solution satisfies mink |X :,Gk
φ◦:,Gk

|2 6= 0, otherwise one has to replace it by the condition stating that the null
vector belongs to the subdifferential. Since this does not alter the proof, we prefer to proceed as if everything
was differentiable.

On the one hand, (φ◦,α◦) satisfies (19) if and only if ΠGk
(diag(Y )Rα◦ − Xφ◦) = λkX:,Gk

φ◦Gk
/|X:,Gk

φ◦Gk
|2

with ΠGk
= X:,Gk

(X>:,Gk
X:,Gk

)+X>:,Gk
being the orthogonal projector onto the range of X:,Gk

in RT . Taking the

norm of both sides in the last equation, we get
∣∣ΠGk

(diag(Y )Rα◦ −Xφ◦)
∣∣
2
≤ λk. This tells us that (φ◦,α◦)

satisfy (7). On the other hand, since the minimum of (6) is finite, one easily checks that Rt,:α
◦ 6= 0 and,

therefore, ν◦ = 0. Replacing in (20) ν◦ by zero and setting v◦t = 1/Rt,:α
◦ we get that (φ◦,α◦,v◦) satisfies

(8), (9). This proves that the set of feasible solutions of the optimization problem defined in the ScHeDs is not
empty.

Let us show that one can compute the ScHeDs (φ̂, α̂) by solving an SOCP. More precisely, we show that if

(φ̂, α̂, û, v̂) ∈ Rp × Rq × RK × RT is a solution to the following problem of second-order cone programming:

min
∑K

k=1
λkuk (21)

subject to (7) and∣∣X:,Gk
φGk

∣∣
2
≤ uk, ∀k ∈ [K], (22)

R>v ≤ R>diag(Y )(diag(Y )Rα−Xφ); (23)∣∣[vt;Rt,:α;
√

2
]∣∣

2
≤ vt +Rt,:α; ∀t ∈ T , (24)

then (φ̂, α̂, v̂) is a solution to the optimization problem stated in Definition 3.1. This claim readily follows from
the fact that the constraint

∣∣[vt;Rt,:α;
√

2
]∣∣

2
≤ vt + Rt,:α can be equivalently written as vt(Rt,:α) ≥ 1 and

vt + Rt,:α ≥ 0 for every t. This yields vt ≥ 0 and Rt,:α ≥ 1/vt for every t. Furthermore, it is clear that if

(φ̂, α̂, û, v̂) is a solution to the aforementioned optimization problem, then all the inequalities in (22) are indeed
equalities. This completes the proof.

8.2. Proof of Theorem 5.1

To prove Theorem 5.1, we first introduce a feasible pair (φ̃, α̃), in the sense formulated in Lemma 8.1.

Lemma 8.1. Consider the model (10). Let z = 1 + 2C4

√
2 log(2q/ε)

T with some ε > 0 and assume that z ≤ 2.

Then with probability at least 1− 2ε, the triplet (φ̃, α̃, ṽ) =
(
zφ∗, zα∗, ( 1

zRt,:α∗
)t=1,...,T

)
satisfies constraints (7),

(8) and (9). Moreover, the group-sparsity pattern
{
k :
∣∣φ̃Gk

∣∣
1
6= 0

}
of φ̃ coincides with that of φ∗, that is with

K∗.

The proof of this lemma can be found in Section 8.3.
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Set ∆ = φ̂ − φ̃. On an event of probability at least 1 − 2ε, (φ̃, α̃) is a feasible solution of the optimization

problem of the ScHeDs whereas (φ̂, α̂) is an optimal solution, therefore

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2

+

K∑
k=1

λk
∣∣X:,Gk

φ̃Gk

∣∣
2
−

K∑
k=1

λk
∣∣X:,Gk

φ̂Gk

∣∣
2

=
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2

+
∑
k∈K∗

λk(
∣∣X:,Gk

φ̃Gk

∣∣
2
−
∣∣X:,Gk

φ̂Gk

∣∣
2
)

≤ 2
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2
. (25)

This readily implies that ∑
k∈K∗c

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2
.

Applying GRE(κ, s) assumption and the Cauchy-Schwarz inequality, we get

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤ 2
( ∑
k∈K∗

λ2k

)1/2( ∑
k∈K∗

∣∣X:,Gk
∆Gk

∣∣2
2

)1/2
≤ 2

κ

(∑
k∈K∗

λ2k
)1/2 ∣∣X∆

∣∣
2
. (26)

It is clear that∣∣X∆
∣∣2
2

= ∆>X>(Xφ̂−Xφ̃)

= ∆>X>(Xφ̂− diag(Rα̂)Y ) + ∆>X>(diag(Rα̃)Y −Xφ̃) + ∆>X>diag(Y )R(α̂− α̃).

In addition, using the relation X∆ =
∑K
k=1 X:,Gk

∆Gk
=
∑K
k=1 ΠGk

X:,Gk
∆Gk

and the fact that both (φ̂, α̂)

and (φ̃, α̃) satisfy constraint (7), we have

∣∣X∆
∣∣2
2
≤

K∑
k=1

∆>Gk
X>:,Gk

ΠGk
(Xφ̂− diag(Rα̂)Y ) +

K∑
k=1

∆>Gk
X>:,Gk

ΠGk
(diag(Rα̃)Y −Xφ̃)

+ ∆>X>diag(Y )R(α̂− α̃)

≤ 2

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2

+
∣∣X∆

∣∣
2
.
∣∣DY R(α̂− α̃)

∣∣
2
. (27)

Therefore, from (26), |X∆|2 ≤ 4
κ

(∑
k∈K∗ λ

2
k

)1/2
+ |DY R(α̂− α̃)|2 and we easily get

|X(φ̂− φ∗)|2 ≤ |X(φ̃− φ∗)|2 + |X∆|2 ≤ (z − 1)|Xφ∗|2 +
4

κ

(∑
k∈K∗

λ2k

)1/2
+ |DY R(α̂− α̃)|2.

where we have used the following notation: for any vector v, we denote by Dv the diagonal matrix diag(v).

To complete the proof, it suffices to replace z and λk by their expressions and to use the inequality

|DY R(α̂− α̃)|2 ≤ |DY R(α̂−α∗)|2 + (z − 1)|DY Rα∗|2
≤ |DY R(α̂−α∗)|2 + (z − 1)|Xφ∗ + ξ|2
≤ |DY R(α̂−α∗)|2 + (z − 1)

(
|Xφ∗|2 + |ξ|2

)
.

8.3. Proof of Lemma 8.1

For all ε ∈ (0, 1), consider the random event Bε =
⋂q
`=1

(
B2ε,` ∩ B1ε,`

)
, where

B2ε,` =

{∑
t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt ≥ −

√
2C2T log(2q/ε)

}
,
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B1ε,` =

{∑
t∈T

rt`
Rt,:α∗

(ξ2t − 1) ≥ −2
√
C1T log(2q/ε)

}
.

Using standard tail estimates for the Gaussian and the χ2 distributions, in conjunction with the union bound,
one easily checks that P (Bε) ≥ 1−ε. In what follows, we show that on the event Bε, (φ̃, α̃, ṽ) satisfies constraints
(7)-(9).

Constraints (9) are satisfied (with equality) by definition of ṽ. To check that (8) is satisfied as well, we should
verify that for all ` = 1, . . . , q,

1

z2

∑
t∈T

rt`
Rt,:α∗

≤
∑

t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt +

∑
t∈T

rt`
Rt,:α∗

ξ2t .

On the event Bε, the right-hand side of the last inequality can be lower bounded as follows:∑
t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt +

∑
t∈T

rt`
Rt,:α∗

ξ2t ≥ −(
√
C2 +

√
2C1)

√
2T log(2q/ε) +

∑
t∈T

rt`
Rt,:α∗

.

Thus, on Bε if for all ` = 1, . . . , q

z2 − 1

z2

∑
t∈T

rt`
Rt,:α∗

≥ (
√
C2 +

√
2C1)

√
2T log(2q/ε) (28)

then constraint (9) is fulfilled by (φ̃, α̃, ṽ). Inequality (28) is valid since for any z ≥ 1

z2 − 1

z2

∑
t∈T

rt`
Rt,:α∗

=
z − 1

z

(
1 +

1

z

)∑
t∈T

rt`
Rt,:α∗

≥ z − 1

z
TC3

and z−1
z TC3 ≥ (

√
C2 +

√
2C1)

√
2T log(2q/ε) when z = 1 + 2C4

√
2 log(2q/ε)

T ≤ 2.

On the other hand, since z ≤ 2, a sufficient condition implying that the pair (φ̃, α̃) satisfies (7) is

2
∣∣ΠGk

ξ
∣∣
2
≤ λk, ∀k ∈ {1, . . . ,K}. (29)

Recall that rk denotes the rank of ΠGk
. Let Rε be the random event of probability at least 1 − ε defined as

follows

Rε =

K⋂
k=1

Rε,k =

K⋂
k=1

{∣∣ΠGk
ξ|22 ≤ rk + 2

√
rk log(K/ε) + 2 log(K/ε)

}
.

To prove that P (Rε) ≥ 1−ε, we use the fact that
∣∣∣ΠGk

ξ|22 is drawn from the χ2
rk

distribution. Using well-known

tail bounds for the χ2 distribution, we get P (Rcε,k) ≤ ε
K . Then, we conclude by the union bound.

Since we chose

2(rk + 2
√
rk log(K/ε) + 2 log(K/ε))1/2 = λk,

on the event Rε inequality (29) is satisfied by (φ̃, α̃).

Finally, the triplet (φ̃, α̃, ṽ) fulfills constraints (7)-(9) on the event Bε ∩ Rε, which is of a probability at least
1− 2ε.

8.4. Proof of Theorem 5.2

We start by noting that, the ScHeDs (φ̂, α̂) satisfies ∀` ∈ {1, . . . , q}, the relation∑
t∈T

rt`
Rt,:α̂

=
∑

t∈T

(
ytRt,:α̂−Xt,:φ̂

)
ytrt`. (30)
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First, for the ScHeDs, all the inequalities in (9) are equalities. Indeed, vt’s are only involved in (8) and (9) and if
we decrease one vt to achieve an equality in (9), the left-hand side of (8) will decrease as well and the constraint
will stay inviolated. Thus, setting v̂t = 1/Rt,:α̂, we get from (8)∑

t∈T

rt`
Rt,:α̂

≤
∑

t∈T

(
ytRt,:α̂−Xt,:φ̂

)
ytrt`, ∀` ∈ {1, . . . , q}. (31)

To be convinced that Eq. (30) is true, let us consider for simplicity the one dimensional case q = 1. If inequality

(31) was strict, for some w ∈ (0, 1), the pair (wφ̂, wα̂) would also satisfy all the constraints of the ScHeDs and

the corresponding penalty term would be smaller than that of (φ̂, α̂). This is impossible since φ̂ is an optimal
solution. Thus we get∑

t∈T
R>t,:(Rt,:α̂)−1 =

∑
t∈T

R>t,:yt
(
ytRt,:α̂−Xt,:φ̂

)
= R>DY

(
DY Rα̂−Xφ̂

)
. (32)

Using the identity (Rt,:α̂)−1 = (Rt,:α
∗)−1 + (Rt,:α̂Rt,:α

∗)−1Rt,:(α
∗ − α̂), we get[∑

t∈T

1

(Rt,:α̂)(Rt,:α∗)
R>t,:Rt,:

]
(α∗ − α̂) = −

∑
t∈T

1

Rt,:α∗
R>t,: + R>DY

(
DY Rα̂−Xφ̂

)
= −R>D−1Rα∗1T + R>D2

Y R(α̂−α∗)−R>DY X(φ̂− φ∗)
+ R>DY

(
DY Rα∗ −Xφ∗

)
. (33)

In view of the identities DY Rα∗ −Xφ∗ = ξ and DY = D−1Rα∗(DXφ∗ + Dξ), Eq. (33) yields4

R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R(α∗ − α̂) = R>D−1Rα∗(ξ

2 − 1T )−R>DY X(φ̂− φ∗) + R>D−1Rα∗DXφ∗ξ. (34)

As a consequence, denoting by M the Moore-Penrose pseudo-inverse of the matrix R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R,

R(α∗ − α̂) = RMR>
(

D−1Rα∗(ξ
2 − 1T )−DY X(φ̂− φ∗) + D−1Rα∗DXφ∗ξ

)
. (35)

Multiplying both sides by DY and taking the Euclidean norm, we get∣∣DY R(α∗ − α̂)
∣∣
2
≤
∣∣∣DY RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+
∣∣∣DY RMR>DY X(φ∗ − φ̂)

∣∣∣
2
. (36)

At this stage of the proof, the conceptual part is finished and we enter into the technical part. At a heuristic
level, the first norm in the right-hand side of (36) is bounded in probability while the second norm is bounded

from above by (1 − c)
∣∣X(φ∗ − φ̂)

∣∣
2

for some constant c ∈ (0, 1). Let us first state these results formally, by
postponing their proof to the next subsection, and to finalize the proof of the theorem.

Lemma 8.2. Let q and T be two integers such that 1 ≤ q ≤ T and let ε ∈ (0, 1/3) be some constant. Assume

that for some constant D̂1 ≥ 1 the inequality maxt∈T
Rt,:α̂
Rt,:α∗

≤ D̂1 holds true. Then, on an event of probability

at least 1− 3ε, the following inequalities are true5:

|||M1/2R>DY ||| ≤ 1, (37)∣∣∣M1/2R>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤ 10

√
qD̂1 log(2T/ε) log(2q/ε), (38)

|||DY RMR>DY ||| ≤ 1− 1

2D̂1

(
|Xφ∗|2∞ + |ξ|2∞

)
+ 1
≤ 1− 1

D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

) . (39)

In view of these bounds, we get that on an event of probability at least 1− 3ε,∣∣DY R(α∗ − α̂)
∣∣
2
≤ 10

√
qD̂1 log(2T/ε) log(2q/ε) +

(
1− 1

D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

))∣∣X(φ∗ − φ̂)
∣∣
2
. (40)

4We denote by ξ2 the vector (ξ2t )t∈T .
5Here and in the sequel, the spectral norm of a matrix A is denoted by |||A|||.
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Combining this inequality with Theorem 5.1 and using the inequality 2|Xφ∗|2 + |ξ|2 ≤
√
T
(
2|Xφ∗|∞ + |ξ|∞

)
,

we get that the following inequalities are satisfied with probability ≥ 1− 5ε:∣∣X(φ̂− φ∗)
∣∣
2
≤ 2C4D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
2 log(2q/ε)(2|Xφ∗|∞ + |ξ|∞)

+
8

κ

(
2S
∗ + 3K∗ log(K/ε)

)1/2
D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)
+ 10D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
qD̂1 log(2T/ε) log(2q/ε)

≤ 4C4D̂1

(
2|Xφ∗|2∞ + 5log(2T/ε)

)3/2√
2 log(2q/ε)

+
8D̂1

κ

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)(
2S
∗ + 3K∗ log(K/ε)

)1/2
+ 10D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
qD̂1 log(2T/ε) log(2q/ε). (41)

Using the notation DT,ε = D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)
, we obtain∣∣X(φ̂− φ∗)

∣∣
2
≤ 4C4D

3/2
T,ε

√
2 log(2q/ε) +

8DT,ε

κ

(
2S
∗ + 3K∗ log(K/ε)

)1/2
+ 10DT,ε

√
qD̂1 log(2T/ε) log(2q/ε). (42)

To further simplify the last term, we use the inequalities:

10DT,ε

√
qD̂1 log(2T/ε) log(2q/ε) = DT,ε

√
10

√
5D̂1 log(2T/ε)

√
2q log(2q/ε)

≤ 4D
3/2
T,ε

√
2q log(2q/ε).

Combining this with (42) yields (17).

To prove (18), we use once again (35) to infer that∣∣R(α∗ − α̂)
∣∣
2
≤
∣∣∣RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+
∣∣∣RMR>DY X(φ∗ − φ̂)

∣∣∣
2

≤ |||RM1/2|||
(∣∣∣M1/2R>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+ |||M1/2R>DY |||

∣∣∣X(φ∗ − φ̂)
∣∣∣
2

)
.

In view of Lemma 8.2, this leads to∣∣R(α∗ − α̂)
∣∣
2
≤ |||RM1/2|||

(
10

√
qD̂1 log(2T/ε) log(2q/ε) +

∣∣∣X(φ∗ − φ̂)
∣∣∣
2

)
, (43)

with probability at least 1− 5ε. Using the bound in (17), we get∣∣R(α∗ − α̂)
∣∣
2
≤ |||RM1/2|||

(
4(C4 + 2)D

3/2
T,ε

√
2q log(2q/ε) +

8DT,ε

κ

√
2S
∗ + 3K∗ log(K/ε)

)
. (44)

In view of the inequality6

(RM1/2)(RM1/2)> = R
[
R>(D2

Y + D−1Rα∗D
−1
Rα̂)R

]+
R>

� R
[
R>(D−1Rα∗D

−1
Rα̂)R

]+
R>

� (max
t∈T

[Rt,:α
∗ ·Rt,:α̂])R

[
R>R

]+
R>

we get

|||RM1/2|||2 = |||(RM1/2)(RM1/2)>|||

≤ D̂1

∣∣Rα∗∣∣2∞ · |||R[R>R
]+

R>|||

≤ D̂1

∣∣Rα∗∣∣2∞,
where the last inequality follows from the fact that R

[
R>R

]+
R> is an orthogonal projector.

6We use the notation A � B and B � A for indicating that the matrix A−B is positive semi-definite. For any matrix
A, we denote by A+ its Moore-Penrose pseudoinverse.
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8.5. Proof of Lemma 8.2

We start by presenting a proof of (38). We have∣∣∣DY RMR>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2

≤ |||DY RM1/2||| ·
∣∣M1/2R>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣

2

≤ |||DY RM1/2||| ·
(∣∣M1/2R>D−1Rα∗(ξ

2 − 1T )
∣∣
2

+
∣∣M1/2R>D−1Rα∗DXφ∗ξ

∣∣
2

)
. (45)

We remark that

M+ = R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R � R>D2

Y R =⇒ |||DY RM1/2||| ≤ 1.

and that

M+ �
(

min
t

y2t + (Rt,:α
∗ ·Rt,:α̂)−1

(Xt,:φ
∗/Rt,:α∗)2

)
R>D−2Rα∗D

2
Xφ∗R,

which implies that ∣∣M1/2R>D−1Rα∗DXφ∗ξ
∣∣2
2

= ξ>D−1Rα∗DXφ∗RMR>DXφ∗D
−1
Rα∗ξ

≤
(

max
t∈T

(Xt,:φ
∗)2

(Rt,:α∗)2y2t + (Rt,:α∗/Rt,:α̂)

)
ξ>Π1ξ, (46)

where Π1 = D−1Rα∗DXφ∗R
(
R>D2

Xφ∗D
−2
Rα∗R

)+
R>DXφ∗D

−1
Rα∗ is the orthogonal projection on the linear sub-

space of RT spanned by the columns of the matrix D−1Rα∗DXφ∗R. By the Cochran theorem, the random variable

η1 = ξ>Π1ξ is distributed according to the χ2
q distribution.

Using similar arguments based on matrix inequalities, one checks that∣∣M1/2R>D−1Rα∗(ξ
2 − 1T )

∣∣2
2
≤
(

max
t∈T

(Rt,:α
∗)−2

y2t + (Rt,:α∗ ·Rt,:α̂)−1

)
(ξ2 − 1)>Π2(ξ2 − 1)

≤
(

max
t∈T

Rt,:α̂

Rt,:α∗

)
(ξ2 − 1)>Π2(ξ2 − 1)︸ ︷︷ ︸

=:η2

, (47)

where Π2 = D−1Rα∗R
(
R>D−2Rα∗R

)+
R>D−1Rα∗ is the orthogonal projection on the linear subspace of RT spanned

by the columns of the matrix D−1Rα∗R.

To further simplify (46), one can remark that under the condition Rt,:α̂ ≤ D̂1Rt,:α
∗, it holds

(Xt,:φ
∗)2

(Rt,:α∗)2y2t + (Rt,:α∗/Rt,:α̂)
≤ (Xt,:φ

∗)2

(Xt,:φ
∗ + ξt)2 + D̂−11

≤ 1 + D̂1ξ
2
t . (48)

These bounds, combined with (45), yield∣∣∣DY RMR>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤
√

(1 + D̂1|ξ|2∞)η1 +

√
D̂1η2. (49)

One can also notice that Π2 is a projector on a subspace of dimension at most equal to q, therefore one can
write Π2 =

∑q
`=1 v`v

>
` for some unit vectors v` ∈ RT . This implies that

η2 =

q∑
`=1

|v>` (ξ2 − 1T )|2 ≤ q max
`=1,...,q

∣∣∣∑
t∈T

v`,t(ξ
2
t − 1)

∣∣∣2.
Hence, large deviations of η1 and η2 can be controlled using standard tail bounds; see, for instance, Laurent and
Massart (2000, Lemma 1). This implies that with probability at least 1− 2ε,∣∣∣DY RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤
√

1 + D̂1|ξ|2∞(
√
q +

√
2 log(q/ε)) +

√
qD̂1 4 log(2q/ε).
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To conclude, it suffices to remark that P(|ξ|∞ ≤
√

2 log(2T/ε)) ≥ 1− ε. This implies that∣∣∣DY RMR>
(
D−1Rα∗(D

2
ξ − IT )1T + D−1Rα∗DXφ∗ξ

)∣∣∣
2

≤ 2

√
D̂1 log(2T/ε)(

√
q +

√
2 log(q/ε)) +

√
qD̂1 4 log(2q/ε)

≤ 4

√
2qD̂1 log(2T/ε) log(q/ε) + 4

√
qD̂1 log(2q/ε)

≤ 10

√
qD̂1 log(2T/ε) log(2q/ε).

This completes the proof of the first claim of the lemma.

Let us now switch to a proof of (39). It is clear that

|||DY RMR>DY ||| = |||M1/2R>DY |||2

≤ |||M1/2R>(D2
Y + D−1Rα̂D−1Rα∗)

1/2|||2|||(D2
Y + D−1Rα̂D−1Rα∗)

−1/2DY |||2

≤ |||(D2
Y + D−1Rα̂D−1Rα∗)

−1/2DY |||2

= max
t∈T

y2t
y2t + (Rt,:α∗ ·Rt,:α̂)−1

. (50)

Using the fact that Rt,:α̂ ≤ D̂1Rt,:α
∗ for every t, we obtain

|||DY RMR>DY ||| = max
t∈T

y2t (Rt,:α
∗)2

y2t (Rt,:α∗)2 + D̂−11

= 1−min
t∈T

1

D̂1y2t (Rt,:α∗)2 + 1

= 1−min
t∈T

1

D̂1(Xt,:φ
∗ + ξt)2 + 1

. (51)

To complete the proof of the lemma, it suffices to remark that (Xt,:φ
∗ + ξt)

2 ≤ 2(Xt,:φ
∗)2 + 2ξ2t ≤ 2|Xφ∗|2∞ +

2|ξ|2∞ and to apply the well-known bound on the tails of the Gaussian distribution.


