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ABSTRACT

Probabilistic modelling of non-stationary signals in the time-

frequency (TF) domain has been an active research topic re-

cently. Various models have been proposed, notably in the

nonnegative matrix factorization (NMF) literature. In this pa-

per, we propose a new TF probabilistic model that can rep-

resent a variety of stationary and non-stationary signals, such

as autoregressive moving average (ARMA) processes, uncor-

related noise, damped sinusoids, and transient signals. This

model also generalizes and improves both the Itakura-Saito

(IS)-NMF and high resolution (HR)-NMF models.

Index Terms— Probabilistic modelling, Non-stationary

processes, Time-frequency analysis, Source-filter models,

Nonnegative matrix factorisation.

1. INTRODUCTION

In the literature, several probabilistic models involving latent

components have been proposed for modelling TF represen-

tations of audio signals such as spectrograms. Such models

include NMF with additive Gaussian noise [1], probabilis-

tic latent component analysis (PLCA) [2], NMF as a sum

of Poisson components [3], and NMF as a sum of Gaussian

components [4]. Although they have already proved success-

ful in a number of audio applications such as source separa-

tion [2, 3] and multipitch estimation [4], most of these models

still lack of consistency in some respects. Firstly, they focus

on a magnitude or power TF representation, and simply ig-

nore the phase information. As a consequence, reconstruct-

ing a consistent TF representation, including the phase field,

often proves to be difficult [5, 6]. Secondly, these models

generally focus on the spectral and temporal dynamics, and

assume that all time-frequency bins are independent. This

assumption is not consistent with the existence of signal dy-

namics, because spectral dynamics always induces temporal

dependencies, and temporal dynamics always induces spec-

tral dependencies. In addition, further dependencies in the TF

domain may be induced by the TF transform, due to spectral

and temporal overlap between TF bins. In this paper, we ad-

dress this problem by introducing a new probabilistic model

called probabilistic time-frequency source-filter decomposi-

tion (PTFSFD), which aims to take both phases within TF

bins and correlations between TF bins into account. It con-

sists of a sum of source-filter models, where each component

is obtained (in the original time domain) by successively ap-

plying a multiplication and a convolution to a white noise.

The paper is structured as follows. The filter bank used to

compute the TF representation is introduced in Section 2. We

then show in Sections 3 and 4 how convolutions and multipli-

cations in the original time domain can be accurately imple-

mented in the TF domain. The PTFSFD model is introduced

in Section 5, and some examples are provided in Section 6.

Finally, conclusions are drawn in Section 7.

2. DEFINITION OF THE FILTER BANK

In order to properly define the PTFSFD model in the TF do-

main, we need to accurately implement convolutions and mul-

tiplications. In the literature, the Short Time Fourier Trans-

form (STFT) [7] is often considered as a convenient TF trans-

form, because under some smoothness assumptions it allows

the approximation of convolution by multiplying each col-

umn of an STFT by the same spectrum, and of multiplica-

tion by multiplying each row of an STFT by the same wave-

form. However, STFT is an oversampled filter bank, and

it transforms a real random process into a complex TF ran-

dom field, whose distribution is generally approximated as

circularly symmetric1. Instead, we propose to use a critically

sampled perfect reconstruction (PR) cosine-modulated filter

bank [7], which has several desired properties. Firstly, uni-

form sampling in both time and frequency will allow an ac-

curate implementation of convolutions and multiplications in

the TF domain (cf. Sections 3 and 4). Secondly, real TF dis-

tributions will permit us to avoid the need for any circularly-

symmetric assumption. The combination of PR, paraconju-

gate2 analysis/synthesis filters and critical sampling will al-

1A complex scalar random variable Z is circularly symmetric if ∀Ψ ∈ R,

the random variables Z and Ze
iΨ have the same probability distribution.

2The paraconjugation of a discrete linear filter consists of the time reversal

and complex conjugation of its impulse response.
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Fig. 1. Analysis/synthesis filter bank

low us to ensure the filter bank does not introduce any spu-

rious correlation artefacts, concept that will be referred to as

preservation of whiteness (PW), and explained in Section 5.1.

We thus consider in this paper a critically sampled cosine-

modulated filter bank [7], which transforms an input signal

x(n) ∈ R in the original time domain n ∈ Z into a 2D-array

x(f, t) ∈ R in the TF domain (f, t) ∈ [0 . . . F − 1] × Z.

More precisely, x(f, t) is defined as x(f, t) = (hf ∗ x)(Ft),
where ∗ denotes the standard convolution of non-periodic se-

ries over Z, hf (n) = h(n) cos
(

π
F
(f + 1

2 )(n+ φ)
)

is a real-

valued analysis filter, F is an odd number so that φ = F+1
2 is

a whole number, and h(n) is a prototype window of support

[0 . . . N − 1] with N = LF and L ∈ N, whose frequency

passband is [− 1
2F ,

1
2F ] (modulo 1). The synthesis filters are

defined as h̃f (n) = hf (N − n). This analysis/synthesis fil-

ter bank, represented in Figure 1 (TTF is defined as the TF-

domain identity within Section 2), is designed so as to guar-

antee PR, which requires that L be even [7]. This means that

the output, defined as x′(n) =
∑

f

∑

t h̃f (n − Ft)x(f, t),
satisfies x′(n) = x(n − N). The same PR property also

guarantees that if x(f, t) is the input of the synthesis/analysis

filter bank represented in Figure 2 (TTD is defined as the

time-domain identity within Section 2), then the output is

x′(f, t) = x(f, t − L). Let H(ν) =
∑

n∈Z
h(n)e−2iπνn

(with an upper case letter) denote the discrete time Fourier

transform (DTFT) of h(n) over ν ∈ R. Considering that the

time supports of h(Ft1 − n) and h(Ft2 − n) do not over-

lap provided that |t1 − t2| ≥ L, we similarly define a whole

number K, such that the overlap between the frequency sup-

ports of Hf1(ν) and Hf2(ν) can be neglected provided that

|f1−f2| ≥ K, due to high rejection in the stopband. We note

that hf (n) and x(f, t) are actually defined for all frequencies

f ∈ Z, with the following properties:

• ∀n, t ∈ Z, hf (n) and x(f, t) are 2F -periodic w.r.t. f ,

• ∀n, t ∈ Z, hf (n) and x(f, t) are symmetric w.r.t.

F − 1
2 : ∀f ∈ Z, x(f, t) = x(2F − 1− f, t).

3. TF IMPLEMENTATION OF A CONVOLUTION

In this section, we consider a filter of impulse response

g(n) ∈ R and two signals x(n) ∈ R and y(n) ∈ R, such

that y(n) = (g ∗ x)(n). Our purpose is to directly express

y(f, t) as a function of x(f, t), i.e. to find a TF transforma-

tion TTF in Figure 1 such that the output of the filter bank
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is y(n − N) when its input is x(n). To achieve this, we

use the PR property of this critically sampled filter bank,

which implies that the unique solution TTF is that described

in the larger frame in Figure 2, where the input is x(f, t), the

output is y(f, t), and transformation TTD is defined as the

time-domain convolution by g(n+N). We then obtain

y(f, t) =
F−1
∑

ϕ=−F

∑

τ∈Z

cg(f, ϕ, τ) x(f − ϕ, t− τ), (1)

where ∀ϕ ∈ [−F . . . F − 1], we have ∀f ∈ [0 . . . F − 1],

cg(f, ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g)(F (τ + L)), (2)

and ∀f ∈ [F . . . 2F−1], cg(f, ϕ, τ) = cg(2F−1−f−ϕ, τ),
where we have used the convention ∀ϕ /∈ [0 . . . F − 1], hϕ =
0. This definition of cg(f, ϕ, τ) is extended to all f ∈ Z and

ϕ ∈ Z by 2F -periodicity. Note that ∀ϕ ∈ [−F . . .−K] ∪
[K . . . F − 1], subbands f and f − ϕ do not overlap, thus

cg(f, ϕ, τ) can be neglected. Equation (1) shows that a con-

volution in the original time domain is equivalent to a 2D-

convolution in the TF domain, which is stationary w.r.t. time,

and circular of period 2F but non-stationary w.r.t. frequency.

In the following definition, we propose a parametric

model of cg(f, ϕ, τ). In Appendix A we prove that this

model can represent any causal and stable ARMA filter g(n).

Definition 1. The ARMA model of convolution in the TF do-

main is defined by (1), where filters {cg(f, ϕ, τ)} 0≤f<F
−F≤ϕ≤F−1

are defined as the only stable solutions of the following equa-

tion: ∀f, ϕ, τ ,
∑Qa

u=0 ag(f − ϕ, u)cg(f, ϕ, τ − u) = bg(f, ϕ, τ). (3)

In equation (3), the autoregressive term ag(f − ϕ, u) is a

causal sequence of support [0 . . . Qa] (where Qa ∈ N) w.r.t.

u, having only simple poles lying inside the unit circle, the

moving average term bg(f, ϕ, τ) is a sequence of support

[−L+1 . . .−L+1+Qb] (whereQb ≥ 2L+Qa−1) w.r.t. τ ,

and ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ [−F . . . F − 1], if f − ϕ /∈
[0 . . . F−1] or |ϕ| > Pb with Pb = K−1, then bg(f, ϕ, τ)=0.

Remark 1. If ag(f, u) and bg(f, ϕ, τ) are arbitrary, then there

may be no filter g(n) such that equation (2) holds, which

means that the operation defined in Definition 1 does no

longer correspond to a convolution in the original time do-

main. In this case, we will say that the model is inconsistent.



4. TF IMPLEMENTATION OF A PRODUCT

In this section, we consider a sequence σ(n) ∈ R and two sig-

nals w(n) ∈ R and x(n) ∈ R, such that x(n) = σ(n)w(n).
As in the previous section, our purpose is to directly express

x(f, t) as a function of w(f, t), i.e. to find a TF transforma-

tion TTF in Figure 1 such that the output of the filter bank is

x(n − N) when its input is w(n). To achieve this, we also

use the PR property of the filter bank, which implies that the

unique solution is that represented inside the larger frame in

Figure 2, where the input is w(f, t), the output is x(f, t), and

transformation TTD is defined as the time-domain convolu-

tion by δ(n + N) (δ is the Kronecker symbol: δ(u) = 1 if

u = 0, δ(u) = 0 otherwise) followed by the product by σ(n).
Mathematically, we obtain x(f, t) =

∑

n∈Z
σ(n)hf (Ft −

n)
∑F−1

ϕ=0

∑

τ∈Z
hϕ(Fτ − n)w(ϕ, τ), which is equivalent to

x(f, t) = (−1)ft
∑F−1

ϕ=−F

∑

τ∈Z
pσ(t, ϕ, τ)

×(−1)(f−ϕ)(t−τ)w(f − ϕ, t− τ)
(4)

where pσ(t, ϕ, τ) =
(−1)ϕt

2

∑

m∈Z
σ(Ft−m)h(m)

×h(m− Fτ) cos
(

π
F
ϕ(m+ φ) + π

2 τ
)

.
(5)

Here, it is important to note that ∀t ∈ Z,

• ∀τ ∈ Z, pσ(t, ϕ, τ) is 2F -periodic w.r.t. ϕ,

• if τ is even, then pσ(t, ϕ, τ) is symmetric w.r.t. ϕ,

• if τ is odd, then pσ(t, ϕ, τ) is antisymmetric w.r.t. ϕ,

• ∀τ ∈ Z, pσ(t, ϕ,−τ) = (−1)τpσ(t+ τ, ϕ, τ),
• ∀τ /∈ [−L+ 1 . . . L− 1], pσ(t, ϕ, τ) = 0.

Equation (4) shows that a product in the original time domain

is equivalent to a 2D-convolution in the TF domain, which

is circular and stationary w.r.t. frequency, but non-stationary

w.r.t. time. In Definition 2, we propose a parametric model

of pσ(t, ϕ, τ). We prove in Appendix B that this model can

represent a variety of sequences σ(n), ranging from slowly

varying sequences to linear combinations of impulses.

Definition 2. The ARMA model of multiplication in the TF

domain is defined by equation (4), where filters {pσ(t, ϕ, τ)}t∈Z

τ∈Z

are defined as the only 2F -periodic solutions of the following

equation: ∀t, ϕ, τ ,

Pα
∑

ω=−Pα

ασ(t− τ, ω)pσ(t, ϕ−ω, τ) =
∑

u∈Z

βσ(t, ϕ−2Fu, τ).

(6)

In equation (6), the autoregressive term ασ(t − τ, ω) is

a non-periodic symmetric sequence of bounded support

[−Pα . . . Pα] (where Pα < F −K) w.r.t. ω, the moving aver-

age term βσ(t, ϕ, τ) is a non-periodic sequence of bounded

support [−Pβ . . . Pβ ] (where K + Pα ≤ Pβ < F ) w.r.t. ϕ,

and

• if τ is even, then βσ(t, ϕ, τ) is symmetric w.r.t. ϕ,

• if τ is odd, then βσ(t, ϕ, τ) is antisymmetric w.r.t. ϕ,

• ∀τ /∈ [−Qβ . . . Qβ ] with Qβ = L− 1, βσ(t, ϕ, τ) = 0.

Remark 2. If ασ(t, ω) and βσ(t, ϕ, τ) are arbitrary, then there

may be no sequence σ(n) such that equation (5) holds, which

means that the operation defined in Definition 2 does not cor-

respond to a multiplication in the original time domain. In

this case, we will say that the model is inconsistent.

5. TF PROBABILISTIC MODELLING

The PTFSFD model introduced in Section 5.2 relies on the

fundamental PW property presented in Proposition 1.

5.1. Preservation of whiteness

Proposition 1 (Preservation of whiteness). The filter bank de-

fined in Section 2 guarantees that a stochastic process w(n)
is white noise of variance σ2 if and only if its TF counterpart

w(f, t) is 2D-white noise of same variance σ2.

Proof. If w(n) is white noise of variance σ2, then ∀f1, f2 ∈
[0 . . . F − 1], ∀t1, t2 ∈ Z, E(w(f1, t1)w(f2, t2)) = σ2×
∑

n∈Z
hf1(Ft1 − n)hf2(Ft2 − n) = σ2δ(f1 − f2)δ(t1 −

t2), where E denotes mathematical expectation. The second

equality comes from the PR property of the synthesis/analysis

filter bank (cf. Figure 2, where TTD is defined as the time-

domain identity). Thus w(f, t) is 2D-white noise of vari-

ance σ2. Reciprocally, if w(f, t) is 2D-white noise of vari-

ance σ2, then E(w(n1)w(n2)) = σ2
∑F−1

f=0

∑

t∈Z
hf (Ft −

n1)hf (Ft− n2) = σ2δ(n1 − n2), where the second equality

comes from the PR property of the analysis/synthesis filter

bank (cf. Figure 1, where TTF is defined as the TF-domain

identity). Thus w(n) is white noise of variance σ2.

5.2. Definition of the PTFSFD model

Consider a mixture signal y(n) =
∑R−1

r=0 yr(n), where each

component yr(n) follows a source-filter model: yr = gr ∗xr,

where gr(n) is an impulse response of the form defined in

Appendix A, xr = σr × wr, where σr(n) is a sequence of

the form defined in Appendix B, and wr(n) is white noise

of variance 1. Then in the TF domain, y(f, t) satisfies the

PTFSFD model presented in Definition 3.

Definition 3. The PTFSFD model expresses a TF rep-

resentation y(f, t) (with 0 ≤ f ≤ F − 1) as a sum

of R uncorrelated components {yr(f, t)}0≤r<R, where

yr(f, t) =
F−1
∑

ϕ=−F

∑

τ∈Z

cgr (f, f − ϕ, t− τ)xr(ϕ, τ),

xr(f, t) = (-1)ft
F−1
∑

ϕ=−F

∑

τ∈Z

pσr
(t, f -ϕ, t-τ) ((-1)ϕτwr(ϕ, τ)) ,

wr(f, t) is 2D-white noise of variance 1, and cgr (f, ϕ, τ) and

pσr
(t, ϕ, τ) are parametrised as in Definitions 1 and 2.



6. DEMONSTRATION EXAMPLES

The PTFSFD model introduced in Definition 3 encompasses

the following particular cases:

1) ARMA process: If ∀t, pr(t, ϕ, τ)=δ2F (ϕ)δ(τ) (where

δ2F (ϕ) =
∑

u∈Z
δ(ϕ−2Fu)), then yr(n) can be any ARMA

process (an example is given in Figures 3-1a and 3-1b).

2) Uncorrelated noise: If ∀f, cgr (f, ϕ, τ) = δ2F (ϕ)δ(τ),
yr(n) belongs to a parametric family of uncorrelated noises

(an example is represented in Figures 3-2a and 3-2b).

3) Impulses: If ∀f, cgr (f, ϕ, τ) = δ2F (ϕ)δ(τ) and

pr(t, ϕ, τ) is defined as in Example 1 in Appendix B with

ε → 0, then yr(t) is a linear combination of impulses (an

example is represented in Figures 3-3a and 3-3b).

4) Damped sinusoids: If pr(t, ϕ, τ) is defined as in Ex-

ample 1 in Appendix B with P = 1 and ε → 0, and if

cr(f, ϕ, τ) is defined as in Appendix A with N0 = 0, then

yr(n) follows a real-valued exponential sinusoidal model

(ESM) commonly used in HR spectral analysis of time series

[8] (an example is represented in Figures 3-4a and 3-4b).

The PTFSFD model also includes some NMF frame-

works. Indeed, if W and H are F ×R and R× T nonnega-

tive matrices of entries Wfr and Hrt, if wr(f, t) is 2D-white

Gaussian noise, and if pσr
(t, ϕ, τ) =

√
Hrtδ2F (ϕ)δ(τ) then:

5) if cgr (f, ϕ, τ)=
√

Wfrδ2F (ϕ)δ(τ), y(f, t) follows an

IS-NMF model [4] of orderR, defined by the NMF V =WH;

6) if cr(f, ϕ, τ) =
√

Wfrδ2F (ϕ)afr(τ) where afr(τ) is

the impulse response of a causal and stable autoregressive fil-

ter, y(f, t) follows an HR-NMF model [9, 10] of orderR, de-

fined by the NMF V =WH and the autoregressive filters afr.

Unlike cases (1)-(4), IS-NMF and HR-NMF are inconsis-

tent in the sense defined in Remarks 1 and 2 in Sections 3

and 4. Besides, IS-NMF cannot accurately generate damped

sinusoids as in Figure 3-4a, and neither IS-NMF nor HR-

NMF can accurately generate impulses as in Figure 3-3a.

7. CONCLUSIONS

In this paper, we proposed a new probabilistic model of non-

stationary signals, which consists of a sum of source-filter

models. Each component of the sum is obtained by succes-

sively applying a multiplication and a convolution to white

noise. In order to properly express this model in the TF do-

main, we used a critically sampled cosine-modulated filter

bank, which allows an accurate implementation in the TF do-

main of convolutions and multiplications in the original time

domain, by means of 2D-filters. We then proposed an ARMA

parametrisation of these 2D-filters, which can represent a

variety of transformations, ranging from smooth to sharply

selective in time or in frequency. We have demonstrated that

the resulting probabilistic time-frequency source-filter de-

composition (PTFSFD) model can represent a broad range of

stationary and non-stationary signals, including ARMA pro-

cesses and uncorrelated noise, and it has both high spectral
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Fig. 3. Examples of signals generated by the PTFSFD model

(F=15, L=8, K=4; yr(n) are in the left column and yr(f, t)
in the right column): (1) is an ARMA process, (2) is an un-

correlated noise, (3) is an impulse, (4) is a damped sinusoid3

and temporal resolutions. PTFSFD also generalizes and im-

proves both IS-NMF and HR-NMF: it can accurately generate

damped sinusoids, which IS-NMF cannot; and importantly it

can also accurately generate impulses, which is not possible

for either IS-NMF or HR-NMF.

Because audio signals are sparse in the time-frequency

domain, we observed that the PTFSFD model involves a small

number of non-zero parameters in practice. In future work,

we will investigate enforcing this property, for instance by

introducing an a priori distribution of the parameters induc-

ing sparsity. The proposed approach could also be applied to

other types of filter banks, e.g. STFT filter banks. We also

plan to propose some algorithms for estimating this model

from the samples of an input signal. In particular, the varia-

tional Bayesian methods already investigated in [11] for the

HR-NMF model seem to be a promising approach, because of

their low complexity and their capacity to efficiently estimate

complex graphical models.
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A. ARMA MODEL OF CONVOLUTION

We consider the TF implementation of convolution pre-

sented in Section 3, and we define g(n) as the impulse

3The numerical values of the model parameters that we used to generate

those signals are listed in our Matlab code, which is available upon request.



response of a causal and stable ARMA filter, having only

simple poles. Then the partial fraction expansion of its

transfer function shows that it can be written in the form

g(n) = g0(n) +
∑P

k=1 gk(n), where P ∈ N, g0(n) is a

causal sequence of support [0 . . . N0 − 1] (with N0 ∈ N),

and ∀k ∈ [1 . . . P ], gk(n) = Ake
δkn cos(2πνkn + ψk)1n≥0,

where Ak > 0, δk < 0, νk ∈ [0, 12 ], ψk ∈ R. Then ∀f ,

equation (2) yields cg(f, ϕ, τ) =
∑P

k=0 cgk(f, ϕ, τ) with

cg0(f, ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g0)(F (τ + L)) and ∀k ∈
[1 . . . P ], cgk(f, ϕ, τ) = eδkFτ (Ak(f, ϕ, τ) cos(2πνkFτ) +
Bk(f, ϕ, τ) sin(2πνkFτ)), where we defined Ak(f, ϕ, τ) =

Ak

N−1
∑

n=−N+1

(hf∗h̃f−ϕ)(n+N)e−δkn cos(2πνkn−ψk)1n≤Fτ

and Bk(f, ϕ, τ) = Ak

∑N−1
n=−N+1(hf ∗ h̃f−ϕ)(n+N)e−δkn

sin(2πνkn− ψk)1n≤Fτ . It can be easily proved that:

• the support of cg0(f, ϕ, τ) is [-L+1 . . . L+⌈N0−2
F

⌉] w.r.t. τ ,

• if τ ≤ −L, then cg0(f, ϕ, τ), Ak(f, ϕ, τ) and Bk(f, ϕ, τ)
are zero, thus cg(f, ϕ, τ) = 0,

• if τ ≥ L, Ak(f, ϕ, τ) and Bk(f, ϕ, τ) do not depend on τ .

It results that ∀f, ϕ, cg(f, ϕ, τ − L + 1) is the impulse

response of a causal and stable ARMA filter.

As a particular case, suppose that ∀k ∈ [1 . . . P ], |δk| ≪
1. If τ ≥ L, then Ak(f, ϕ, τ) and Bk(f, ϕ, τ) can be ne-

glected as soon as νk does not lie in the supports of both

Hf (ν) and Hf−ϕ(ν). Thus for each f and ϕ, there is a

limited number P (f, ϕ) ≤ P (possibly 0) of cgk(f, ϕ, τ)
which contribute to cg(f, ϕ, τ). In the general case, we can

still consider without loss of generality that ∀f, ϕ, there is

a limited number P (f, ϕ) ≤ P of cgk(f, ϕ, τ) which con-

tribute to cg(f, ϕ, τ). We then define Qa , 2max
f,ϕ

P (f, ϕ)

and Qb = 2L + Qa − 1 + ⌈N0−2
F

⌉. Then it can be easily

proved that cg(f, ϕ, τ) matches Definition 1.

B. ARMA MODEL OF MULTIPLICATION

We consider the TF implementation of multiplication pre-

sented in Section 4. Suppose that σ0(n) is a band-limited

sequence, so that there is 0 < ν0 < 1
2 − K

2F such that the

DTFT Σ0(ν) is zero ∀ν ∈ [ν0,
1
2 ] (we note that if ν0 ≪ 1,

then σ0(n) has slow temporal variations). Then the DTFT

of the sequence σ0(Ft − m)h(m)h(m − Fτ) is zero ∀ν ∈
[ν0+

K
2F ,

1
2 ]. Consequently, equation (5) yields pσ0

(t, ϕ, τ) =
0 if K + ⌈2Fν0⌉ ≤ |ϕ| ≤ F . Besides, let P ∈ N, and

∀k ∈ [1 . . . P ], let σk(n) =
σ′

k(n)

2(cos(
π(n−φ)

F
)−cos(θk))

, where

Fθk
π

∈ R\Z and σ′
k(n) is a band-limited sequence, such that

the DTFT Σ′
k(ν) is zero ∀ν ∈ [ν0,

1
2 ]. Then equation (5)

yields pσk
(t, ϕ + 1, τ) − 2 cos(θk)pσk

(t, ϕ, τ) + pσk
(t, ϕ −

1, τ) = pσ′

k
(t, ϕ, τ). Finally, we define σ(n) =

∑P
k=0 σk(n).

Example 1 (Linear combination of impulses). As an exam-

ple, suppose that σ0(n) = 0, and ∀k ∈ [1 . . . P ], θk =
π(φ−nk)

F
+ ε (where nk ∈ Z, all nk are distinct, and ε > 0),

and σ′
k(n) = 2Akε sin(

π(2φ−n−nk)
2F + ε

2 )sinc(
n−nk

2F ) (where

sinc(u) = sin(πu)
πu

). In particular, ν0 = 3
4F . Then when

ε → 0, σk(n) → Akδ(n − nk). Asymptotically, we thus

get σ(n) =
∑P

k=1Akδ(n − nk), i.e. a linear combination

of impulses. Moreover, in this case, if either t or t − τ /∈
[

⌈nk

F
⌉ . . . ⌈nk

F
⌉+ L− 1

]

, then pσk
(t, ϕ, τ) = 0. Thus for

each t and τ , there is a finite number P (t, τ) ≤ P (possibly

0) of pσk
(t, ϕ, τ) which contribute to pσ(t, ϕ, τ).

In the general case, we can still consider without loss of

generality that ∀t, τ , there is a limited number P (t, τ) ≤ P
of pσk

(t, ϕ, τ) which contribute to pσ(t, ϕ, τ). Moreover, we

suppose that Pα = max
t,τ

P (t, τ) and ν0 are such that Pα <

F −K and ν0 <
1
2 −

K+Pα

2F , and we define Pβ = K +Pα −
1+⌈2Fν0⌉ < F . Then it can be easily proved that pσ(t, ϕ, τ)
matches Definition 2.
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