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Introduction

Introduction

Opportunistic spectrum access in large-scale cognitive radio networks

SU access the freq. channels partially occupied by the licensed PU

Distributed spectrum access policies based on self-imitation

Convergence analysis based on perturbed Markov chains
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System Model

System Model I

A PU is using on the DL a set C of C freq. channels

Primary receivers are operated in a synchronous time-slotted fashion

The secondary network is made of a set N of N SUs

We assume perfect sensing
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System Model

System Model II

block b block b+1

channel i PU is active

PU is active 

with probability 1-µi

SUs share the 
available bandwidth

SUs take a decision
for the next block

At each time slot, channel i is free with probability µi

Throughput achieved by j on channel i is denoted T i
j

Expected throughput πi (ni ) = E [T i
j ] = BµiS(ni )

S is a function that depends on the MAC protocol and on the number
of SUs on channel i, ni

We assume B = 1, S strictly decreasing and S(x) ≤ 1/x for x > 0
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Spectrum Access Game Formulation

Spectrum Access Game Formulation

Definition

The spectrum access game G is a 3-tuple (N , C, {Uj}), where N is the
player set, C is the strategy set of each player. Each player j chooses its
strategy sj ∈ C to maximize its payoff function Uj defined as
Uj = πsj (nsj ) = E[T

sj
j ].

Lemma

For the spectrum access game G , there exists at least one Nash
equilibrium.

Lemma

For N sufficiently large, G admits a unique NE, where all SUs get the
same payoff.
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Self-Imitation Spectrum Access Policy

Motivation

Find a distributed strategy for SUs to converge to the NE

Uniform random imitation of another SU leads to the replicator
dynamics (see Proportional Imitation Rule in [1, 2])

Uniform random imitation of two SUs leads to the aggregate
monotone dynamics (see Double Imitation in [1, 2])

Imitation on the same channel can be approximated by a double
replicator dynamics [3]

We now avoid any information exchange between SUs
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Self-Imitation Spectrum Access Policy

LASTra

Algorithm 1 LASTra: executed at each SU j

1: Initialization: set ε(t)
2: At t = 0 and t = 1, randomly choose a channel to stay and store the

payoffs Uj(0) and Uj(1).
3: while at the end of block t > 1 do
4: With probability 1− ε(t):
5: if Uj(t − 1) > Uj(t) then
6: Migrate to the channel sj(t − 1)
7: end if
8: With probability ε(t): switch to a random channel
9: end while
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Convergence Analysis

Perturbed Markov Chain I

We have a model of evolution with noise:

Z =
{
z ,

(
sj(t), sj(t − 1), πj(nsj (t)), πj(nsj (t − 1))

)}
is the finite state space of the system stochastic process
P = (puv )(u,v)∈Z 2 is the transition matrix of LASTra without
exploration (i.e. ε(t) = 0 ∀t)
P(ε) = (puv (ε))(u,v)∈Z 2 is a family of transitions matrices on Z indexed
by ε ∈ [0, ε̄] associated to LASTra with exploration ε

Properties of P(ε):

P(ε) is ergodic for ε > 0
P(ε) is continuous in ε and P(0) = P
There is a cost function c : Z 2 → R+ ∪ {∞} s.t. for any pair of states

(u, v), limε→0
puv (ε)
εcuv exists and is strictly positive for cuv <∞ and

puv (ε) = 0 if cuv =∞
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Convergence Analysis

Perturbed Markov Chain II

Remarks:

ε can be interpreted as a small probability that SUs do not follow the
rule of the dynamics. When a SU explores, we say that there is a
mutation
The cost cuv is the rate at which puv (ε) tends to zero as ε vanishes
cuv can also be seen as the number of mutations needed to go from
state u to state v
cuv = 0 when puv 6= 0 in the unperturbed Markov chain
cuv =∞ when the transition u → v is impossible in the perturbed
Markov chain
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Convergence Analysis

Perturbed Markov Chain III

Lemma ([4])

There exists a limit distribution µ∗ = limε→0 µ(ε)

Definition

A state i ∈ Z is said to be long-run stochastically stable iff µ∗i > 0.

Lemma ([4])

The set of stochastically stable states is included in the recurrent classes
(limit sets) of the unperturbed Markov chain (Z ,P).
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Convergence Analysis

Ellison Radius Coradius Theorem I

Ω

D(Ω)

z

proba=1

R(Ω)

x
CR*(Ω) L1

Lr-1

Ω: a union of limit sets of (Z ,P)

D(Ω): basin of attraction, the set of states from which the
unperturbed chain converges to Ω w.p.1

R(Ω): radius, the min cost of any path from Ω out of D(Ω)

CR(Ω): coradius, maximum cost to Ω

CR∗(Ω): modified coradius, obtained by substracting from the cost,
the radius of intermediate limit sets
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Convergence Analysis

Ellison Radius Coradius Theorem II

Theorem (Ellison00, Theorem 2 and Sandholm10, Chap. 12)

Let (Z ,P,P(ε)) be a model of evolution with noise and suppose that for
some set Ω, which is a union of limit sets, R(Ω) > CR∗(Ω), then:

The long-run stochastically stable set of the model is included in Ω.

For any y /∈ Ω, the longest expected wait to reach Ω is
W (y ,Ω, ε) = O(ε−CR

∗(Ω)) as ε→ 0.

Proof idea

Uses the Markov chain tree theorem and the fact that it is more difficult to

escape from Ω than to return to Ω.
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Convergence Analysis

LASTra Convergence Analysis I

Lemma

Under LASTra, the limit sets (LS) are absorbing states, called imitation
stable states (ISS).

Lemma

Let z∗ be an ISS and Ω∗ be the union of all ISS at NE. It holds that
R(z∗) = 1 ∀z∗ /∈ Ω∗.

Proof idea

For a congestion game G with player specific decreasing payoff functions, the

weak-FIP property holds [5]. Using weak-FIP, we show that a single mutation is

enough to leave the basin of attraction of any ISS not in Ω∗ and to reach a new

ISS.
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Convergence Analysis

LASTra Convergence Analysis II

Lemma

Ω∗ can be reached from any state z /∈ Ω∗ by stepwise mutations.

Proof idea

We show that any z is in the basin of attraction of an ISS. The cost to reach this

ISS is thus null. From the weak-FIP property: from any strategy profile, there

exists a sequence of single player improvements that terminates at NE after a

finite number of steps.
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Convergence Analysis

LASTra Convergence Analysis III

Lemma

CR∗(Ω∗) = 1

Proof idea

From any state, there is a path of null cost to reach an ISS and then a path,

which is a sequence of ISS. Each ISS has a radius of 1.

Lemma

R(Ω∗) > 1

Proof idea

Comes from the definition of the NE and of LASTra.
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Convergence Analysis

LASTra Convergence Analysis IV

Theorem

If all SUs 1) adopt LAstra as self-imitation protocol and 2) adopt a
random strategy at each iteration with probability ε→ 0, then the system
dynamics converges to Ω∗, which is also a pure NE of the game. The
expected wait until a state in Ω∗ is reached given that the system begins
in any state not in Ω∗, is O(ε−1) as ε→ 0.
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Performance Evaluation

Simulation Settings

We compare our algorithm to Trial and Error (T&E, Pradelski’s
optimized learning parameters in [Pradelski&Young 2012]) [6] and to
the Distributed Learning Algorithm (DLA) [Chen&Huang 2012] [7].

We consider two networks:

Network 1: We consider N = 50 SUs, C = 3 channels characterized
by the availability probabilities µ = [0.3, 0.5, 0.8].
Network 2: We set N = 10, C = 2 and µ = [0.2, 0.8].
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Performance Evaluation

Example of Trajectory
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Figure : LASTra trajectory on Network 1.
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Performance Evaluation

LASTra vs DLA
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Figure : LASTra and DLA (with temperature γ) fairness index on Network 1.
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Performance Evaluation

LASTra vs T&E
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Figure : Trial and Error fairness index on Network 2 (average of 1000
trajectories).
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Performance Evaluation

LASTra vs T&E
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Figure : LASTra fairness index on Network 2.
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Conclusion

Conclusion

We discussed the distributed resource allocation problem in CRNs

We have proposed a fully distributed scheme without any information
exchange between SUs and based on self-imitation

We have proved convergence using Ellison00 radius-coradius theorem

We have compared LASTra to T&E [Pradelski&Young 2012] and to
DLA [Chen&Huang 2012]
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