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Abstract—In this paper, we investigate in a unified way the
structural properties of solutions to inverse problems. These
solutions are regularized by the generic class of semi-norms
defined as a decomposable norm composed with a linear operator,
the so-called analysis type decomposable prior. This encompasses
several well-known analysis-type regularizations such as the
discrete total variation (in any dimension), analysis group-Lasso
or the nuclear norm. Our main results establish sufficient
conditions under which uniqueness and stability to a bounded
noise of the regularized solution are guaranteed. Along the way,
we also provide a strong sufficient uniqueness result that is of
independent interest and goes beyond the case of decomposable
norms.

I. INTRODUCTION

A. Problem statement

Suppose we observe

y = Φx0 + w, where ||w||2 6 ε ,

where Φ is a linear operator from RN to RM that may
have a non-trivial kernel. We want to robustly recover an
approximation of x0 by solving the optimization problem

x? ∈ Argmin
x∈RN

1
2 ||y − Φx||22 + λR(x) , (1)

where
R(x) := ||L∗x||A ,

with L : RP → RN a linear operator, and || · ||A : RP → R+

is a decomposable norm in the sense of [1]. Decomposable
regularizers are intended to promote solutions conforming to
some notion of simplicity/low complexity that complies with
that of u0 = L∗x0. This motivates the following definition of
these norms. Throughout the paper, given a subspace V ⊂ RP ,
we will use the shorthand notation LV = LPV , L∗V = PV L∗,
and αV = PV α for any vector α ∈ RP , where PV (resp.
PV ⊥ ) is the orthogonal projector on V (resp. on its orthogonal
complement V ⊥).

Definition 1. A norm || · ||A is decomposable at u ∈ RP if:

(i) there is a subspace T ⊂ RP and a vector e ∈ T such
that

∂|| · ||A(u) =
{
α ∈ RP | αT = e and ||αT⊥ ||∗A 6 1

}
(ii) and for any z ∈ T⊥, ||z||A = supv∈T⊥,||v||∗A61〈v, z〉,

where || · ||∗A is the dual norm of || · ||A.

From this definition, it can be easily proved, using Fenchel
identity, that u ∈ T whenever || · ||A is decomposable at u.
Popular examples covered by decomposable regularizers are
the `1-norm, the `1-`2 group sparsity norm, and the nuclear
norm [1].

B. Contributions and relation to prior work

In this paper, we give a strong sufficient condition under
which (1) admits a unique minimizer. From this, sufficient
uniqueness conditions are derived. Then we develop results
guaranteeing a stable approximation of x0 from the noisy
measurements y by solving (1), with an `2-error that comes
within a factor of the noise level ε. This goes beyond [1] who
considered identifiability under a generalized irrepresentable
condition in the noiseless case with L = Id. `2-stability for a
class of decomposable priors closely related to Definition 1, is
also studied in [8] for L = Id and general sufficiently smooth
data fidelity. Their stability results require however stronger
assumptions than ours (typically a restricted strong convexity
which becomes a type of restricted eigenvalue property for
linear regression with quadratic data fidelity). The authors
in [3] provide sharp estimates of the number of generic mea-
surements required for exact and `2-stable recovery of models
from random partial information by solving a constrained form
of (1) regularized by atomic norms. This is however restricted
to the compressed sensing scenario. Our results generalize the
stability guarantee of [7] established when the decomposable
norm is `1 and L∗ is the analysis operator of a frame. A
stability result for general sublinear functions R is given in [6].
The stability is however measured in terms of R, and `2-
stability can only be obtained if R is coercive, i.e., L∗ is
injective.

At this stage, we would like to point out that although
we carry out our analysis on the penalized form (1), our
results remain valid for the data fidelity constrained version
but obviously with different constants in the bounds. We omit
these results for obvious space limitations.

II. UNIQUENESS

A. Main assumptions

We first note that traditional coercivity and convexity argu-
ments allow to show that the set of (global) minimizers of (1)
is a non-empty compact set if, and only if, ker(Φ)∩ker(L∗) =
{0}.



The following assumptions will play a pivotal role in our
analysis.

Assumption (SCx) There exist η ∈ RM and α ∈ ∂||·||A(L∗x)
such that the following so-called source (or range) condition
is verified:

Φ∗η = Lα ∈ ∂R(x) .

Assumption (INJT ) For a subspace T ⊂ RP , Φ is injective
on ker(L∗T⊥).

It is immediate to see that since ker(L∗) ⊆ ker(L∗T⊥),
(INJT ) implies that the set of minimizers is indeed non-empty
and compact.

B. Strong Null Space Property

We shall now give a novel strong sufficient uniqueness con-
dition under which problem (1) admits exactly one minimizer.

Theorem 1. For a minimizer x? of (1), let T and e be the
subspace and vector in Definition 1 associated to u? = L∗x?,
and denote S = T⊥. x? is the unique minimizer of (1) if

〈L∗Th, e〉 < ||L∗Sh||∗A, ∀h ∈ ker(Φ) \ {0} .

The above condition is a strong generalization of the Null
Space Property well known in `1 regularization [4].

C. Sufficient uniqueness conditions

1) General case: A direct consequence of the above theo-
rem is the following corollary.

Corollary 1. For a minimizer x? of (1), let T and e be the
subspace and vector in Definition 1 associated to u? = L∗x?,
and denote S = T⊥. Assume that (SCx? ) is verified with
||αS ||∗A < 1, and that (INJT ) holds. Then, x? is the unique
minimizer of (1).

In fact, it turns out that the above two results are proved
without requiring some restrictive implications of Defini-
tion 1(ii) of decomposable norms, and are therefore valid for
a much larger class of regularizations. This can be clearly
checked in the arguments used in the proofs.

2) Separable case:

Definition 2. The decomposable norm || · ||A is separable on
the subspace T⊥ = S = V ⊕W ⊂ RP if for any u ∈ RP ,
||uT⊥ ||A = ||uV ||A + ||uW ||A.

Separability as just defined is fulfilled for several decom-
posable norms such as the `1 or `1− `p norms, 1 6 p < +∞.

The non-saturation condition on the dual certificate required
in Corollary 1 can be weakened to hold only on a subspace
V ⊂ S and the conclusions of the corollary remain valid, and
assuming a stronger restricted injectivity assumption. We have
the following corollary.

Corollary 2. Assume that || · ||A is also separable, with S =
V ⊕W , such that (SCx? ) is verified with ||αV ||∗A < 1, and
(INJV ) holds. Then, x? is the unique minimizer of (1).

III. STABILITY TO NOISE

A. Main result

1) General case: We are now ready to state our main
stability results.

Theorem 2. Let T0 and e0 be the subspace and vector in
Definition 1 associated to u0 = L∗x0, and denote S0 = T0

⊥.
Assume that (SCx0 ) is verified with ||αS0 ||∗A < 1, and that
(INJT0 ) holds. Then, choosing λ = cε, c > 0, the following
holds for any minimizer x? of (1)

||x? − x0||2 6 Cε ,

where C = C1 (2 + c||η||2)+C2
(1+c||η||2/2)2

c(1−||αS0 ||
∗
A) , and C1 > 0 and

C2 > 0 are constants independent of η and α.

Remark 1 (Separable case). When the decomposable norm
is also separable (see Corollary 2), the stability result of
Theorem 2 remains true assuming that ||αV ||∗A < 1 for
V ⊂ S0. This however comes at the price of the stronger
restricted injectivity assumption (INJV ). To show this, the only
thing to modify is the statement and the proof of Lemma 2
which can be done easily using similar arguments to those in
the proof of Corollary 2.

2) Case of frames: Suppose that L∗ is the analysis operator
of a frame (ker(L∗) = {0}) with lower bound a > 0, let L̃ be
a dual frame. The following stability bound can be obtained
whose proof is omitted for space limitations.

Proposition 1. Let T0 and e0 be the subspace and vector in
Definition 1 associated to u0 = L∗x0, and denote S0 = T0

⊥.
Assume that (SCx0 ) is verified with ||αS0 ||∗A < 1, and that Φ
is injective on Im(L̃T0). Then, choosing λ = cε, c > 0, the
following holds for any minimizer x? of (1)

||x? − x0||2 6 C ′ε ,

where C ′ = C1 (2 + c||η||2) + C ′2
(1+c||η||2/2)2

c(1−||αS0 ||
∗
A) , and C1 > 0

and C ′2 > 0 are constants independent of η and α.

Since ker(L∗S0
) ⊆ Im(L̃T0), the required restricted injectiv-

ity assumption is more stringent than (INJT0 ). On the positive
side, the constant C ′2 is in general better than C2. More
precisely, the constant CL, see the proof of Theorem 2, is
replaced with

√
a. Note also that coercivity of R in this case

allows to derive a bound similar to ours from the results in [6].
His restricted injectivity assumption is however different and
our constants are sharper.

B. Generalized irrepresentable condition

In the following corollary, we provide a stronger sufficient
stability condition that can be viewed as a generalization of
the irrepresentable condition introduced in [5] when R is the
`1 norm. It allows to construct dual vectors η and α which
obey the source condition and are computable, which in turn
yield explicit constants in the bound.



Definition 3. Let T ⊂ RP and e ∈ RP , and denote S = T⊥.
Suppose that (INJT ) is verified. Define for any u ∈ ker(LS)
and z ∈ RM such that Φ∗z ∈ Im(LS)

ICu,z(T, e) = ||Γe+ uS + (LS)+Φ∗z||∗A
where

Γ = (LS)+(Φ∗ΦΞ− Id)LT0

Ξ : h 7→ Ξh = argmin
x∈ker(L∗S)

1
2 ||Φx||

2
2 − 〈h, x〉 ,

and M+ is the Moore-Penrose pseudoinverse of M . Let ū, z̄
and u defined as

(ū, z̄) = argmin
u∈ker(LS),{z | Φ∗z∈Im(LS)}

ICu,z(T, e)

and u = argmin
u∈ker(LS)

ICu,0(T, e) .

Obviously, we have

ICū,z̄(T, e) 6 ICu,0(T, e) 6 IC0,0(T, e) .

The convex programs defining ICū,z̄(T, e) and ICu,0(T, e)
can be solved using primal-dual proximal splitting algorithms
whenever the proximity operator of || · ||A can be easily
computed [2]. The criterion ICu,0(T, e) specializes to the one
developed in [10] when || · ||A is the `1 norm. IC0,0(T, e) is a
generalization of the coefficient involved in the irrepresentable
condition introduced in [5] when R is the `1 norm, and to the
one in [1] for decomposable priors with L = Id.

Corollary 3. Assume that (INJT0 ) is verified and
ICū,z̄(T0, e0) < 1. Then, taking η = ΦΞLT0e0 + z̄,
one can construct α such that (SCx0 ) is satisfied and
||αS0 ||∗A < 1. Moreover, the conclusion of Theorem 2 remains
true substituting 1− ICū,z̄(T0, e0) for 1− ||αS0 ||∗A.

IV. PROOFS

A. Proof of Theorem 1

A key observation is that by strong (hence strict) convexity
of x 7→ ||y−Φx||22, all minimizers of (1) share the same image
under Φ. Therefore any minimizer of (1) takes the form x?+h
where h ∈ ker(Φ). Furthermore, it can be shown by arguments
from convex analysis that any proper convex function R has
a unique minimizer x? (if any) over a convex set C if its
directional derivative satisfies

R′(x?;x− x?) > 0, x ∈ C, x 6= x? .

Applying this to (1) with C = x?+ker(Φ), and using the fact
that the directional derivative is the support function of the
subdifferential, we get that x? is the unique minimizer of (1)
if, and only if, ∀ h ∈ ker(Φ) \ {0}

0 < R′(x?;h) = sup
v∈∂R(x?)

〈v, h〉

= sup
α∈∂||·||A(L∗x?)

〈α, L∗h〉

= 〈e, L∗Th〉+ sup
||αS ||∗A61

〈αS , L∗Sh〉

= 〈e, L∗Th〉+ ||L∗Sh||A .

We conclude using symmetry of the norm and the fact that
ker(Φ) is a subspace.

B. Proof of Corollary 1

The source condition (SCx? ) implies that ∀ h ∈ ker(Φ)\{0}

〈h, Lα〉 = 〈h, Φ∗η〉 = 〈Φh, η〉 = 0 .

Moreover

〈h, Lα〉 = 〈L∗h, α〉 =〈L∗Th, e〉+ 〈L∗Sh, αS〉 .

Thus, applying the dual-norm inequality we get

〈L∗Th, e〉 6 ||L∗Sh||A||αS ||∗A < ||L∗Sh||A ,

where the last inequality is strict since L∗Sh does not vanish
owing to (INJT ), and ||αS ||∗A < 1.

C. Proof of Corollary 2

We follow the same lines as the proof of Corollary 1 and
get

〈L∗h, α〉 = 〈L∗Th, e〉+ 〈L∗V h, αV 〉+ 〈L∗Wh, αW 〉 .

We therefore obtain

〈L∗Th, e〉 6 ||L∗V h||A||αV ||∗A + ||L∗Wh||A||αW ||∗A
< ||L∗V h||A + ||L∗Wh||A = ||L∗Sh||∗A ,

where we used that h /∈ ker(L∗V ), ||αV ||∗A < 1, separability
and ||αW ||∗A 6 ||αV ||∗A + ||αW ||∗A = ||αS ||∗A 6 1.

D. Proof of Theorem 2

We first define the Bregman distance/divergence.

Definition 4. Let DR
s (x, x0) be the Bregman distance associ-

ated to R with respect to s ∈ ∂R(x0),

DR
s (x, x0) = R(x)−R(x0)− 〈s, x− x0〉 .

Define DAα (u, u0) as the Bregman distance associated to || · ||A
with respect to α ∈ ∂|| · ||A(u0).

Observe that by convexity, the Bregman distance is non-
negative.
Preparatory lemmata We first need the following key
lemmata.

Lemma 1 (Prediction error and Bregman distance convergence
rates). Suppose that (SCx0 ) is satisfied. Then, for any mini-
mizer x? of (1), and with λ = cε for c > 0, we have

DR
Φ∗η(x?, x0) = DAα (L∗x?, L∗x0) 6 ε

(1 + c||η||2/2)2

c
,

||Φx? − Φx0||2 6 ε(2 + c||η||2) .

The proof follows the same lines as that for
any sublinear regularizer, see e.g. [9], where we
additionally use the source condition (SCx0 ) and
DR

Φ∗η(x, x0) = DR
Lα(x, x0) = DAα (L∗x, L∗x0).

Now since || · ||A is a norm, it is coercive, and thus

∃ CA > 0 s.t. ∀x ∈ RP , ||x||A > CA||x||2.



We get the following inequality.

Lemma 2 (From Bregman to `2 bound). Suppose that (SCx0 )
holds with ||αS0 ||∗A < 1. Then,

||L∗S0
(x? − x0)||2 6

DAα (L∗x?, L∗x0)
CA (1− ||αS0 ||∗A)

,

Proof: Decomposability of || · ||A implies that ∃v ∈ S0

such that ||v||∗A 6 1 and ||L∗S0
(x?−x0)||A = 〈L∗S0

(x?−x0), v〉.
Moreover, v + e0 ∈ ∂|| · ||A(L∗x0). Thus

DAα (L∗x?, L∗x0) > DAα (L∗x?, L∗x0)
−DAv+e0(L∗x?, L∗x0)

= 〈v + e0 − α, L∗(x? − x0)〉
= 〈v − αS0 , L

∗
S0

(x? − x0)〉
= ||L∗S0

(x? − x0)||A
−〈αS0 , L

∗
S0

(x? − x0)〉
> ||L∗S0

(x? − x0)||A(1− ||αS0 ||∗A)
> CA||L∗S0

(x? − x0)||2(1− ||αS0 ||∗A) .

Proof of the main result

||x? − x0||2 6 ||Pker(L∗S0
)(x? − x0)||2

+||PIm(L∗S0
)(x? − x0)||2

6 CΦ
−1||ΦPker(L∗S0

)(x? − x0)||2
+||PIm(L∗S0

)(x? − x0)||2
6 CΦ

−1||Φ(x? − x0)||2
+(1 + CΦ

−1||Φ||2,2)||PIm(L∗S0
)(x? − x0)||2 ,

where we used assumption (INJT0 ), i.e.,

∃ CΦ > 0 s.t. ||Φx||2 > CΦ||x||2, ∀x ∈ ker(L∗S0
) .

Since L∗S0
is injective on the orthogonal of its kernel, there

exists CL > 0 such that

||x? − x0||2 6 CΦ
−1||Φ(x? − x0)||2

+ ||Φ||2,2+CΦ
CLCΦ

||L∗S0
PIm(L∗S0

)(x? − x0)||2 .

Noticing that

||L∗S0
(x? − x0)||2 = ||L∗S0

PIm(L∗S0
)(x? − x0)||2,

we apply Lemma 2 to get

||x? − x0||2 6 CΦ
−1||Φ(x? − x0)||2

+ ||Φ||2,2+CΦ

CLCΦ(1−||αS0 ||
∗
A)D

A
α (L∗x?, L∗x0) .

Using Lemma 1 yields the desired result.

E. Proof of Corollary 3

Take α = e0 + Γe0 + ūS0 + (LS0)+Φ∗z̄. First, αT0 = e0

since e0 ∈ T0 and Im(Γ) ⊆ Im((LS0)+) = Im(L∗S0
). Then

||αS0 ||∗A = ICū,z̄(T0, e0) < 1, whence we get that α ∈ ∂|| ·
||A(L∗x0).

Now, we observe by definition of Ξ that Pker(L∗S0
)(Φ∗ΦΞ−

Id)LT0 = 0, which implies that Im((Φ∗ΦΞ − Id)LT0)) ⊆
Im(LS0). In turn, LS0Γ = LS0(LS0)+ ((Φ∗ΦΞ− Id)LT0) =
PIm(LS0 ) ((Φ∗ΦΞ− Id)LT0) = (Φ∗ΦΞ − Id)LT0 . This, to-
gether with the fact that ū ∈ ker(LS0) and Φ∗z̄ ∈ Im(LS0)
yields

LS0α = (Φ∗ΦΞ− Id)LT0e0 + Φ∗z̄
= Φ∗η − LT0α ⇐⇒ Φ∗η = Lα ,

which implies that Φ∗η = Lα ∈ ∂R(x0). We have just shown
that the vectors α and η as given above satisfy the source
condition (SCx0 ) and the dual non-saturation condition. We
conclude by applying Theorem 2 using (INJT0 ).

V. CONCLUSION

We provided a unified analysis of the structural properties of
regularized solutions to linear inverse problems through a class
of semi-norms formed by composing decomposable norms
with a linear operator. We provided conditions that guarantee
uniqueness, and also those ensuring stability to bounded noise.
The stability bound was achieved without requiring (even
partial) recovery of T0 and e0. Recovery of T0 and e0 for
analysis-type decomposable priors and beyond is currently
under investigation. Another perspective concerns whether the
`2 bound on x? − x0 can be extended to cover more general
low complexity-inducing regularizers beyond decomposable
norms.
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