
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2012/M29231

April 2013, Incheon (KR)

Source Telecom ParisTech, Canon Research Centre France

Status For consideration at the 104
th

 MPEG meeting

Title Support for efficient tile access in the HEVC File Format

Authors Jean Le Feuvre, Cyril Concolato, Franck Denoual, Frédéric Mazé, Eric Nassor, Nael

Ouedraogo, Hervé Le Floch

1 Introduction
HEVC provides new coding tools compared to AVC that enable a decoder to partially decode

only a region of interest in a large video. The tool in HEVC for that purpose is called “tiles”.

This contribution shows that the efficient access to these tiles is not possible using the current

HEVC file format. This contribution first describes the HEVC concepts related to tiles and then

investigates how to describe these tiles using existing File Format tools and finally proposes new

tools, based on extractors, to efficiently access them for the HEVC file format. Additional use

cases in particular in the context of DASH are given in contribution m29232.

2 HEVC Tiling
HEVC (JCTVC-L1003) defines different spatial subdivision of pictures: tiles, slices and slice

segments. These have been introduced for different purposes: the slices are related to streaming

issues while the tiles and the slice segments have been defined for parallel processing.

A tile defines a rectangular region of a picture that contains an integer number of Coding Tree

Units (CTU). The tiling is only defined by row and column boundaries as depicted on Figure 1.

Figure 1: Picture partitioning into tiles

By looking at this figure, we clearly see that tiles are good candidates to represent regions of

interests. However, the bitstream organization in terms of syntax and its encapsulation into

Network Abstract Layer (NAL) units is rather based on slices (as in AVC).

A slice in HEVC is a set of slice segments, with at least the first slice segment being an

independent slice segment, the others, if any, being dependent slice segments. A slice segment

contains an integer number of consecutive (in raster scan order) CTUs. It has not necessarily a

rectangular shape (thus less appropriate than tiles for ROI representation). A slice segment is

encoded in the HEVC bitstream as a slice_segment_header followed by slice_segment_data.

Independent slice segments and dependent slice segments differ by their header: the dependent

slice segment has a shorter header because reusing information from the independent slice

segment’s header. Both independent and dependent slice segments contain a list of entry points

in the bitstream: either to tiles or to entropy decoding synchronization points.

To better understand the relationships between slice, slice segments and tiles, we illustrate

different configurations below. These configurations differ from the previous figure that

corresponds to a case where 1 tile has 1 slice (containing only 1 independent slice segment). On

the left side of Figure 2, the picture is partitioned in 2 tiles and 1 slice (with 5 slice segments).

On the right the picture is split in 2 tiles, the left tile having 2 slices (each with 2 slice segments),

the right tile having 1 slice (with 2 slice segments). The HEVC standard defines organization

rules between tiles and slice segments that can be summarized as follows (one or both conditions

have to be met):

- All CTUs in a slice segment belong to the same tile.

- All CTUs in a tile belong to the same slice segment

tile

boundary

Figure 2: Different tile/slice configurations

While the tile is the appropriate support for regions of interest, the slice segment is the entity that

will be actually put in NAL units for transport on the network and aggregated to form an access

unit (coded picture or sample at file format level). In HEVC, the type of NAL unit is specified in

the 2 bytes NAL unit header. For coded slice segment NAL unit, the slice_segment_header

indicates via the slice_segment_address syntax element the address of the 1
st
 coding tree block in

the slice segment. The tiling information is provided in a PPS (Picture Parameter Set) NAL unit.

The relation between a slice segment and a tile can then be deduced from these parameters.

While by definition, on tiles borders, the spatial predictions are reset, nothing prevents a tile to

use temporal predictors from a different tile in the reference frame(s). In order to build

independent tiles, we then constrain at encoding time the motion vectors for the prediction units

inside a tile to remain in the co-located tile in the reference frame(s). In addition, the in-loop

filters (deblocking and SAO) have to be deactivated on the tiles borders so that no error drift is

introduced when decoding only one tile. This control of the in-loop filters is already available in

HEVC and is set in slice segment header with the loop_filter_across_tiles_enabled_flag flag.

By explicitly setting this flag to 0, the pixels at the tiles borders won’t depend on the pixels on

the border of the neighbor tiles. When the 2 conditions on motion vectors and on in-loop filters

are met, we then talk about “independently decodable tiles” or “independent tiles”.

When a video sequence is encoded as a set of independent tiles, it then enables a tile-based

decoding from one frame to another without any risk for missing reference data or propagation

of reconstruction errors. This configuration then enables to reconstruct only a spatial part of the

original video, for example corresponding to a region of interest. It can be useful to indicate as

supplemental information of a video bitstream that this configuration has been used so that tile-

based decoding is reliable. This is one object of the contribution JCTVC-L0049 from

InterDigital.

3 Review of existing tools
The current ISOBMFF and AVC/SVC FF offer several tools that could potentially be used for

describing and accessing HEVC tiles. These tools are:

- Subsamples

- Subsegments

- Extractors

3.1 Subsample Information

Subsample information, as illustrated in Figure 3, allows describing the structure of a sample,

typically as a contiguous set of NALUs with the same properties. It provides sufficient

information for on-demand subsample retrieval/decoding, for example to access NALU

corresponding to the slice segments of a given tile in a sample.

Figure 3 - Subsample information in movie fragments

In a client/server scenario, once subsample information is known at the client side, subsample

byte ranges can be aggregated in one or several HTTP requests to retrieve only the needed part.

This complicates the download, as only the “moof” box should be downloaded first to figure out

the interesting parts of the samples in the associated “mdat” box; for each movie fragment in the

DASH session, a reader has to issue a byte-range request large enough to include the “moof”

box (or stops downloading once the “moof” box is received), and then issue NxK byte ranges in

HTTP partial requests, where N is the number of samples in the “moof” box and K is the number

of requested subsamples (e.g. NALUs corresponding to slice segments carrying tiles of

interests). The situation gets even more complex and heavy when several movie fragments are

present in one media segment. This creates a strong dependency between the media downloader

and the media parser.

Furthermore, subsample information provides data partitioning of each sample but does not

associate any meta-data with the subsample. If a predefined pattern is used for each sample, i.e.

that the n-th NALU of each sample belongs to the same tile, it would be possible to extract only

the NALU for a given tile. However, predefined patterns are not convenient practically, as

encoders will typically produce a variable number of NALU per tile per sample and possibly in a

different order for independently coded tiles. A possible solution is then to use MapGroups as

defined in SVC file format, and defining how groups and tiers can be used for HEVC. There is

currently no way to associate a given sample/sub-sample to a tile and this is proposed below.

3.2 Data Partitioning for DASH
Another tool for data partitioning introduced during the development of the DASH standard is

the level assignment and subsegment-indexing tool. Samples within a file can be tagged to

belong to different groups or different sub-tracks; these tags can then be assigned to different

levels, which in turn can be used to describe contiguous byte ranges within one or several movie

fragments (“moof” and associated “mdat” boxes) using the “ssix” box. Figure 4 illustrates how

temporal IDs of an AVC stream may be mapped to different levels, thereby allowing all frames

of the lower level to be downloaded in one byte-range request while skipping other levels.

Figure 4 - Possible Level assignment for temporal layers of AVC

However, the level assignment does not allow for sub-sample data partitioning: it works at the

track level and would only work for separation of HEVC temporal sub-layers from base layer,

not for tiles.

3.3 SVC Data Partitioning
The SVC File format defines a very efficient tool for partitioning of SVC samples, by means of

Extractors which replaces a NALU whose syntax and semantics are specific to the file format by

another NAL unit (or set of) from another sample in another track. This allows for example

storing SVC regions in independent tracks, as illustrated in Figure 5.

Figure 5 - Storage of SVC files in independently decodable tracks

Such a design allows very efficient HTTP fetching of SVC regions without requiring a complex

DASH access engine, as each region can be stored in a single track or file and use existing

DASH mechanisms, such as sub-representations or dependent representation, to be retrieved.

However, this tool is very specific to SVC and needs modifications for HEVC.

4 Proposal
Based on the previous analysis of the existing file format tools, this contribution proposes new

tools to satisfy the above use cases:

- The first tool (in section 4.1) consists in new sample groups used for identifying NALU

belonging to a given tile.

- The second tool (in section 4.2) is the usage of extractors in the HEVC file format, using

the same approach as the extractor already defined in part 15. This extractor is designed

to be forward compatible with possible extensions needed for multi-view or scalable

works deriving from HEVC. The notion of extractor is also refined with the notion of

sub-layer tracks in HEVC file format, capable of containing temporal or spatial data in a

dedicated track.

Finally, we propose (in section 4.3) a simplification for constant sample (or sub-sample) to group

association in a file, which has a broader scope than this proposal.

4.1 TileRegion Sample Grouping

4.1.1 Overview

A high-level view of the tile grouping mechanism for an HEVC track is provided in Figure

6Erreur ! Source du renvoi introuvable.. It shows a possible usage of the new proposed

sample group descriptions to define mapping between tiles and NAL units.

Each tile in the grid of tiles is described by a group description of type ‘trsg’ (for

TileRegionSampleGroupEntry). A single SampleGroupDescriptionBox is used to gather all the

tile descriptions. An HEVC sample can be described as a set of NALUs, through a grouping

description of type ‘tlnm’ (for TileNALUMapEntry) giving the tile to NALU mapping. Each tile

is assigned a unique identifier in the sample group description box, called tileID, which is used

in the TileNALUMapEntry to associate a NAL unit to a tile.

Note: the ‘sgpd’ box of type ‘trsg’ may not be referenced from an ‘sbgp’ box directly. This may

happen if all samples are associated with description by default grouping or if the association is

given indirectly by the entries that have tileID values also used in the ‘sgpd’ box of type ‘tlnm’.

Figure 6 - Usage of tile group description in an HEVC track

4.1.2 Tile Region Sample Group Entry
Group Types: ‘trsg’
Container: Sample Group Description Box (‘sgpd’)
Mandatory: No
Quantity: Zero or more, depending on the number of tiles in the HEVC bitstream

Syntax

class TileRegionSampleGroupEntry() extends VisualSampleGroupEntry ('trsg')

{

 unsigned int(16) tileID;

 unsigned int(16) horizontal_offset;

 unsigned int(16) vertical_offset;

 unsigned int(16) region_width;

 unsigned int(16) region_height;

 unsigned int(2) independent;

 unsigned int(6) reserved=0;

}

Semantics

tileID is a unique identifier for the tile described by this group. Value 0 is reserved for special use in the

‘tlnm’ box.
horizontal_offset and vertical_offset give respectively the horizontal and vertical offsets of the

top-left pixel of the rectangular region represented by the tile, relative to the top-left pixel of the HEVC frame, in
luma samples of the base region.
region_width and region_height give respectively the width and height of the rectangular region

represented by the tile, in luma samples of the HEVC frame.

independent specifies that this tile has decoding dependencies only to the same tile in other samples as

explained in section 2 (definition of independent tiles), as follows:
- If independent equals 0, the coding dependencies between this tile and other tiles in the same frame

or previous frames is unknown,
- If independent equals 1, there are no spatial coding dependencies between this tile and other tiles in

the same frame, no temporal dependencies between this tile and the other tiles with different tileID in
any reference frames but there can be coding dependencies between this tile and the tile with the
same tileID in the reference frames,

- If independent equals 2, there are no coding dependencies between this tile and other tiles with the
same tileID in the same frame or in previous frames,

- Value 3 is reserved.

4.1.3 TileNALUMap Entry
Group Type: ‘tlnm’
Container: Sample Group Description Box ('sgpd')
Mandatory: No
Quantity: Zero or More

Each sample is associated with a group_description_index in the SampleToGroupBox with grouping_type
‘tlnm’. A SampleGroupDescriptionBox with grouping_type ‘tlnm’ contains a TileNALUMapEntry for each

group_description_index.

class TileNALUMapEntry() extends VisualSampleGroupEntry ('tlnm') {

 unsigned int(6) reserved = 0;

 unsigned int(1) large_size;

 unsigned int(1) rle;

 if (large_size) {

 unsigned int(16) entry_count;

 } else {

 unsigned int(8) entry_count;

 }

 for (i=1; i<= entry_count; i++)

 if (rle) {

 if (large_size) {

 unsigned int(16) NALU_start_number;

 } else {

 unsigned int(8) NALU_start_number;

 }

 }

 unsigned int(16) tileID;

 }

}

Semantics

large_size indicates whether the number of NAL units entries in the track samples is represented on 8 or

16 bits.
rle indicates whether run-length encoding is used (1) to assign tile identifiers to NAL units or not (0).

entry_count specifies the number of entries in the map. Note that when rle is equal to 1, the

entry_count corresponds to the number of runs where consecutives NAL units are associated with the same

tile. When rle is equal to 0, entry_count represents the total number of NAL units.

NALU_start_number is the 1-based NALU index in the sample of the first NALU in the current run

associated with tileID.
tileID is a unique identifier for the tile described by this group. If 0, no tile is associated to these identified

NALUs.

4.2 HEVC Extractors and sub-layer tracks

4.2.1 Overview

In the previous example shown in Figure 6, all NALUs of all tiles are stored in the same track,

which makes accessing an individual tile difficult. The extractors concept and the derived sub-

layer concept can be used to improve that.

Figure 7Erreur ! Source du renvoi introuvable. illustrates the sub-layer track proposal for the

use case of tiling. In this figure, a file contains N+1 tracks: a main track corresponding to the

whole video and N tracks each corresponding to a different independently coded tile in the

video. Each tile track contains the NAL units carrying the tile information. The track

corresponding to the entire video contains general information (SPS, PPS, VPS …) and extractor

NALU pointing to the tile tracks. A track reference of type ‘subl’ is added to the main track

indicating that it references sub-tracks.

Additionally, each tile track uses the ‘trsg’ box (as defined in 4.1) to indicate the spatial part of

the main track to which it corresponds.

Figure 7 - Sub-layer tracks for HEVC

In Figure 7Erreur ! Source du renvoi introuvable., the tile tracks cannot be processed

individually since some needed information is contained in the main track (e.g. SPS, PPS …).

The proposal also includes provision for being able to process a tile track individually, as

illustrated in Figure 8. In this case, the tile track uses extractors to retrieve the missing

information from the main track and an ‘hbas’ track reference is introduced. In case multiple

independently decodable tracks are present, selection of the track to display is up to the

implementation.

Figure 8 - Subsequence extraction through sub-layer tracks

4.2.2 HEVC Extractor specification text

We propose to extend the semantics of extractors as follows:

Replace
« NALUnitHeader(): the first four bytes of SVC and MVC VCL NAL units. nal_unit_type shall be set to the

extractor NAL unit type (type 31). »

By
« NALUnitHeader(): For an SVC or MVC extractor, the first four bytes of SVC and MVC VCL NAL units.

nal_unit_type shall be set to the extractor NAL unit type (type 31). For an HEVC extractor, the first two bytes of
HEVC VCL NAL. nal_unit_type shall be set to the HEVC extractor NAL unit type (type 47). »

Add the following in the semantics:
« For an extractor referencing HEVC NAL units, the following shall apply:

forbidden_zero_bit shall be set as specified in ISO/IEC 23008-2.

nal_unit_type shall be set to 47.

nuh_layer_id and nuh_temporal_id_plus1 shall be copied from the first NALU referenced by this extractor. An

extractor in an HEVC track referencing HEVC nal units shall not reference several NAL units with different
nuh_layer_id and nuh_temporal_id_plus1 values.
sample_offset shall be set to 0. »

In the definition of extractor, change
« An extractor contains an instruction to extract data from another track, which is linked to the track in which

the extractor resides, by means of a track reference of type 'scal'. »

with
« An extractor contains an instruction to extract data from another track, which is linked to the track in which

the extractor resides, by means of a track reference of type 'scal' for SVC and MVC tracks, and of type ‘subl’

for HEVC.»

Change
« The bytes are copied only from the single identified sample in the track referenced through the indicated
‘scal’ track reference. »

with

« The bytes are copied only from the single identified sample in the track referenced through the indicated
‘scal’ (for SVC or MVC) or ‘subl’ (for HEVC) track reference. »

4.2.3 HEVC Sub-layer specification text

We propose the following modifications to the HEVC file format specification:

In 8.1 add the following in the list of tools for supporting HEVC contents :
« - sub-layer tracks and extractors allowing to group layered data, whether temporal or spatial, in dedicated
tracks »

In 8.4.1.1, add the following:
« In order to form the intended HEVC stream, HEVC Extractors as defined in Annex A, if present, shall be
replaced with the data they are referencing. Decodable sub-set(s) of the HEVC bitstream may be obtained by
ignoring some Extractors pointing to independent tiles or temporal sub-layers.»

Add a new subsection to the HEVC file format specification:
“8.X Sub-layer tracks

Sub-layer tracks are tracks containing parts of an HEVC coded sequence that can be discarded without
harming the decoding process of other HEVC NAL units, i.e. discardable sub-samples as defined in 8.4.8 or
sub-samples belonging to an independent TileRegion sample group entry. Such sub-samples are referred from
the HEVC non-sub-layer track using extractors. Other types of sub-samples shall not be stored in sub-layer
tracks. Meta-data associated with samples and sub-samples, such as sync flags or sample to group maps,
may be set in the sub-layer track, but are overridden by corresponding meta-data associated with the
corresponding extractor(s) in the base HEVC track.
HEVC tracks using references to sub-layers shall have a track reference of type ‘subl’ to the referred sub-layer
track(s).
A sub-layer track may be authored with extractors referring to the base track, in order to extract a valid HEVC
sequence from a file with multiple sub-layer tracks; in this case and only in this case, the sub layer track shall
have a track dependency of type ‘hbas’ to the base HEVC track.
”

In HEVC configuration record, replace the first reserved(6) bits by :

bit(1) sublayer_representation;
bit(5) reserved = ‘11111’b;

And add in the semantics:

“sublayer_representation : if set, indicates this HEVC track is a sub-layer track and does not contain the

complete HEVC bitstream. Tracks with sublayer_representation set to 1 shall have all fields in the associated
hvcC copied from the base HEVC track, except from:

- sublayer_representation which is set to 1

- numArrays which is set to 0 (i.e. sub-layer tracks shall not contain any NAL array in their configuration).”

4.3 Default Sample to Group Box

4.3.1 Overview

Sample groups provide an efficient and extensible tool to add meta-data to individual samples. It

is however possible that the given meta-data may be valid for all the samples of a given track;

specifically for the case of sub-layer tracks containing a single tile, a single

SampleGroupDescription of type ‘trsg’ could be specified in the sub-layer track, and used by

every sample in the track. To indicate that, each sample has to be flagged for such group(s),

which is quite inefficient. We therefore suggest allowing some sample groups to be marked as

“default”, i.e. valid for all samples. We suggest to use flags of the SampleGroupDescriptionBox

(full box) to describe this.

4.3.2 Specification text

In 8.9.3.2, replace

extends FullBox('sgpd', version, 0){

with

extends FullBox('sgpd', version, flags){ if ((version==1) || (version==2)) {

unsigned int(32) default_length; }

In 8.9.3.3, add the following:

“The following flags are defined for sgpd :
0x000001 sample-group-is-default: indicates that all samples in this track or in the current

fragment are assigned to this group. If several entries are defined in a default
SampleGroupDescriptionBox, all entries apply to all samples in the track or traf.”

5 Conclusion

We recommend adoption of the proposed tools in the HEVC file format.

