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Abstract
In this work, we study the problem of online adaptive forecasting for locally stationary Time Varying Autoregressive processes
(TVAR). The Normalized Mean Least Squares algorithm (NMLS) is an online stochastic gradient method which has been shown
to perform efficiently, provided that the gradient step size is well chosen. This choice highly depends on the smoothness exponent
of the evolving parameters. In this contribution, we show that a sequential aggregation of several NLMS estimators at various
gradient step sizes is able to adapt to an unknown smoothness, resulting in an online adaptive predictor.

1 Introduction
In many applications where high frequency data is collected, one wishes to predict the next values of an observed time series
through an online predictor learning algorithm, allowing one to process a large amount of data. However, as a counterpart, the
usual stationarity assumption has to be weakened to take into account some smooth evolution of the environment. An interesting
approach to cope with this non-stationarity issue is to rely on a local stationarity assumption. We refer to [2] and the references
therein for a recent general view about statistical inference for locally stationary processes. Here we focus on a particular model,
which is obtain by apply this approach to a time-varying autoregressive process.

Definition 1 (Time-varying autoregressive process (TVAR)) The T-sample X1,T , . . . , XT,T of a TVAR process or order d satisfies,

Xt,T =

d∑
j=1

θ j

(
t − 1

T

)
Xt− j,T + σ

( t
T

)
ξt , (1)

where the ξt are i.i.d. with Eξt = 0, E|ξt | < ∞, and θ j are the time-varying autoregressive coefficients rescaled on the interval [0, 1].

Some initial conditions can be added but we omit them here for brevity. It is usually assumed that ξt is independent of the

past of Xs,T up to s = t − 1 so that the best predictor of Xt,T given this past is θ′
(

t − 1
T

)
Xt−1,T , where θ = (θ1, . . . , θd)′ and

Xt−1,T =
(
Xt−1,T , . . . , Xt−d,T

)′. Here and in the following, we let A′ denote the transpose of the matrix A.

The local stationary time-varying autoregressive polynomial for a TVAR is defined as θ(z; t) = 1 −
d∑

j=1
θ j(u)z j.

For ζ > 0 we denote by sd(ζ) =
{
θ : [0, 1]→ Rd, θ(z; u) , 0,∀|z| < ζ−1, u ∈ [0, 1]

}
.

Following [3] and [4], a TVAR process is locally stationary if θ and σ satisfy some smoothness conditions and θ ∈ sd (δ) for some
δ ∈ (0, 1). These conditions imply that there exists a solution with representation :

Xt,T =

∞∑
j=0

at,T ( j)ξt− j , (2)

and that there exist K̄ > 0 and ρ ∈ [0, 1) such that sup
t,T
|at,T ( j)| ≤ K̄ρ j.

In this contribution, we shall use β− Lipschitz smoothness conditions. For any β ∈ (0, 1], the β− Lipschitz semi-norm of a function

f : [0, 1]→ Rd is defined as | f |Λ,β = sup
s1,s2

f (s1) − f (s2)
|s1 − s2|

β
. For L ∈ R∗+ and β > 0, let k ∈ N and α ∈ (0, 1] be such that β = k + α. The

β− Lipschitz ball is :

Λd(β, L) =

{
f : [0, 1]→ Rd,

∣∣∣ f (k)
∣∣∣
Λ,α
≤ L, sup

s∈[0,1]
| f (s)| ≤ L

}
. (3)

The quality of the prediction is measured using a loss function ` (x, y) = |x − y|q for some q = 1, 2, 3, . . .
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2 NLMS estimators
In [5], the normalized least mean squares algorithm (NLMS) estimator of the parameter θ = (θ1, . . . , θd)′ is studied for locally
stationary TVAR processes. We will use basically the same estimators but with a slight modification (Eq. (5) below). For a given
gradient step size µ > 0, our modified NLMS estimator is defined recursively as follows :

θ̃t,T (µ) = θ̃t−1,T (µ) + µ
(
Xt,T − θ̃

′
t−1,T (µ)Xt−1,T

) Xt−1,T

1 + µ
∣∣∣Xt−1,T

∣∣∣2
2

, (4)

θ̂t,T (µ) =


θ̃t,T (µ) if

∣∣∣θ̃t,T (µ)
∣∣∣
2
≤ 2d − 1 ,

2d − 1∣∣∣θ̃t,T (µ)
∣∣∣
2

θ̃t,T (µ) otherwise.
(5)

Here | · |2 stands for the Euclidean norm. The additional step (5) is a projection on the ball of radius 2d − 1 which guaranties our

estimators to be bounded. The statistic θ̂t−1,T (µ) is our estimation for θ
(

t − 1
T

)
, from which we obtain the predictor θ̂′t−1,T (µ)Xt−1,T

of Xt,T . One of our objectives is to control the mean risk in prediction using the estimators above. Following [5], it can be shown
that, under some mild moment assumptions on the noise (ξt), for any δ ∈ (0, 1), L, 0 < σ− < σ+ and β ∈ (0, 1], there exists C > 0
such that,

sup
θ∈sd (δ)∩Λd (β,L),σ(u)∈[σ− ,σ+],∀u∈[0,1]

1
T

T∑
t=1

(
E

[
`
(
θ̂′t−1,Tµ)Xt−1,T , Xt,T

)]
− σq

( t
T

)
E

[
|ξ0|

q])
≤ C

[
(Tµ)−1 +

(√
µ + (Tµ)−β

)q]
. (6)

Observe that, in this bound, the optimal choice of the parameter µ depends on β. This fact leads us to consider an additional
aggregation step as explained below.

3 Aggregation of predictors
From a collection

{
θ̂( j)

t−1,T

}
1≤ j≤N

of N estimators of θ we obtain the respective predictions of Xt,T : f j,t = θ̂( j)′
t−1,T Xt−1,T , 1 ≤ j ≤ N.

In particular, each index j may correspond to a NLMS estimator obtained with a given µ j. In aggregation language, the f j,ts are
called expert’s predictions or forecasts. The strategy used in a different context (bounded observations) by [1] suggest to combine
all possible expert’s predictions using some weights specified by :

ᾱ j,t =

exp
(
−η

t−1∑
s=1

˜̀ j,s

)
N∑

i=1
exp

(
−η

t−1∑
s=1

˜̀i,s

) , (7)

where ˜̀ j,t = ∇x`

(
N∑

i=1
αi,t fi,t, Xt,T

)
· f j,t and with the convention that a sum over no element is null, i.e. ᾱ j,1 =

1
N

for all j. The

subgradient is taken with respect to the first coordinate on `. The parameter η > 0 is known as learning rate and will be specified.
Based on sequential aggregation techniques (see [1]), and some extensions of the bound (6), we obtain the following result.

Theorem 1 Suppose that E[|ξ0|
r] < ∞ for some r > 3q. Let θ̂( j)

t,T = θ̂t,T

(
T−2 j/(2 j+N)

)
for j = 1, . . . ,N. Define the aggregated

estimator θ̌t−1,T =
N∑

j=1
ᾱ j,tθ̂

( j)
t−1,T , 1 ≤ t ≤ T with η ∝

√
log N

T
. Suppose moreover that θ ∈ sd (δ) ∩ Λd(β, L) for L > 0 and β ∈ (0, 1],

and that σ is bounded between two positive values. Then we have :

1
T

T∑
t=1

(
E

[
`
(
θ̌′t−1,T Xt−1,T , Xt,T

)]
− σq

( t
T

)
E

[
|ξ0|

q]) = O
(
T−1/(1+2β) + T−qβ/(1+2β)

)
, (8)

provided that
log(T )

N
= O(1) as T → ∞.

Observe that the convergence rate is the same as the one of (6) when µ is optimized according to the given value β for qβ ≤ 1.
Here, in contrast, the estimator does not require the knowledge of β to achieve this rate.
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4 Numerical results
We now provide some numerical experiments to support our theoretical findings. We simulated 100 samples of length T = 1000 of
a locally stationary TVAR process of order d = 3. The definition of the time varying coefficients is omitted here for brevity. We just
mention that the stability condition θ ∈ sd (δ) is satisfied with δ = 0.8. A path of one of these samples is displayed in Figure 1 while
the true coefficient θ1 and the corresponding estimates θ̂( j)

1,t,T for j = 1, . . . ,N = 6 and θ̌1,t,T obtained from this sample are displayed
in Figure 2. Observe that the behaviour of each expert is as expected : the higher µ j, the smoother the path of θ̂( j)

1,t,T . Finally Figure 3

shows boxplots of the empirical error RT (θ̂) =
1
T

T∑
t=1

(∣∣∣θ̂′t−1,T Xt−1,T − Xt,T

∣∣∣2 − σ2
( t

T

)
E

[
|ξ0|

2
])

for θ̂ = θ̂( j)
t,T for j = 1, . . . , 6 and for

θ̂ = θ̌t,T in Slot 7. We note that among the NLMS “experts”, one indeed seems to have the optimal gradient step (see Slot 2) and
that the aggregate predictor achieves comparable performances, as expected.

Figure 1: A sample path of the TVAR process

Figure 2: Estimations of θ1 Figure 3: Empirical errors
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