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Résumé – Dans ce travail, on étudie le problème de la prédiction pour les processus de Bernoulli Causaux et Décalés (CBS). La technique
de l’agrégation permet de définir un prédicteur avec des propriétés théoriques remarquables. Le calcul numérique de cet estimateur repose sur
une méthode de chaı̂ne de Markov Monte Carlo dont il s’agit d’évaluer les performances. En particulier, il est important de borner le nombre
de simulations nécessaires pour atteindre une précision comparable à celle de l’erreur de prédiction. Nous présentons un résultat général et son
application à un modèle autorégressif. Des expériences numériques confirment les résultats attendus.

Abstract – In this work, we study the problem of forecasting a time series for a Causal Bernoulli Shifts (CBS) model. The aggregation technique
provides an estimator with well established and excellent theoretical properties. However the numerical computation of this estimator relies on
a Markov chain Monte Carlo method whose performances should be evaluated. In particular, it is crucial to bound the number of simulations
needed to achieve a numerical precision of the same order as the prediction error. We present a fairly general result and its application to the
autoregressive model. Some numerical experiments are carried out to support our results.

1 Introduction

An aggregation method consists in building a new estimator or
a new predictor from a collection of different ones (typically via
an integration), which is nearly as good as the best among them,
given a risk criterion. The problem has been treated in different
scenarios, with a few contributions in the dependent context,
see [1], on which we shall rely in this work. The aggregate es-
timator is usually computed via a numerical procedure which
raises an implementation issue. The most common application
of Markov chain Monte Carlo methods is to deal with this kind
of problems : numerically calculating multi-dimensional inte-
grals.
We establish an oracle inequality in a quite general context :
the Causal Bernoulli Shifts. For the practical aspect, a result
of Łatuszyński [3], jointly with other properties of the basic
MCMC algorithms that we used, allows us to control the error
that we make by approximating the mean of a random variable
by the empirical estimate obtained via MCMC. We show an
oracle inequality that applies to the numerical approximation,
instead of the theoretical aggregate estimator. Finally we treat
the autoregressive process as an example and we present some
numerical results.

2 Gibbs estimator

2.1 Statement of the problem and notation

Let us observe (X1, . . . , Xn) from a stationary time series X =

(Xt)t∈Z valued in Rr for some r ≥ 1. Consider a family of

predictors { fθ, θ ∈ Θ}. There exists d ∈ N∗ such that for any
θ ∈ Θ, fθ : (Rr)d → (Rr) is a function from which we obtain :

X̂θ
t = fθ (Xt−1, . . . , Xt−d) , (1)

a possible forecasting of Xt according to θ. Let ` be a loss func-
tion ; we define the prediction risk as R (θ) = E

[
`
(
X̂θ

t , Xt

)]
. It

has a key role in the evaluation of the performance of any θ that
we consider. As in general we do not know the distribution of
the process, it is convenient to take into account the empirical
version of the risk :

rn (θ; X1, . . . , Xn) =
1

n − d

n∑
t=d+1

`
(
X̂θ

t , Xt

)
.

For the sake of simplicity we will identify
rn (θ) ≡ rn (θ; X1, . . . , Xn) but without forgetting that it is a ran-
dom variable which depends on n observations of the series.
A probability measure π over Θ is labelled as the prior. It will
serve to control the complexity of predictors in Θ and to con-
struct one in particular, as detailed in the following.
For a measure ν and a measurable function h (called “energy

function”) such that ν
[
exp (h)

]
=

∫
exp (h) dν < +∞ , we

denote by ν {h} the measure defined by :

ν {h} (dθ) =
exp (h (θ))
ν
[
exp (h)

]ν (dθ) . (2)

It is a particular Gibbs measure where the inverse temperature
is equal to −1.
Given a λ > 0, another temperature parameter, we define the
Gibbs estimator as the expectation of a random variable drawn



under π {−λrn} :

θ̂λ,n = π {−λrn} [Id] =

∫
Θ

θπ {−λrn (·)} (dθ) . (3)

So far we have presented a quite general framework : a time
series that we aim to predict using a parameter θ, and a propo-
sition of estimation for this θ. Let us introduce now the context
in which this proposition will be studied.
A time series is defined as Causal Bernoulli Shifts (CBS) if it
satisfies the representation :

Xt = H (ξt, ξt−1, ξt−2, . . .) ,∀t ∈ Z , (4)

where (ξs) is an i.i.d. sequence of Rr′ -valued r.v.s, for some
r′ ≥ 1 and H :

(
Rr′

)N
→ Rr is a function satisfying :

‖H (v) − H
(
v′
)
‖ ≤

∞∑
j=0

a j (H) ‖v j − v′j‖ , (5)

for any v =
(
v j

)
j∈N

, v′ =
(
v′j

)
j∈N
∈ Rr′ ,

where
∞∑
j=0

ja j (H) < +∞.

2.2 Oracle inequality
In the context of CBS, adapting [1], some generic Oracle in-
equalities can be established on the aggregate predictor. For
instance, for a bounded Θ ⊂ Rp, a uniform prior π yields that
there exists a constant E, such that for all ε > 0, with probabil-
ity at least 1 − ε,

R
(
θ̂√n,n

)
≤ inf

θ∈Θ
R (θ) + E

log2 (n)
√

n
+

2
√

n
log

(
1
ε

)
. (6)

The proof uses a Hoeffding type inequality for dependent se-
quences [6] and a lemma about the Legendre transform of the
Kullback divergence function that we can find in [2].
Such inequality can be extended to more difficult situations
which are not detailed here for brevity. Here however we shall
focus on the fact that this inequality does not take into account
the complexity to compute θ̂√n,n.

3 MCMC approximation
We use the Metropolis - Hastings algorithm in order to com-
pute the mean of a target probability whose density ρ, possi-
bly unnormalised, is relatively easy to calculate. We will work
over Θ ⊆ Rp equipped with T , the Borel σ- algebra. We will
consider probability measures which are absolutely continu-
ous, and have a known density with respect to the Lebesgue
measure.
The Metropolis-Hastings algorithm generates a Markov chain
Φ = {Φi}i≥0 with the target distribution as a unique invariant
measure, based on another Markov chain which serves as a pro-
posal. We shall consider the two following classical setups for
the proposal :

• The independent Hastings algorithm where the proposal

is i.i.d. with density q such that
q (y)
ρ (y)

≥ β,∀y ∈ Θ for

some β > 0.

• The Metropolis-Hastings algorithm where the proposal
is a Markov chain with conditional density kernel q on

Θ̄ × Θ̄ such that β = inf
x∈Θ̄,y∈Θ̄

ρ (y)
ρ (x)

inf
x∈Θ̄,y∈Θ̄

q (x, y) > 0.

From a simulated sequence Φ1, . . . ,Φm, a numerical estimate

of
∫

x ρ(x) dx is obtained by setting θ̄m =
1
m

m−1∑
i=0
Φi. We have

the following result.
Theorem 1. Define

M (α, γ, ε) =
(2 − γ) diam (Θ)

2α2εγ
+

1
2

√(
(2 − γ) diam (Θ)

α2εγ

)2

+
4diam (Θ)
α2εγ

, (7)

where diam (Θ) = sup
x,y∈Θ
‖x− y‖. Then, for any of two considered

setups, for all m ≥ M (α, β, ε), with probability at least 1 − ε,∣∣∣∣∣θ̄m −

∫
x ρ(x) dx

∣∣∣∣∣ ≤ α . (8)

By setting α appropriately, this result says how many iterations
of the MCMC method are required in order to be reach a pre-
cisions of the same order as the prediction error enjoyed by the
target Gibbs estimator.

4 Application to the AR(d) process with
bounded innovations

4.1 Theoretical facts
We study the autoregressive model of order d or simply the
AR(d), defined as the stationary solution of :

Xt =

d∑
j=1

θ jXt− j + σξt , (9)

where the ξt are i.i.d. with Eξt = 0. We denote sd(ρ) ={
(θ1, . . . , θd) : 1 −

∑
k
θkzk , 0 for |z| < ρ−1

}
the set of θs for

which the autoregressive polynomial θ (z) = 1 −
∑
k
θkzk has

all its roots outside the circle of radius ρ−1. In this context, the
CBS assumption implies that the true parameter θ̄ = (θ1, . . . , θd) ∈
sd(1). In the following we moreover assume that the innova-
tions (ξt) have compact support (as in [1]) and denote by B a
constant such that Xt ∈ [−B,B] for all t.
Since sd(1) ⊆ Bd

(
2d − 1

)
(see [5]), the prior π can be defined

on Θ = sd(1) or Bd

(
2d − 1

)
. These two possible priors are com-

bined with two different proposals in the Metropolis-Hasting
algorithm.
Uniform prior on Bd

(
2d − 1

)
Suppose that π is the Lebesgue measure in Θ = Bd

(
2d − 1

)
.

As proposal chain we will use the uniform distribution over



the entire ball (independent of current state) and the truncated
Gaussian one.
Uniform proposal : q

(
θ̃1, θ̃2

)
∝ 1B(2p−1)

(
θ̃2

)
. It can be shown

in this case that the posterior distribution (which depends on λ
and X1, . . . , Xn) satisfies the assumptions of Theorem 1 with

βλ,n = exp
(
−λB2

(
1 +
√

d
(
2d − 1

))2
)
.

Constrained random walk with Gaussian increment :
q
(
θ̃1, θ̃2

)
∝ exp

(
−

n
2
‖θ̃2 − θ̃1‖

2
)

1{θ̃2∈B(2p−1)}. Here we chose the
variance of the increments so that the corresponding coefficient
β can be guaranteed to be at least

βλ,n =

( n
2π

) d
2

exp
(
−2

(
2d − 1

) (
λ2d+1B2 +

(
2d − 1

)
n
))
.

Pushforward measure on sd (1)
It is more natural to choose Θd = sd (1) than Θd = Bd

(
2d − 1

)
.

There are several ways to define a prior on sd (1). We propose
to use the function which maps the reciprocal roots of θ (z) to
the coefficients θ1, . . . θd.
Given λ = (λ1, . . . , λd), θ is then obtained by the transformation
θ = T (λ), defined as :

θk = (−1)k−1
∑

1≤i1<...<ik≤d

λi1 . . . λik . (10)

However not any λ ∈ S d (with S = {z ∈ C, |z| > 1}) can be
picked up, since θ (z) is restricted to real polynomials. It is
easy to deal with this picking couples of complex conjugates.
A possible procedure is (and this is how the probability distri-
bution is set) :

• C ∈
[
0,

⌊d
2

⌋
+ 1

)
. bCc ∈

{
0, 1, . . . ,

⌊d
2

⌋}
represents the

number of couples of non-real roots.
• Ui ∈ [−1, 1] is the value of λi when it is real, i ∈ [1, d].
• Vi ∈ (0, 1] is the modulus of λ2i−1 and λ2i when they are

not real, i ∈
[
1,

⌊d
2

⌋]
.

• Wi ∈ (0, π) is the argument of λ2i−1 and λ̄2i when they are

not real, i ∈
[
1,

⌊d
2

⌋]
.

Transformation λ = L (C,U,V,W) is detailed below

λ2i−1 = Vi [cos (Wi) + i sin (Wi)] · 1{C≥i} + U2i−1 · 1{C≤i−1}

λ2i = Vi [cos (Wi) − i sin (Wi)] · 1{C≥i} + U2i · 1{C≤i−1}

Let Ω =

[
0,

⌊d
2

⌋
+ 1

)
× [−1, 1]d × (0, 1]b

d
2 c × (0, π)b

d
2 c the space

to which variables (C,U,V,W) belong. The transformation
F (ω) = T ◦ L (ω) covers the whole set sd (1). With this map, it
is possible to define a prior measure on sd (1) from a measure
on Ω (precisely the pushforward measure).
We run the MCMC algorithm precisely on Ω. The convergence
properties are inherited by the underlying chain on sd (1).
Here again, as proposal we will use the uniform distribution
over Ω (independent of current state) and the truncated Gaus-
sian one.

Uniform proposal : q̄ (ω̃1, ω̃2) ∝ 1Ω (ω̃2). The posterior dis-
tribution satisfies the assumptions of Theorem 1 with

βλ,n = exp
(
−λB2

(
1 +
√

d
(
2d − 1

))2
)
.

Constrained random walk with Gaussian increment :
q̄ (ω̃1, ω̃2) ∝ exp

(
−

n
2
‖ω̃2 − ω̃1‖

2
)

1Ω (ω̃2). We chose the vari-
ance of the increments such that β is be guaranteed to be at
least

βλ,n =

( n
2π

)1+p+2b d
2 c

exp
(
−2

(
λ2d+1

(
2d − 1

)
B2 +

(
21+d+2b d

2 c − 1
)2

n
))
.

Each one of the four above setups give us a θ̄λ,n,m for each m
(MCMC iteration number) which can be used for approximat-
ing θ̂λ,n. In all four cases, the following result is obtained.

Theorem 2. There exists a constant F such that for all m ≥

M
(

log(n)
n

, β√n,n, ε

)
, with M defined as in Theorem 1,with prob-

ability at least (1 − ε)2,

R
(
θ̄√n,n,m

)
≤ inf

θ∈Θ
R (θ) + F

log2 (n)
√

n
+

2
√

n
log

(
1
ε

)
,(11)

where the value of β√n,n is detailed above depending on the
specific scheme.

4.2 Numerical work
We iterate the algorithm with m = 10000 times for the four
schemes with d = 8. It is interesting to note that the prediction
error decreases as the number n of observations grows but then
stabilizes because the number m of simulations in the MCMC
algorithm remains fixed. Indeed, to guaranty the correct error
order of magnitude for a fixed n, this number m should be at

least M
(

log(n)
n

, β√n,n, ε

)
, which diverges exponentially fast as

n increases.
The following graphs resume the behavior of the algorithm for
20 time series in each case.

Fig. 1: Uniform proposal, d = 8, Θ = B8

(
28 − 1

)
.



Fig. 2: Gaussian proposal, d = 8, Θ = B8

(
28 − 1

)

Fig. 3: Uniform proposal, d = 8, Θ = s8(1)

Fig. 4: Gaussian proposal, d = 8, Θ = s8(1)

Figure 1 shows that the uniform proposal in Θ = Bd

(
2d − 1

)
leads to unsatisfactory results. Indeed, in this case, the MCMC
procedure is unable to get close to the target distribution, what-
ever the number of simulations is. The main reason is that for
d = 8 the domain B8

(
28 − 1

)
is too wide so that the domain

of interest for the parameter, where the posterior distribution
is concentrated, is not explored by the chain. Other situations
in Figures 2–4 show good results. However, using (7) and the
obtained expressions of β yields to the following equivalence
for the minimal number of iterations m guarantying a correct
prediction error as a function of the number of observations n :

m ≥ C1 (d)
log2 n
2n2ε

exp
(
C2 (d)

√
n
)
,

where C1 and C2 are positive functions.
Hence, for a large number of iterations, the good performance

of the Gibbs estimator requires a very costly numerical proce-
dure, making its practical benefit doubtful.

5 Conclusion
The use of aggregate estimators determining a parameter with
almost minimal prediction risk has been considered in this work
in the context of stationary time series. An approximation of
the Gibbs estimator can be computed using the Metropolis Hast-
ings algorithm. This allows us to obtain guaranties on the nu-
merical approximation, that we illustrated by a new oracle in-
equality. However, this inequality indicates that such an ap-
proach is sensible only for a reasonably small number of obser-
vations, since the number of iterations of the numerical method
needed to achieve the correct prediction error increases expo-
nentially fast.
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