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Jérôm Boudy
Institut Mines-Télécom
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ABSTRACT
While Graphical User Interfaces (GUI) still represent the
most common way of operating modern computing technol-
ogy, Spoken Dialog Systems (SDS) have the potential to of-
fer a more natural and intuitive mode of interaction. Even
though some may say that existing speech recognition is nei-
ther reliable nor practical, the success of recent product re-
leases such as Apple’s Siri or Nuance’s Dragon Drive sug-
gests that language-based interaction is increasingly gaining
acceptance. Yet, unlike applications for building GUIs, tools
and frameworks that support the design, construction and
maintenance of dialog systems are rare. A particular chal-
lenge of SDS design is the often complex integration of tech-
nologies. Systems usually consist of several components (e.g.
speech recognition, language understanding, output genera-
tion, etc.), all of which require expertise to deploy them in
a given application domain. This paper presents work in
progress that aims at supporting this integration process. We
propose a framework of components and describe how it may
be used to prototype and gradually implement a spoken dia-
log system without requiring extensive domain expertise.
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INTRODUCTION
Spoken Dialog Systems (SDS) are booming, with prod-
ucts such as Apple’s Siri1, Google’s Voice Search2 or Nu-
ance’s Dragon Solutions3 demonstrating how current (and fu-
ture) technologies may change the way we interact with our
devices. Even though a lot of these potential applications
might also be achievable using traditional Graphical User
Interfaces (GUI), a reasonably ‘intelligent’ computer sys-
tem that (sufficiently) understands spoken input would sim-
ply convey a better user experience [23]. Yet, the design of
this type of systems is complex and so we see a pressing de-
mand for tools and techniques that better support this task.
SDSs usually consist of several language technology com-
ponents, ranging from speech recognition and generation to
dialog management and artificial intelligence. Building func-
tioning solutions may therefore require sufficient expertise in
several different domains. While some tool-support for stand-
alone components exists (e.g. [14, 27, 30, 8, 9, 26, 4]) only
few attempts have been undertaken to generate a more holis-
tic framework for SDS design (e.g. [15, 16, 7, 3]).

This paper discusses an SDS prototyping framework that has
been implemented by our research group. The goal of our
approach is to exclude ‘hand-crafting’ work as much as pos-
sible and use a combination of machine learning algorithms
and Wizard of Oz (WOZ) experimentation [13] to build SDS
solutions from scratch. Integrating existing open-source tech-
nology components with WOZ we aim for the creation of a
flexible and easy to use prototyping environment, that can
be used not only by speech engineers, but also by design-
ers/researchers outside the signal processing community. The
paper starts with an overview of the proposed framework ar-
chitecture which is followed by a description of its different
components. After that we discuss our current employment
of the framework and conclude the paper with planned future
directions.
1http://www.apple.com/ios/siri/
2http://www.google.com/mobile/voice-search/
3http://www.nuance.com/dragon/



Figure 1. A framework architecture for Spoken Dialog System design

FRAMEWORK COMPONENTS
The overall architecture of our prototyping framework closely
resembles the state of the art processing chain of a modern
SDS (cf. Figure 1). On the input side we find the Automatic
Speech Recognition (ASR) module, a Natural Language Un-
derstanding (NLU) component, as well as a novel compo-
nent which we call the Semantic Unifier and Reference Re-
solver (SURR). The output side consists of a Natural Lan-
guage Generation (NLG) component and a Text-to-Speech
synthesis (TTS) module. The core of the system is repre-
sented by a Dialog Manager (DM) which is connected to the
input and output chain via two formatting interfaces. These
interfaces offer additional flexibility with respect to possible
future framework extensions (e.g. a potential integration of
multi-modality).

At runtime the ASR module decodes speech input, produc-
ing natural language text utterances and passes them on to
the NLU component. The NLU component then extracts
from these utterances so-called Semantic Frames (SF), which
consist of a goal and 0 to n instantiated slots. Next, the
SURR component filters these SFs, replaces relative values
like dates, times or locations by absolute ones and resolves
references. Then an interface component translates the SURR
output into a format that can be processed by the DM. The
DM, which represents the core of the overall system, is re-
sponsible for keeping track of the dialog progress, taking into
account the given context, and consequently triggers the re-
quest for additional input; i.e. it is aware of the current tasks
and therefore demands the relevant variables to be defined.
It takes the output of the SURR and, based on the currently
loaded task model, selects appropriate actions (i.e. it initiates
utterances to be produced by the NLG component or com-
mands to be sent to a back-end application). Again, a dedi-
cated formatting interface is used to translate the DM output

into a format that can be interpreted by the NLG component.
Such consequently produces the requested text utterance. Fi-
nally, the TTS module takes the NLG output and converts it
into synthesized speech.

In order to offer this work flow we have integrated a set of
open-source language technology components, augmented by
various ‘home-made’ software modules, into a flexible SDS
prototyping framework. The following sections will describe
the different components of this framework and their roles in
some more detail, and highlight which extensions and adapta-
tions were necessary in order to create a cohesive interaction
pipeline.

Automatic Speech Recognition Module
SDSs are different from other dialog systems in that speech
represents their single interaction modality. Thus, an SDS’s
first processing stage has to generate hypotheses about the
orthographic content that is encoded in a user’s spoken in-
put. Despite decades of research and commercial deployment
this processing is still regarded as highly error-prone. Cur-
rent best practice is to search for the best matching sequence
of stochastic models using the digitized input signal. Mel-
Frequency Cepstrum Coefficients (MFCC) (and their deltas)
are widely used descriptors for such speech signal analyses
(e.g. [6, 2, 1]). The distribution of the coefficients’ vec-
tors for the contextualized phonemes or triphones (i.e. the
smallest units of the processed sound signal) are usually en-
coded as Hidden Markov Models (HMM) [11], which were
trained from already transcribed speech segments. These
models constitute the first ingredient for building a working
ASR module – the so called Acoustic Model (AM). Next,
in order to construct words out of a sequence of phonemes,
a Pronouncing Dictionary (PD) is required, which consists
of the decomposition of a language’s words into phonemic



units. Finally, the last ingredient that is necessary to build
the ASR module is a so-called Language Model (LM) which
provides probabilities for given word sequences to appear in
a sentence. Those probabilities are based on existing linguis-
tic structures and encoded as n-grams. The combination of
the three knowledge sources (i.e. AM, PD and LM) is then
used by the recognition engine to produce one or several hy-
pothesis of recognized text for a given (segmented) speech
signal [1].

Given these requirements one may argue that building ASR
systems for distinct application scenarios is time consuming
and very much dependent on both the availability of required
knowledge sources (i.e. AM, PD and LM), and the quality
and amount of data that was used to construct them. Yet, ex-
isting Large Vocabulary Continuous Speech Recognition sys-
tems (LVCSR) often already cover a great amount of general
purpose vocabulary (as long as their training has been per-
formed on such data). Hence, extending such a general sys-
tem (and its knowledge sources) to fit the vocabulary space of
a specific application scenario may be quicker and more ef-
fective than building an entirely new recognizer from scratch.
What is needed, however, are appropriate interfaces that al-
low for the adaptation of the general models so that they bet-
ter facilitate the recognition of expected utterances related to
a specific application scenario. Milhorat et al. [17] proposed
a filtering method to favor such a recognition of ‘correct’ ut-
terances while discarding mis-recognized or out-of-context
ones. Results could then further be augmented with features
like the dialog state, the dialog history and, a user’s person-
alized settings, and eventually be used to dynamically up-
date/replace an LVCSR’s general engine configuration with
a more specific, application dependent one.

In order to offer a solution that allows for such a dynamic
adaptation of knowledge sources our prototyping framework
integrates the Julius ASR engine, an LVCSR engine devel-
oped by the Kawahara Lab at Kyoto University [14]. The
current setup supports the recognition of spoken input in En-
glish, French, Spanish and Dutch. In addition we have ac-
quired the necessary databases to build recognizers for Ger-
man and Italian. Using this setting we plan to create adapted
language models for a number of application scenarios, in-
cluding the speech-based operation of a calendar program, the
use of communication services such as email and text mes-
sages, and the interaction with several health and well-being
applications (e.g. a well-being diary).

Natural Language Understanding Component
Although all uni-modal dialog systems work with only one
input modality (i.e. either direct text input or text recognized
by an ASR component) the meaning representation they em-
ploy can differ greatly between solutions [9, 18]. The outp-
tut that has to be produced by an integrated NLU component
therefore depends on the purpose of the overall system as well
as its DM formalism. Specific implementations can take on
various forms and notations. For our prototyping framework
we have chosen a frame-based semantic representation of lan-
guage understanding. Semantic Frames (SF) are often used
because of their versatility. An SF (cf. Figure 2) consists of a

goal (i.e. the user’s intent) and is further defined by a number
of relevant parameters, represented by slot-value pairs. Given
a textual input, the task of and SF-based NLU component is
to select a matching SF (i.e. a goal and its parameters) from
a predefined set of possibilities. It does this by applying a
number of rules which are usually learned from an annotated
corpus.

Figure 2. The example of a Semantic Frame (SF)

The NLU component we have integrated employs an algo-
rithm developed by Jurcicek et al. [12]. It is based on sequen-
tial transformation rules which are applied to find a match
between an input utterance and an SF. Rules consist of trig-
gers and transformation operations. A trigger contains one or
more conditions such as an n-gram or a skipping bigram in
the user utterance, a goal value, or a slot-type in the (tempo-
rary) paired SF. The transformation is applied if all the con-
ditions of a rule’s trigger match the input utterance-SF pair.
An utterance to be processed is initialized with the default
dialog act i.e. no slot and the most common goal as deter-
mined by the annotated training corpus. The training algo-
rithm then looks for one rule that maximizes the value of the
optimization function (i.e. it follows a transformation-based
learning principle). In our case the optimization measure is
the distance between each temporary SF and the ‘true’ SF
in the corpus. This is computed as the sum of required ad-
dition, deletion and substitution operations (i.e. Levenshtein
distance). Once this best rule is found, it is applied to the cur-
rent state of the corpus and the algorithm is re-initiated for the
resulting new training database. The process is stopped when
the best rule’s increase of the optimization function is below
a given threshold.

Semantic Unifier and Reference Resolver
The Semantic Unifier and Reference Resolver (SURR) is not
a standard SDS component but rather one of the features that
was needed to fill the gap between the NLU component in-
tegrated with our prototyping framework and its DM compo-
nent. In particular, it transforms the NLU output, which is
out of context, so that it can be processed by the following
DM. For example, if we want to add a valid event entry to
a calendar application the system usually requires an event
name (i.e. a title), a starting as well as an ending point in time
(i.e. a date and a time) and maybe an optional note. A user,
however, might interact with the system as follows:

- User: “Add the birthday of my daughter, on Saturday the
15th of November from 2 pm”

- System: [asks the user for the ending-point-in-time slot’s
value] “When will it be finished?”

- User: “I think I’ll be there for 6 hours”



In this situation, even if the system would create an SF with
a duration slot of 6 hours instead of an ending time, the DM
would not be able to process the data as it requires a precise
ending. What we see here is an SF space difference between
the semantic interpreter (NLU) and the decision-making com-
ponent (DM). To solve this mismatch we would need to aug-
ment the entire dialog task model, which consequently might
also require significant changes to be made to the back-end
application. Instead, however, our framework uses a dynamic
mapping component (i.e. the SURR) that allows for a dura-
tion slot to be converted into an ending-point-in-time slot. We
call this process the semantic unification. Furthermore we use
what we call a reference resolution process to convert the ‘to-
morrow’ that is used in the above example into ‘today’s date
incremented by one day’. Both operations, semantic unifica-
tion and reference resolution, are contained in the same tree
structures which are searched by the SURR algorithm. These
trees are handcrafted from situations that happen in experi-
ments with real users, and then further expanded according
to a designer’s/researcher’s ideas. For instance, after having
implemented the ‘tomorrow’ branch one may think of adding
the ‘yesterday’ one.

The current version of the SURR module is based on data
collected through a set of initial experiments. It employs a
tree-climbing algorithm that is applied to a structure of addi-
tive and converting branches. Every link between nodes rep-
resents a predicate. Figure 3 shows an example of a tree and
Figure 4 its associated implementation. The initial function
looks for 1 to n slot-value pair(s) for which a transforming
predicate exists and subsequently applies the defined opera-
tion. The resulting (transformed) SF is then processed again
and such is repeated until no further predicate match is found.
The algorithm succeeds if the final SF contains only those
pairs that are declared as roots. All parameters of an SF which
cannot be replaced by a root slot (i.e. where the algorithm
fails) are subsequently discarded.

Figure 3. The tree structure of the Semantic Unifier and Reference Re-
solver (SURR)

Dialog Manager
To date several probabilistic DM components are available
(e.g. [10, 28]). Yet, most of them require a significant amount
of data to produce viable results, and their scalability is of-
ten limited to a few slots, user dialog acts and system ac-
tions. An alternative can be found in fully deterministic DM
components whose functional breadth is pre-defined. Such,

Figure 4. An example implementation of the Semantic Unifier and Ref-
erence Resolver (SURR)

however, requires greater knowledge of the supported dia-
log space and is therefore only suitable for well defined in-
teraction domains. Since the goal of our framework is to
support the development of dialog systems for specific ap-
plication scenarios we decided to integrate Disco [21, 22], a
representative of the later approach. It requires a task model
compliant with the ANSI CEA-20184 standard, which essen-
tially demands a recursive decomposition of tasks into atomic
actions. Disco integrates a so-called inference engine which,
if provided with one or more task models, is able to man-
age a mixed-initiative dialog. It processes a hierarchy of
tasks (applying plan recognition), guiding the user towards
the completion of macro tasks (consisting of several sub-
tasks). Planning is performed automatically, supported by
static task models and a dynamic focus stack. Task models
contain the task structure, the temporal constraints for the di-
alog and the data flow within the models. They are imple-
mented in XML and usually require expertise to be built. In
order to help with their creation we investigated two notation
languages. These languages aim at the automatic extraction
of suitable task models based on the description of the given
back-end application, where the back-end applications is rep-
resented by a form-filling service with attached commands.
The first such language is a set of first-order logic formu-
las. It enables the designer/researcher to specify incompat-
ibilities between slots, as well as optional and mandatory slot
attributes. While such certainly helps the design process its
application is somewhat limited. Additional manual edits are
still required in order to support all the essential information
a task model might need to encode. Hence a second, more ad-
vanced language is currently under development, which sup-
ports conditional relationships between slots, reusable sub-
application descriptions, and computed values. Here, an ap-
plication’s command is described as a form containing an ID,
a set of slots, sub-forms (i.e. links to other forms) and an
action triggered by the completion of the form. Sub-form
attributes are boolean optional, ignore and default, which re-
spectively set the linked form to non mandatory, ignored (in
the case the applicable condition is not fulfilled), or default (in
the case of ambiguity). This process may allow for a richer
formalism and should enable the designer/researcher to focus
more thoroughly on the actual application.

4http://www.ce.org/Standards/Standard-Listings/R7-Home-
Network-Committee/CEA-2018-(ANSI).aspx



Formatting Interfaces (SF to DM and DM to SF)
In addition to the earlier highlighted semantic ambiguities
which exist between NLU and DM (we tackle them with the
described SURR component), we often also find certain for-
matting incompatibilities between those two components (as
well as between the DM and the following NLG component).
Such is usually caused by the use of different input/output
interface standards or diverging forms of knowledge repre-
sentation. Generally the task of a DM component is to trigger
output-dialog-acts and accompanying actions based on input
provided by the NLU. The anticipated input as well as the
produced output are, however, context dependent so that the
current dialog state is often required for better disambigua-
tion. To tackle this problem we have introduced two format-
ting interfaces; one of which translates an SF (delivered by
the SURR) into a context-specific input-dialog-act (i.e. fac-
toring in the current dialog state), and a second one that takes
the output-dialog-act delivered by the DM and translates it
back into an SF (i.e. the format that can be processed by our
NLG component). While these interfaces do not modify the
actual input/output content they can be regarded as necessary
formatting components, implemented as an overlay to the ac-
tual DM. As such, they also offer more flexibility with respect
to the modularization of our framework (Note: A future re-
placement of single components might require additional in-
put/ output formatting).

Natural Language Generation Component
While NLG is generally an important aspect of an SDS it is
currently not our main area of interest. Our framework there-
fore only implements a very basic generation engine. It uses
the output of the DM (i.e. the output that has been converted
by the output formatting interface described above) to select
a human-readable response sentence form a set of possible
templates. Each template uses a goal ID that is matched with
the dialog act produced by the DM. The SDS designer has
to provide at least as many templates (cf. Fig. 5) as dialog
acts exist. In case there are more possible templates for a
given dialog act, the NLG component randomly selects one
and forwards it to the TTS.

Figure 5. Natural Language Generator templates

Text-to-Speech Synthesis Module
Finally, in order to generate speech from the text fragments
produced by the NLG component, our framework integrates
the OpenMary TTS [19, 25]; a state-of-the-art, open source,
synthesis platform which supports several languages. We cur-
rently use the platform to produce speech output in German,
Italian, French and English.

Wizard of Oz Component
One last important aspect of our proposed framework archi-
tecture is the integration of a Wizard of Oz (WOZ) compo-
nent. WOZ constitutes a prototyping method that uses a hu-
man operator, the so-called wizard, to simulate a system (or

part of it) in order to collect relevant interaction data [5]. To
support this task we have integrated the WebWOZ prototyp-
ing platform [24]; a tool that permits the wizard to replace one
or several components of an SDS. Such should offer an easy
and efficient solution for various sorts of data gathering. For
example, the training corpus for our NLU component con-
sists of possible inputs and its matching outputs. Replacing
this component by a human wizard who transforms spoken
input into relevant dialogue acts (i.e. SFs), may alleviate the
fastidious work of manually searching and annotating corpus
data that matches a given application domain.

CURRENT FRAMEWORK EMPLOYMENT
The framework described above is currently used to build a
multi-lingual SDS for an application scenario situated in the
ambient assisted living domain. Experiments are conducted
in which the WOZ component acts as a substitution for the
ASR as well as the NLU component. Doing this we are able
to collect various types of interaction data (mainly training
data that is used for building and improving the NLU com-
ponent and user experience data that helps to obtain initial
end-user feedback). While our initial sessions are in French,
experiments in German and Italian are planned for the next
couple of month. Once sufficient data for a language is col-
lected, one only needs to re-configure the ASR and re-train
the NLU to integrate it with the system. Such demonstrates
the flexibility we are aiming for with our framework compo-
sition. Another aspect of this flexibility is reflected by the
amount of control the human operator (i.e. the wizard) can
take over. Set-ups in which 1-n parts of the framework are
simulated/augmented/controlled should allow for accurate re-
finements of faulty or weak components as well as support
user studies at any stage of the development process; an as-
pect which, we believe, may enable also non-experts to use
our framework as a means for designing and building novel
SDS solutions.

CONCLUSION AND FUTURE WORK
We presented a flexible SDS prototyping framework that aims
to support the easy and quick construction of voice user inter-
faces for different application scenarios. The implementation
of this framework is achieved through the integration of a set
of interchangeable open-source language technology compo-
nents. While the different components are not by default
ready to be used with any application domain, their config-
uration and adaptation to fit a specific purpose requires only
little knowledge and expertise.

Future work will focus on the adaptability and flexibility of
the presented framework, particularly exploring its employ-
ment by non-expert users. Furthermore we will investigate
possible ways of improving single framework components.
For example, we aim for increasing the robustness of the ASR
by using the feedback produced by post-processing compo-
nents (i.e. NLU, SURR, DM). Another planned improvement
is the use of parametric HMMs [29, 20]. Those can be con-
trolled by a set of external shared parameters and therefore
would match more closely the acoustic phenomenons of spo-
ken language. Finally, we are also investigating the use of
several speech recognition hypothesis.
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