Self-Imitation for Cognitive Radio Networks

Marceau Coupechoux*, Stefano Iellamo*, Lin Chen+ * TELECOM ParisTech (INFRES/RMS) and CNRS LTCI + University Paris XI Orsay (LRI)

AlgoGT

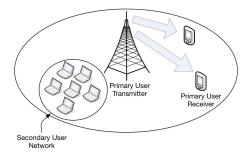
2nd July 2013

Introduction

- Opportunistic spectrum access in large-scale cognitive radio networks
- SU access the freq. channels partially occupied by the licensed PU
- Distributed spectrum access policies based on self-imitation
- Convergence analysis based on perturbed Markov chains

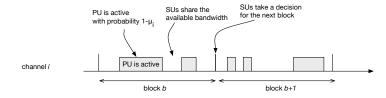
System Model I

- A PU is using on the DL a set C of C freq. channels
- Primary receivers are operated in a synchronous time-slotted fashion
- The secondary network is made of a set $\mathcal N$ of N SUs
- We assume perfect sensing



System Model

System Model II



- At each time slot, channel *i* is free with probability μ_i
- Throughput achieved by j on channel i is denoted T_i^i
- Expected throughput $\pi_i(n_i) = E[T_j^i] = B\mu_i S(n_i)$
- *S* is a function that depends on the MAC protocol and on the number of SUs on channel i, *n_i*
- We assume B = 1, S strictly decreasing and $S(x) \le 1/x$ for x > 0

Spectrum Access Game Formulation

Definition

The spectrum access game G is a 3-tuple ($\mathcal{N}, \mathcal{C}, \{U_j\}$), where \mathcal{N} is the player set, \mathcal{C} is the strategy set of each player. Each player j chooses its strategy $s_j \in \mathcal{C}$ to maximize its payoff function U_j defined as $U_j = \pi_{s_j}(n_{s_j}) = \mathbb{E}[T_j^{s_j}].$

Lemma

For the spectrum access game G, there exists at least one Nash equilibrium.

Lemma

For N sufficiently large, G admits a unique NE, where all SUs get the same payoff.

(日) (同) (三) (三)

Motivation

- Find a distributed strategy for SUs to converge to the NE
- Uniform random imitation of another SU leads to the *replicator dynamics* (see Proportional Imitation Rule in [1, 2])
- Uniform random imitation of **two** SUs leads to the *aggregate monotone dynamics* (see Double Imitation in [1, 2])
- Imitation on the same channel can be approximated by a double replicator dynamics [3]
- We now avoid any information exchange between SUs

LASTra

Algorithm 1 LASTra: executed at each SU j

- 1: Initialization: set $\epsilon(t)$
- 2: At t = 0 and t = 1, randomly choose a channel to stay and store the payoffs $U_j(0)$ and $U_j(1)$.
- 3: while at the end of block t > 1 do
- 4: With probability $1 \epsilon(t)$:
- 5: **if** $U_j(t-1) > U_j(t)$ **then**
- 6: Migrate to the channel $s_j(t-1)$
- 7: end if
- 8: With probability $\epsilon(t)$: switch to a random channel
- 9: end while

Perturbed Markov Chain I

- We have a model of evolution with noise:
 - $Z = \left\{ z \triangleq (s_j(t), s_j(t-1), \pi_j(n_{s_j}(t)), \pi_j(n_{s_j}(t-1))) \right\}$
 - is the finite state space of the system stochastic process
 - P = (p_{uv})_{(u,v)∈Z²} is the transition matrix of LASTra without exploration (i.e. ε(t) = 0 ∀t)
 - P(ε) = (p_{uv}(ε))_{(u,v)∈Z²} is a family of transitions matrices on Z indexed by ε ∈ [0, ε̄] associated to LASTra with exploration ε
- Properties of $P(\epsilon)$:
 - P(ε) is ergodic for ε > 0
 - $P(\epsilon)$ is continuous in ϵ and P(0) = P
 - There is a cost function $c: Z^2 \to \mathcal{R}^+ \cup \{\infty\}$ s.t. for any pair of states (u, v), $\lim_{\epsilon \to 0} \frac{p_{uv}(\epsilon)}{\epsilon^{c_{uv}}}$ exists and is strictly positive for $c_{uv} < \infty$ and $p_{uv}(\epsilon) = 0$ if $c_{uv} = \infty$

Perturbed Markov Chain II

- Remarks:
 - ϵ can be interpreted as a small probability that SUs do not follow the rule of the dynamics. When a SU explores, we say that there is a mutation
 - The cost c_{uv} is the rate at which $p_{uv}(\epsilon)$ tends to zero as ϵ vanishes
 - *c_{uv}* can also be seen as the number of mutations needed to go from state *u* to state *v*
 - $c_{uv} = 0$ when $p_{uv} \neq 0$ in the unperturbed Markov chain
 - $c_{uv} = \infty$ when the transition $u \rightarrow v$ is impossible in the perturbed Markov chain

Convergence Analysis

Perturbed Markov Chain III

Lemma ([4])

There exists a limit distribution $\mu^* = \lim_{\epsilon \to 0} \mu(\epsilon)$

Definition

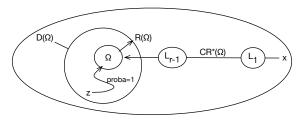
A state $i \in Z$ is said to be *long-run stochastically stable* iff $\mu_i^* > 0$.

Lemma ([4])

The set of stochastically stable states is included in the recurrent classes (limit sets) of the unperturbed Markov chain (Z, P).

Convergence Analysis

Ellison Radius Coradius Theorem I



- Ω : a union of limit sets of (Z, P)
- D(Ω): basin of attraction, the set of states from which the unperturbed chain converges to Ω w.p.1
- $R(\Omega)$: radius, the min cost of any path from Ω out of $D(\Omega)$
- $CR(\Omega)$: coradius, maximum cost to Ω
- CR*(Ω): modified coradius, obtained by substracting from the cost, the radius of intermediate limit sets

Ellison Radius Coradius Theorem II

Theorem (Ellison00, Theorem 2 and Sandholm10, Chap. 12)

Let $(Z, P, P(\epsilon))$ be a model of evolution with noise and suppose that for some set Ω , which is a union of limit sets, $R(\Omega) > CR^*(\Omega)$, then:

- The long-run stochastically stable set of the model is included in Ω.
- For any y ∉ Ω, the longest expected wait to reach Ω is W(y, Ω, ε) = O(ε^{-CR*(Ω)}) as ε → 0.

Proof idea

Uses the Markov chain tree theorem and the fact that it is more difficult to escape from Ω than to return to $\Omega.$

LASTra Convergence Analysis I

Lemma

Under LASTra, the limit sets (LS) are absorbing states, called imitation stable states (ISS).

Lemma

Let z^* be an ISS and Ω^* be the union of all ISS at NE. It holds that $R(z^*) = 1 \ \forall z^* \notin \Omega^*$.

Proof idea

For a congestion game \mathcal{G} with player specific decreasing payoff functions, the weak-FIP property holds [5]. Using weak-FIP, we show that a single mutation is enough to leave the basin of attraction of any ISS not in Ω^* and to reach a new ISS.

Convergence Analysis

LASTra Convergence Analysis II

Lemma

 Ω^* can be reached from any state $z\notin \Omega^*$ by stepwise mutations.

Proof idea

We show that any z is in the basin of attraction of an ISS. The cost to reach this ISS is thus null. From the weak-FIP property: from any strategy profile, there exists a sequence of single player improvements that terminates at NE after a finite number of steps.

Convergence Analysis

LASTra Convergence Analysis III

Lemma

 $CR^*(\Omega^*) = 1$

Proof idea

From any state, there is a path of null cost to reach an ISS and then a path, which is a sequence of ISS. Each ISS has a radius of 1.

Lemma

 $R(\Omega^*) > 1$

Proof idea

Comes from the definition of the NE and of LASTra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LASTra Convergence Analysis IV

Theorem

If all SUs 1) adopt LAstra as self-imitation protocol and 2) adopt a random strategy at each iteration with probability $\epsilon \to 0$, then the system dynamics converges to Ω^* , which is also a pure NE of the game. The expected wait until a state in Ω^* is reached given that the system begins in any state not in Ω^* , is $O(\epsilon^{-1})$ as $\epsilon \to 0$.

Simulation Settings

- We compare our algorithm to Trial and Error (T&E, Pradelski's optimized learning parameters in [Pradelski&Young 2012]) [6] and to the Distributed Learning Algorithm (DLA) [Chen&Huang 2012] [7].
- We consider two networks:
 - Network 1: We consider N = 50 SUs, C = 3 channels characterized by the availability probabilities $\mu = [0.3, 0.5, 0.8]$.
 - Network 2: We set N = 10, C = 2 and $\mu = [0.2, 0.8]$.

Example of Trajectory

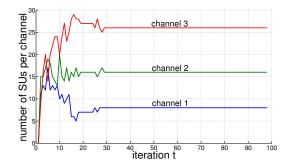


Figure : LASTra trajectory on Network 1.

LASTra vs DLA

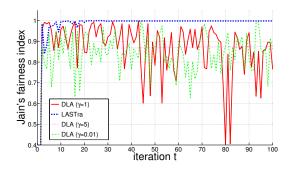


Figure : LASTra and DLA (with temperature γ) fairness index on Network 1.

LASTra vs T&E

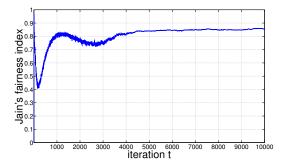


Figure : Trial and Error fairness index on Network 2 (average of 1000 trajectories).

э.

3

LASTra vs T&E

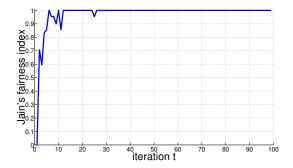


Figure : LASTra fairness index on Network 2.

æ

э.

Image: Image:

- We discussed the distributed resource allocation problem in CRNs
- We have proposed a fully distributed scheme without any information exchange between SUs and based on self-imitation
- We have proved convergence using Ellison00 radius-coradius theorem
- We have compared LASTra to T&E [Pradelski&Young 2012] and to DLA [Chen&Huang 2012]

References I

[1] K. H. Schlag.

Why Imitate, and if so, How ? A Boundedly Rational Approach to Multi-Armed Bandits.

Journal of Economic Theory, 78(1):130–156, Jan. 1998.

K. H. Schlag. Which One Should I Imitate ? Journal of Mathematical Economics, 31(4):493–522, May 1999.

[3] S. Iellamo, L. Chen, and M. Coupechoux. Proportional and double imitation rules for spectrum access in cognitive radio networks.

Elsevier Computer Networks, 57(8):1863–1879, June 2013.

References II

[4] G. Ellison.

Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution.

Review of Economic Studies, 67, 2000.

[5] I. Milchtaich.

Congestion Games with Player-Specific Payoff Functions. *Games and Economic Behavior*, 13:111–124, 1996.

[6] H. Peyton Young.

Learning by Trial and Error.

Games and Economic Behavior, 65(2):626–643, 2009.

[7] X. Chen and J. Huang.

Spatial spectrum access game: nash equilibria and distributed learning. In *MobiHoc*, 2012.