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ABSTRACT 

 

In this paper, a new spatio-temporal saliency model is 

presented. Based on the idea that both spatial and temporal 

features are needed to determine the saliency of a video, this 

model builds upon the fact that locally contrasted and 

globally rare features are salient. The features used in the 

model are both spatial (color and orientations) and temporal 

(motion amplitude and direction) at several scales. To be 

more robust to moving camera a module computes the 

global motion and to be more consistent in time, the 

saliency maps are combined together after a temporal 

filtering. The model is evaluated on a dataset of 24 videos 

split into 5 categories (Abnormal, Surveillance, Crowds, 

Moving camera, and Noisy). This model achieves better 

performance when compared to several state-of-the-art 

saliency models. 

 
Index Terms— Visual attention, Saliency, Rarity Mechanism, 

Optical Flow 

 

1. INTRODUCTION 

 

The aim of visual saliency models is to automatically 

predict human attention. The term attention refers to the 

process that allows one to focus on some stimuli at the 

expense of others and has been introduced in [1], [2]. 

Human attention mainly consists of bottom-up and top-

down processes. Bottom-up attention uses features extracted 

from the signal to find the most salient objects. Top-down 

attention uses a priori knowledge about the scene or task-

oriented knowledge in order to modify the bottom-up 

saliency. This domain is a very active area due to several 

important applications such as gaze prediction [3], content 

aware compression [4], video retargeting [5], and video 

summary [6]. The general idea of saliency models is that 

rare, novel or surprising information is salient. The objective 

of those models is to identify unusual features in a given 

spatio-temporal context like in [7], [8], [9], [10], [11], [12], 

 [13], [14], [15], [16]. In this paper, the 

models [12], [13], [14], [15], [16] has been chosen for the 

comparison. 

Seo and Milanfar proposed a framework for static and 

space-time saliency detection [12]. Their saliency model is 

based on the comparison of a local window centered on a 

pixel location and its neighboring windows. The temporal 

aspect is taken into account by defining windows as spatio-

temporal cubes. In [13], Culibrk et al. introduced a model 

based on motion and simple static cues. More precisely, a 

multi-scale background modeling and foreground 

segmentation is carried out. This model employs the 

principles of multi-scale processing, cross-scale motion 

consistency, outlier detection and temporal coherence. 

Zhang et al. proposed a Bayesian framework for saliency 

detection called SUN [14]. Their approach is based on the 

assumption that visual saliency is the probability of a target 

at every location given the visual features observed. Mancas 

et al. considered in [15] the use of dynamic features, while 

static cues such as color and textures are not taken into 

account. More specifically, the approach is based on motion 

features extraction, spatio-temporal filtering and rare motion 

extraction. The RARE saliency model is introduced in [16]. 

The idea is to find areas in the frame exhibiting features, 

which are rare and contrasted with the others, and to assign 

them a higher saliency value. However, in [16], the RARE 

algorithm is implemented using only static features, such as 

colors and orientations, but ignoring dynamic features. 

The proposed method is built upon [15],[16]. As both 

temporal and spatial features are important, we propose here 

to integrate dynamic features to the static model presented 

in [16]. This new model is referred to as Spatio-Temporal 

RARE (ST-RARE). More precisely, motion amplitude and 

direction, which can efficiently represent temporal 

information, are added to color and orientation to have a 

more accurate saliency map and better temporal robustness. 

These information are also used to perform tracking and 

temporal filtering of the saliency maps. 

The paper is structured as follows. In Sec. 2, the 

proposed ST-RARE model is described in detail. Sec. 3 

provides an evaluation of the proposed model on a wide 

variety of videos against eye-tracking data. Finally, Sec. 4 

includes a discussion and conclusion. 

 



 

 

Fig.1. Overview of the ST-RARE saliency model. From top to down: (1) feature extraction, (2) multi-scale rarity mechanism, (3) fusion 

steps, and (4) tracking and temporal filtering (the static features are on the left while the dynamic features are on the right).  

2. SPATIO TEMPORAL RARE MODEL 

 

Fig.1 represents the proposed ST-RARE model. The 

proposed ST-RARE model combines spatial (SaliencyStatic) 

and temporal (Saliencydynamic) information to provide the 

map Saliency SD. The spatial module is similar to 

RARE [16] and the temporal module is one of the 

contributions of this paper. To have a better temporal 

robustness, tracking is used to combine SaliencySD at time 

t-1 and t to generate the final saliency map. 

 

2.1. Feature extraction  

 

Spatial features are computed in the CIE Lab colour space. 

This perceptually motivated colour space has the advantage 

to better decorrelate colour information. At this stage, a first 

pathway directly uses the CIE Lab colour transformation 

and computes the areas in the image containing the rarest 

colour. In parallel, a second pathway extracts orientation 

features by using Gabor filters with 8 orientations and 3 

scales. The decomposition at several scales is recombined in 

a single map for each orientation. The orientation maps are 

also fused together into a single map [16]. These two 

operations are denoted as fusion, just after the “Gabor filter” 

module in Fig.1.  

Temporal features are computed using the optical flow 

from [17] extracted from the luminance component. As the 

optical flow is computed pairwise, temporal coherence is 

not guaranteed. To reduce noise, a mean filter is temporally 

applied on both the horizontal and vertical directions of the 

optical flow. In the case of a moving camera, the 

background has a global motion, whereas other objects 

follow their own local motion. In order to better identify the 

salient moving objects, global motion is computed (as the 

average horizontal and vertical movements) and subtracted 

from the motion intensity obtained by optical flow. This pre-

processing is illustrated in Fig. 1. From the local motion two 

basic temporal features are extracted: the motion amplitude 

A and direction D, defined as: 

 

 

where and  are the vector components obtained by 

the optical flow.  These two temporal features are denoted in 

Fig. 1 as “Amplitude” and “Direction”.  

In summary, we have six spatial feature maps: three low-

level (which are the colours from the first path) and three 

medium-level (the orientation and texture information 

coming from the Gabor filters) and two temporal features 

maps: motion amplitude and direction. 

 

2.2. Multi-scale rarity mechanism 

This mechanism is the one used in [16]. A feature is not 

necessary salient alone, but only in a specific context. The 



mechanism of multi-scale rarity allows detecting both 

locally contrasted and globally rare regions in the image.  

First, for each feature map, a Gaussian Pyramid 

decomposition is built at four different scales. For each scale 

(for pixel neighbourhoods with increasing sizes), the 

occurrence probability p of the pixels is computed using 

histograms. Then, saliency is obtained by computing −log 

(p) where p is the occurrence probability of a feature map at 

a given scale. The −log (p) increases the saliency inside the 

rare regions for each feature,. Saliency will be higher for 

rare regions in the frame.  

Finally, the rarity maps of each scale are summed up and 

normalized to obtain a multi-scale contrast and rarity map 

per feature. As the input of this stage is a set of eight 

features, the output will consist in a set of eight rarity maps. 

 

2.3. Spatial and temporal combination 

 

The fusion is illustrated in the third part of Fig. 1. It is 

achieved in two main steps for the static pathway: an intra-

channel fusion followed by an inter-channel one. Indeed, 

first an intra-channel fusion is computed between colour and 

orientation rarity maps by providing a higher weight to the 

maps which have important peaks compared to their 

mean [18]. This process is named efficiency. This leads to 3 

final maps, one per colour channel. Second, an inter-channel 

fusion between these three maps uses the same principle of 

efficiency for computing weights for each map.  

As the temporal aspect in the saliency maps is one of our 

contributions, we propose for the dynamic pathway to do an 

intra-channel fusion between the amplitude and direction 

feature conspicuity maps.  

Next, a linear combination is applied between static and 

dynamic maps to obtain the following map: 

 

where 

 

 

Where  is the maximum of the saliency static 

and it is the same principle for the other parameters. 

Generally, if a frame contains slow motion, Saliencystatic will 

have a higher weight. Conversely, in the presence of fast 

motion, Saliencydynamic will become dominant.  
 

2.4. Temporal tracking 

 

The last step is the temporal tracking framework in order to 

improve temporal coherence and robustness, as shown in 

Fig. 1. A prediction of the saliency at time t, Saliencytracking, 

is obtained by motion compensation of the saliency at time 

t-1. The final saliency map is then obtained by a linear 

combination of the SaliencySD at time t and Saliencytracking,  

 

with a weighting factor  empirically set to 0.3. This 

approach provides a higher saliency value in temporally 

consistent regions and filters out noisy estimates, improving 

overall robustness.  

 

3. PERFORMANCE EVALUATION 

 

3.1. Dataset  

 

The ASCMN (Abnormal, Surveillance, Crowd, Moving, and 

Noise) video benchmark [19] is used for evaluation. It is 

composed of 24 videos separated into 5 categories: 

Abnormal with surprising motion objects, Surveillance with 

normal motion objects, Crowd with several crowd densities, 

Moving with moving camera, and Noise with long period of 

noise and sudden salient object. Ground truth has been 

computed for ASCMN with eye tracking data from 13 

viewers, acquired using a commercial FaceLab eye tracking 

system [20]. This system allows small head movements and 

is thus less intrusive than other eye tracking systems, 

making the viewer feel more comfortable. The viewers are 

PhD students and researchers ranging from 23 to 35 years 

old, both males and females. The eye gaze positions are 

recorded and superimposed on the initial video for all the 

viewers, as shown in the first column of Fig. 2.  

 

 

Fig. 2 Eye tracking results. First column: gaze positions, Second 

column: heatmap, Third column: thresholded heatmap  

 

 
Fig. 3 Visual results. First column: Original image, Second 

column: Saliency map (high saliency=high intensity), Third 

column: Heatmaps (superposition of the original image with the 

saliency map. high saliency=red). 



 

A Gaussian convolution is applied on subjects’ gaze 

positions to obtain a ”heatmap” which can also be 

superimposed on corresponding video frame (Fig. 2, second 

column). This post-processing step is useful in estimating 

the mean gaze density, eliminating the outliers and giving 

more importance to the focus points common to several 

users. Finally, depending on the metric used to assess the 

correspondence between the eye tracking results and an 

automatic saliency model, a thresholded version of the 

heatmap can be obtained (Fig. 2, third column). 

 

3.2. Metrics  

 

To compare the results of our approach with different 

models, three different metrics are used. The Area Under the 

ROC curves (AUROC) [21] focuses on saliency location at 

gaze positions. The Normalized Scanpath Saliency 

(NSS) [22] focuses on saliency values at gaze positions. KL-

Divergence [23] focuses on the discrepancy of saliency and 

gaze distributions. For AUROC and NSS, high scores 

indicate better performance. Conversely, low scores are 

better for KL-Divergence. 

 

3.3. Experimental results 

 

Fig. 3 presents experimental results for the same frames 

as in Fig. 2. On the first row, the man is salient and the 

object is well detected, although we observe a small position 

shift when compared to the eye tracking reference (Fig. 2). 

On the second row, the boat is well detected and our 

approach is not disturbed by the birds. Compared to the eye 

tracking data, our approach detects a bigger salient region 

which corresponds to the whole object. On the third row, 

people are well detected and fast objects are more salient, as 

in the eye tracking reference. On the fourth row, the main 

moving man is well detected but our approach gives 

additional salient regions corresponding to other moving 

people. Globally, we can see in these examples that our 

approach detects well salient regions.  

In Fig. 4, the sequences are evaluated with the metric 

proposed in Sec. 3.2. We can see that the proposed ST-

RARE has globally better results than the other algorithms 

with the AUROC and the NSS metric. With the KL-

Divergence, Seo [12] and Culibrk [13], obtain a better score 

due to a more precise distribution, but ST-RARE still 

reaches good performances. We can also observe that the 

proposed ST-RARE always outperforms the previous 

dynamic-only or static-only versions of RARE in [15] and 

[8] respectively.  

The proposed model clearly adapts efficiently to very 

different types of video with fast and slow motion. It 

reaches good scores for all the categories except for crowd. 

In this case, the ST-RARE algorithm detects the rarity of 

multiple local motions and gives importance to these parts.  

 

4. CONCLUSION AND FUTURE WORK 

 

In this paper, we proposed a new spatio-temporal saliency 

algorithm. It builds upon the RARE algorithm [8] by adding 

dynamic features. More specifically, a fusion algorithm 

takes into account both spatial and temporal maps. It also 

integrates a tracking module to improve accuracy and 

robustness. Experimental results show the relative efficiency 

of the proposed saliency approach when compared to five 

state-of-the-art models. 
The model adapts efficiently to various classes of video 

containing very different types of motion. It is possible to 

add other modules to our flexible framework in order to 

improve the motion model.  
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Fig. 4 Evaluation of ST RARE using AUROC (first row), NSS (second row) and KL-Divergence (third row) metrics. 
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