
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2012/M29230

April 2013, Incheon (KR)

Source Telecom ParisTech

Status For consideration at the 104
nd

 MPEG meeting

Title GPAC Updates on ISOBMF

Author Jean Le Feuvre, Cyril Concolato

1 Introduction
This contribution introduces some of the latest developments in GPAC [1], especially on the

content production side. Comments and feedback are always warmly welcome !

2 HEVC Support
In the context of the 4Ever [2] project, support for HEVC has been added to GPAC according to

the latest version of the latest HEVC specs and associated transport standards. The playback

support is powered by the open-source OpenHEVC decoder [3]. The following are supported:

Multiplexing HEVC bitstreams into ISOBMF

All profiles should be supported, interlace is not supported yet. The support is based on the study

text of HEVC file format.

Operation Command line example Notes

HEVC

Import

MP4Box -add file.hvc -new file.mp4

Adds file.hvc (Annex B

format) to the given file.

The default import format

uses “hvc1” storage.

MP4Box -add file.bin:FMT=HEVC -new

file.mp4

FMT is used to indicate the

format is HEVC, and can be

omitted if the file extension is

hvc, hevc or 265

MP4Box -add file.hvc:fps=50 -new

file.mp4

FPS is by default 25, and

should be specified most of

the time as VUI timing is not

yet parsed.

HEVC MP4Box -info file.mp4 Gives info on the file or on

File

inspection

MP4Box -info ID file.mp4

the track.

HEVC

Export

MP4Box –raw <trackId> file.mp4 Exports an HEVC file to

annex B format.

HEVC DASH

All DASH operations from GPAC (client and MP4Box) are supported on HEVC, including

bitstream switching modes using hev1. For more information on DASH and GPAC please refer

to GPAC web site [1].

MPEG-2 TS support

All MPEG-2 TS operations from GPAC (client and MP42TS) are supported on HEVC. MP42TS

can be used to generate TS files usable for DASH or for injection in modulation chains; it can

also be used to send the TS over an UDP or RTP stream in unicast or multicast mode.

3 SVC Support
In the context of the OptiSaT2 [4] project, extended support for SVC has been added to GPAC.

The playback support is powered by the open-source OpenSVC decoder [5]. The following are

supported:

Splitting SVC layers into ISOBMF

SVC can now be imported in ISOBMF files with one track per layer, using Extractors to base

layers. The syntax used is as follows:

Operation Command line example Notes

SVC

Import

MP4Box -add file.avc:svcmode=split -

new file.mp4

Adds file.avc (Annex B

format) to the given file.

Each SVC layer is stored in a

given track.

The same command can be

used with an ISOBMF input

to split an already imported

file.

MP4Box -add file.avc:svcmode=merged -

new file.mp4

Adds file.avc (Annex B

format or ISOBMF) to the

given file. All SVC layers are

stored in a single track.

MP4Box -add file.avc:svcmode=splitbase

-new file.mp4

Adds file.avc (Annex B

format or ISOBMF) to the

given file. All SVC layers are

 stored in a single track but the

AVC base layer is stored in a

different track.

MPEG-2 TS Encapsulation

SVC can now be imported in MPEG-2 TS one PID per layer, using ISOBMF files where each

SVC tracks are in different layers. No specific option is required for the MP42TS utility.

RTP streaming and hinting Encapsulation

SVC files can now be hinted or streamed over RTP using MP4Box, with one RTP stream PID

per layer, using ISOBMF source files where each SVC tracks are in different layers. No specific

option is required for the MP4Boxutility.

Improved SVC Playback

Thanks to the OpenSVC decoder, all these SVC transport modes are now supported for playback

in GPAC. Switching between layers is achieved using ctrl+h (for high) and ctrl+l (low). SVC

Switching now implies shutting down the associated network streams (stops multicast socket or

PID filtering).

SVC Future Work

We plan to introduce SVC in DASH support in both MP4Box and the player for the next MPEG

meeting.

4 WebVTT Support
MP4Box now supports basic operations on WebVTT files according to the ISO/IEC 14496-30

DIS and ISO/IEC 14496-12:2012/DAM2. Different files have been tested (regular movie files,

chapter files with nested cues, metadata files with XML, and some files with invalid syntax).

Here are the basic operations:

Operation Command line example Notes

WebVTT

Import

MP4Box -add file.vtt file.mp4

Adds a track to the given file:

 Overlapping cues are split

into non-overlapping cues

and stored in samples

 Comments and in-

between cues text are

ignored (for now)

MP4Box -add

file.vtt:lang=en:layout=800x600x100x100

file.mp4

Sets the language and track

layout information

MP4Box -add file.vtt:delay=1000

file.mp4

Adds an edit list

MP4Box -add file.vtt:dur=20 file.mp4

Import only a certain duration

of the input file

SRT

Import as

WebVTT

track

MP4Box -add file.srt:FMT=VTT file.mp4 Forces the import of SRT

files to generate a WebVTT

track instead of a 3GPP

Timed Text track

WebVTT

Export

MP4Box –raw <trackId> file.mp4 Exports a WebVTT file

where consecutive cues from

different samples and with the

same id, settings and payload

are merged

MP4Box –raw <trackId>:vttnomerge

file.mp4

Dump samples as-is w/o

merge, and with empty

samples

MP4Box –raws <trackId>:<sampleNumber>

file.mp4

 Exports only one VTT

sample

File

Editing

MP4Box –split-chunk start:end file.mp4

Split a track into 2 files

MP4Box –cat file1.mp4 –cat file2.mp4

file3.mp4

Concatenation of tracks

(second header is ignored)

DASH MP4Box –frag 1000 file.mp4

MP4Box –dash 1000 file.mp4 Fragments and segments the

file and produces an MPD

containing:
<Representation

id="1"

mimeType="video/mp4"

codecs="wvtt"

width="800"

height="600"

startWithSAP="1"

bandwidth="1939">

RTP MP4Box –hint file.mp4 Not working yet

The parsing of WebVTT files is meant to be conformant to the parsing algorithm as specified in

the W3C specification, with the following refinements for carriage in ISOBMF:

 The WebVTT signature line and the lines gathered in the header loop of the parsing

algorithm are both stored in the configuration string of the PlainTextSampleEntry.

 It is not clear from the standard if U+000D CARRIAGE RETURN U+000A LINE FEED

(CRLF) pairs and single U+000D CARRIAGE RETURN characters should be replaced

by U+000A LINE FEED characters or not before storage. Additionally, in both cases, it

is not clear if the CueIDBox, the CueSettingsBox and the CuePayloadBox should contain

the trailing LF caracters. In the current implementation, MP4Box:

o Does not replace U+0000 NULL characters by U+FFFD REPLACEMENT

CHARACTERs, NULL characters are not handled;

o Does not replace CRLF or CR by LF; and

 Does not store trailing CRLF characters in CueIDBox and

CueSettingsBox boxes. The leading space separating the timings from the

settings is not stored either in the CueSettings box.

 Does keep and store a trailing LF at end of the signature line and at the

end of each header and cue payload lines.

Boxes such as CueSourceIDBox, CueLocalIDBox, CueEndTimeBox, CueStartTimeBox are not

supported, as they are not needed.

The CueTimeBox is supported in reading/writing but not generated during parsing nor exploited

during export, yet.

5 Generic formatting tools for testing new tracks types and sample
formats

MP4Box has featured since its early days the ability to import unknown media formats through

the NHML XML description. The NHML language has been extended to add custom data for

both STSD extension and sample format. This means that it is possible to construct STSD and

sample formats for new media types through a simple description. The following example shows

how font data stream (cf contribution m29226) have been tested in GPAC.

<?xml version="1.0" encoding="UTF-8" ?>

<NHNTStream version="1.0" timeScale="1000" trackID="1" mediaType="fdsm" mediaSubType="fnt1">

<DecoderSpecificInfo>

<BS id="size" bits="32" value="24"/> <!-- box size is 4+4+3+strlen(TriodPostnaja)-->

<BS id="type" fcc="fntC"/>

<BS id="fontFormat" bits="7" value="1"/>

<BS id="storeFont" bits="1" value="0"/>

<BS id="fontName" bits="8" text="TriodPostnaja"/>

<BS id="fontSubsetID" bits="7" value="1"/>

<BS id="reserved" bits="1" value="1"/>

</DecoderSpecificInfo>

<NHNTSample DTS="0" isRAP="yes">

<BS id="fontFormat" bits="7" value="1"/>

<BS id="storeFont" bits="1" value="0"/>

<BS id="fontName" bits="8" text="TriodPostnaja"/>

<BS id="fontSubsetID" bits="7" value="2"/>

<BS id="fontSubsetExtensionFlag" bits="1" value="1"/>

<BS id="fontSpecInfoLength" bits="8" value="0"/>

<BS id="fontData" mediaFile="TriodPostnaja_subsets/TriodPostnaja_CyrillicCaps.ttf" />

</NHNTSample>

…

</NHNTStream>

For the current time, box size has to be precomputed, but a future version will include new type

to describe boxes.

References
[1] GPAC, http://gpac.sourceforge.net

[2] 4Ever Project, http://www.4ever-project.com/

[3] OpenHEVC, https://github.com/OpenHEVC/openHEVC

[4] OptiSat2 Project, http://www.optisat2.com/

[5] OpenSVCDecoder Project, http://sourceforge.net/projects/opensvcdecoder/

http://gpac.sourceforge.net/
http://www.4ever-project.com/
https://github.com/OpenHEVC/openHEVC
http://www.optisat2.com/
http://sourceforge.net/projects/opensvcdecoder/

